# **FLASHForward**

Future-oriented wakefield-accelerator research and development at FLASH

V. Libov, C. Behrens, J. Dale, N. Delbos, E. Elsen, C. Entrena Utrilla, M. Felber, B. Foster, J. Grebenyuk, K. Ludwig, A. Martinez de la Ossa, T. Mehrling, L. Schaper, H. Schlarb, B. Schmidt, S. Wunderlich, J. Zemella and J. Osterhoff (DESY, Hamburg and Hamburg University, Germany)



#### The future of particle accelerators?



#### How plasma acceleration works

- A wakefield in the plasma is excited by a bunch of charged particles (beam-driven) or by a laser pulse (laser-driven)
- Particles are injected into the wakefield and are accelerated by means of high electric fields of the wake
- Injected particles co-propagate with the wake



#### Why beam-driven?

Laser-driven (LWFA)

- Most common technology for plasma acceleration
- But has a number of disadvantages:
  - Low average laser power and low wall-plug efficiency
    - $\rightarrow$  not suitable for particle physics
  - ► Fluctuations of laser pulse parameters → affects accelerated beam stability
  - Plasma wakefield dephasing
  - $\rightarrow$  limits beam quality
  - Diffraction of laser pulse
  - ightarrow limits beam energy

Beam-driven (PWFA)

|                                                                                                                                                                                                       | Internal                                                                                                 | External                                                                                      |                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li><sup>50</sup> 100 150 200<br/>¿ (μ m)         • Plasma wakefield acceleration [1] is a promising technology which might revolutionise<br/>the field of particle accelerators     </li> </ul> | Electrons are collected from the plasma itself                                                           | A prepared bunch of electrons<br>(or protons) is injected into<br>the plasma from the outside | <ul> <li>A promising alternative to laser-driven:</li> <li>High average power</li> <li>Higher stability of the driver</li> <li>Larger beam energy and better quality (no</li> </ul>            |  |
| • Supplies accelerating gradients in the order of <b>10-100 GV/m</b> [2] – three orders of magnitude larger than in conventional radio-frequency cavities, the nowadays standard in particle          | Various techniques to realise this have been proposed, e.g.:                                             | <b>Required</b> for staged acceleration (essential for particle physics                       | <ul><li>diffraction, no dephasing)</li><li>However:</li></ul>                                                                                                                                  |  |
| <ul> <li>accelerators</li> <li>Could lead to development of compact accelerators for fundamental research (particle physics, free-electron lasers) as well as for industry applications</li> </ul>    | <ul> <li>Density-downramp [3]</li> <li>Ionisation injection [4]</li> <li>Laser-controlled [5]</li> </ul> | applications)                                                                                 | <ul> <li>More difficult to realise, since need a conventional accelerator</li> <li>High-quality beams not yet demonstrated</li> <li>Accelerated bunches not systematically analysed</li> </ul> |  |
| A new facility to study beam-driven plasma acceleration, <b>FLASHForward</b> , is being prepared at DESY                                                                                              | Need to assess performation                                                                              | ance of each technique                                                                        | <ul> <li>Existing accelerator infrastructure at DESY makes it<br/>suitable for studies of PWFA</li> </ul>                                                                                      |  |

### **FLASHForward facility at DESY**



| for a careful design of the interaction region                                             | pumping stage                                                                                                           | plasma exit                                      |                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Capability to move the plasma cell in 6D in an<br/>ultra-high vacuum</li> </ul>   | <ul> <li>The novel design allows stable, tailored plasma<br/>density profiles</li> </ul>                                | detection screen                                 | References<br>[1] T. Tajima, J. M. Dawson, Phys. Rev. Lett. <b>43</b> , 267                                                                                                                                                                                                                                    |
| <ul> <li>Alignment and diagnostics of the incoming electron<br/>and laser beams</li> </ul> | <ul> <li>Plasma creation by laser or discharge possible</li> <li>Differential pumping needed to mitigate gas</li> </ul> | Energy resolution:                               | <ul> <li>[2] M. J. Hogan <i>et al.</i>, Phys. Rev. Lett. <b>95</b>, 054802 (2005),</li> <li>W. P. Leemans <i>et al.</i>, Nature <b>2</b>, 696 (2006),</li> <li>I. Blumenfeld <i>et al.</i>, Nature <b>445</b>, 741 (2007),</li> <li>J. Osterhoff et al., Phys. Rev. Lett. <b>101</b>, 085002 (2008)</li> </ul> |
| <ul> <li>Possibility to study laser-controlled injection (laser ports)</li> </ul>          | release into vacuum                                                                                                     | 0.03<br>0.02<br>0.01                             | <ul> <li>[3] S. Bulanov <i>et al.</i>, Phys. Rev. <b>E58</b>, R5257 (1998),</li> <li>J. Grebenyuk, poster at this workshop</li> <li>[4] A. Martinez de la Ossa <i>et al.</i>, paper in preparation</li> <li>[5] B. Hidding <i>et al.</i>, Phys. Rev. Lett. <b>108</b>, 035001 (2012)</li> </ul>                |
|                                                                                            |                                                                                                                         | 0 /<br>0.2 0.4 0.6 0.8 1 1.2 1.4<br>Energy [GeV] |                                                                                                                                                                                                                                                                                                                |





## CERN Accelerator School, 18-29 August, 2013, Trondheim, Norway