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The future of particle accelerators?

SummaryExperimental chamber

FLASHForward facility at DESY

How plasma acceleration works

• Plasma wakefield acceleration [1] is a promising technology which might  revolutionise
 the field of particle accelerators

• Supplies accelerating gradients in the order of 10-100 GV/m [2] – three orders of magnitude
 larger than in conventional radio-frequency cavities, the nowadays standard in particle
 accelerators

• Could lead to development of compact accelerators for fundamental
 research (particle physics, free-electron lasers) as well as for industry applications

 A new facility to study beam-driven plasma acceleration, FLASHForward, is being
 prepared at DESY

Why beam-driven?

. 

Plasma cell Diagnostics

Overview

• FLASH is a free-electron laser (FEL) at DESY,
 world's first soft X-ray FEL

• Provides high-quality electron beams up to 1.25 GeV

• This gives a unique opportunity to study PWFA:
 electrons from FLASH will drive the wake in the plasma 
 channel; injected electrons will be accelerated by this
 wakefield.

Physics goal – overcome current PWFA limitations 

• Produce high-quality beams with beam-driven
 acceleration

• Systematically analyse bunch parameters (normalised
 projected emittance, normalised uncorrelated emittance,
 bunch length) for different injection techniques

• Achieve transformer ratios greater than 2 (ratio of the
 witness and the driver energies) 

• Demonstrate for the first time an FEL driven by plasma-
 accelerated electron beams 

Experimental setup

• Beam extraction and transport to the interaction region
• Plasma cell – the interaction region 
• Experimental chamber – houses the plasma cell
• Post-plasma diagnostics – measures properties of
 accelerated and drive electron bunches

• Further beam transport to the undulators – for the FEL
 demonstration

• A wakefield in the plasma is excited by a bunch of charged
 particles (beam-driven) or by a laser pulse (laser-driven)

• Particles are injected into the wakefield and are accelerated
 by means of high electric fields of the wake

• Injected particles co-propagate with the wake

Particle injection types

Internal External

A prepared bunch of electrons
(or protons) is injected into 
the plasma from the outside

Electrons are collected from 
the plasma itself

‣ Density-downramp [3] 
‣ Ionisation injection [4] 
‣ Laser-controlled [5]

Laser-driven (LWFA)

• Most common technology for plasma acceleration
• But has a number of disadvantages:

‣ Low average laser power and low wall-plug
 efficiency
  → not suitable for particle physics
‣ Fluctuations of laser pulse parameters

  → affects accelerated beam stability
‣ Plasma wakefield dephasing

  → limits beam quality
‣ Diffraction of laser pulse

  → limits beam energy

Beam-driven (PWFA)

• A promising alternative to laser-driven:
‣ High average power
‣ Higher stability of the driver
‣ Larger beam energy and better quality (no

 diffraction, no dephasing)

• However:
‣ More difficult to realise, since need a 

 conventional accelerator
‣ High-quality beams not yet demonstrated
‣ Accelerated bunches not systematically analysed

• Existing accelerator infrastructure at DESY makes it
 suitable for studies of PWFA

• FLASHForward is a PWFA facility being
 prepared at DESY

• High-quality electron beams of ~1 GeV from
 the free-electron laser FLASH will be utilised
 to drive the wake in the plasma

• Various injection techniques will be studied,  
 such as:

• Density-downramp
• Ionisation injection
• External injection

• A first demonstration of an FEL driven by 
 electron beams from PWFA is foreseen 

Required for staged acceleration 
(essential for particle physics 
applications)

Plasma and electron density
obtained from a Particle-in-
Cell simulation.
The drive and accelerated
bunches are visible.

• Stringent vacuum requirements at FLASH (10-9 mbar) call
 for a careful design of the interaction region

• Capability to move the plasma cell in 6D in an
 ultra-high vacuum

• Alignment and diagnostics of the incoming electron
 and laser beams

• Possibility to study laser-controlled injection (laser ports)
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Various techniques to realise this 
have been proposed, e.g.:

• The novel design allows stable, tailored plasma
 density profiles

• Plasma creation by laser or discharge possible

• Differential pumping needed to mitigate gas
 release into vacuum

• Need to characterise both the drive and
 the accelerated beam:

‣ Broadband GeV-electron spectrometer
‣ BPMs
‣ Quadrupoles and screens

 for beam profile and emittance (multi-shot)
‣ Transition-radiation spectrometer

 for longitudinal bunch shape
‣ X-ray CCD for beam-size in plasma
‣ Undulator

Example: drive beam spectrometer

Energy resolution:

‣ Recycled DORIS III magnet
‣ 1.44 T field
‣ 1020 mm pole length,

  60 mm gap

Drive bunch

Accelerated (witness)
bunch

FLASHForward
Future-oriented wakefield-accelerator research and development at FLASH

Conceptual design in progress, to be concluded in Dec. 2013
Experiments to start early 2016, run for 4 years+

Need to assess performance of each technique
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