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Abstract
During the collision of two charged beams the strong non linear electromagnetic field of one beam perturbs the trajectory of the opposing beam. This effect is called beam-beam
Interaction. The beam-beam force in first approximation is linearly dependent on the distance to the opposite beam and leads to a coupling between the colliding bunches. Each particle of
a bunch Is affected by a non-linear single particle effect that leads to the so called incoherent beam-beam effects. However the beam can be affected as a whole and the resulting
collective motion leads to the so-called coherent beam-beam effects. For two colliding bunches this can be computed and is well understood. For a large number of bunches colliding in
more complicated configurations, as for example the LHC, this will result in a richer spectrum of oscillation frequencies. To compute the possible beam-beam modes for different collision
pattern and beam filling schemes, three models were developed and are described focusing on their advantages and/or limitations. The three models give useful and different information
about the beam-beam coherent interactions of multi bunch beams. All together they can provide a deeper insight into the underlying physics.
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