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Abstract - Cavities suffer from eigenfrequency shifts due to
mechanical deformation caused by the electromagnetic radiation
pressure, a phenomenon known as Lorentz detuning. Standard
Finite Element Methods fail to achieve a sufficient accuracy due to
the poor representation of the geometry and due to the low order
basis functions. We propose Isogeometric Analysis for discretising
both geometry and fields in a coupled multiphysics simulation
approach.

Multi-physics Model for Lorentz Detuning
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Step 3 Step 4
Solve linear elasticity Repeat first step
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problem in the cavity walls: in the deformed cavity:
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Isogeometric Analysis

Aim: "bridging the gap between CAD and FEA"

Exact representation of CAD geometries using B-Splines
and Non-Uniform Rational B-Splines (NURBS)
Isoparametric approach

Elegant and simple description of the

deformed geometry

No need of a re-meshing step .
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and a degree p.
They are then weighted by control points to create curves, surfaces

and volumes: C(&) =) Nip(&)P;
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Accelerating mode in a
cylindrical pillbox cavity.

Steps 1-4 have Dbeen
applied and the detuning
has been computed.

Frequency in the deformed configuration

Frequency in the undeformed configuration
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On the left:
Error w.r.t. the exact ~

solution is shown.
The multi-physical
coupling does not
decrease the optimal
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|GA guarantees higher accuracy per DoF than Nedélec FEA in 2D.

Conclusions

The scheme has been applied to the 1-cell
TESLA cavity (on the right). The computed
displacement is of the order of 10 nm which
IS In good accordance to results reported In
literature [1].

The corresponding frequency shift is:

Af() — 216 Hz

with an accuracy of approximately +1 Hz.
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