

RF DESIGN OF A NOVEL S-BAND BACKWARD TRAVELLING WAVE LINAC FOR PROTON THERAPY

S. Benedetti*, TERA Foundation, Novara, Italy and EPFL, Lausanne, Switzerland A. Degiovanni, A. Grudiev, W. Wuensch, CERN, Geneva, Switzerland **U. Amaldi,** TERA Foundation, Novara, Italy

*email: stefano.benedetti@cern.ch

INTRODUCTION

- A collaboration between the TERA Foundation and CLIC
- Design of a novel high gradient S-band accelerating structure for the TULIP project [1]
- accelerating The design gradient almost double that obtained before [2]
- Novel approach to RF design

The complete 3D RF design of the full structure for beta equal to 0.38 is hereafter presented

RF DESIGN

REGULAR CELL DESIGN

through *coupling holes*

 $\frac{P_w}{E_a^2} \cdot \frac{S_c}{E_a^2}$

Magnetic coupling between cells Cell geometry designed in order to minimize the quantity [3]:

COUPLERS DESIGN

- RF power coupled magnetically via a single slot
- Coupling holes radii in the input coupler sized to compensate for local enhancement of S_c due to the local increase of the power flow

phase advance

holes

Iris thickness chosen considering \bullet the results of the creep test and of the thermal simulations

Optimum found when μ is equal

on the nose and on the coupling

Optimization accomplished by

varying gap, cone angle and

TAPERING

- Constant-gradient structure, with group velocity ranging between 0.4 % and 0.2 % of c
- Linear variation of the coupling holes radii; cell diameters adjusted accordingly
- All the other parameters are kept constant throughout the structure

- End-cells provide the same acceleration as the regular cells
- Even distribution of S_c on the accelerating structure noses and coupling holes reached
- Phase advance is 150° at the design frequency and reflection lower than -50 dB

SUMMARY AND FUTURE STEPS

Parameter	bwTW	CCL [4]
RF phase advance per accelerating cell [rad]	5π/6	Π
Iris thickness [mm]	2	3
Gap [mm]	7	5.1
Nose cone angle [deg]	65	25
Number of cells	12	10
Structure length including end-cells [mm]	189.9 (active)	189.9 (active)
Average accelerating gradient [MV/m]	50	31
Q factor (first/last cell)	6997/7463	8290
R'/Q (first/last cell)	7425/7369	8410
Normalized shunt impedance (first/last cell) [MΩ/m]	52.0/ 55.0	69.7
Filling time (w/o re-circulator) [ns]	900 (224)	1050
Peak input power (w/o re-circulator) [MW]	9.3 (20.6)	2.6
Max S_c/E_a^2 [A/V]	3.1e-4	7.8e-4
Max E _a (for BDR of 10 ⁻⁶ bpp/m) [MV/m]	74.9	47.1
Maximum surface electric field [MV/m]	219	159

A novel high gradient Sband accelerating structure for proton therapy has been designed

mechanical lender for pieces has been launched; final assembly will start in Autumn 2014 and test of the prototype in 2015

ACKNOWLEDGMENT

The authors would like to thank the CERN KT for the financial support in the construction and test of the accelerating structure prototype

REFERENCES:

[1] A. Degiovanni et al, Design of a Fast-Cycling High-Gradient Rotating Linac for Protontherapy, in Proceeding of IPAC (2013)

[2] U. Amaldi, et al., LIBO – a linac-booster for protontherapy: construction and tests of a prototype, NIMA 521 (2004) 512

[3] A. Grudiev, S. Calatroni and W. Wuensch, New Local Field Quantity Describing the High Gradient Limit of Accelerating Structures, Phys. Rev. ST Accel. Beams 12 (2009) 102001 [4] A. Degiovanni, High Gradient Proton Linacs for Medical Applications, EPFL PhD Thesis (2014)