Beam dynamic simulations for the superconducting synchrotron SIS300 at FAIR

A. Saa Hernandez for the FAIR Synchrotrons group GSI Darmstadt (Germany)

$\frac{210^{5} \cdot 10^{5} \cdot 10^{5}}{10^{5} \cdot 210^{5} \cdot 10^{5}} = \frac{2}{100^{5}} + \frac{$

Only particles with y=0 are actually reaching the separatrix, others have DA so small that are lost (unstable) before reaching separatix !!!

4 – adding field errors \rightarrow b3 \rightarrow chromatic sextupoles have to be matched again to Hardt's condition

References

- [1] M. Borland, "Elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation". Advanced Photon Source LS-287, September 2000.
- [2] Frank Schmidt et al, "MADX: Methodical Accelerator Design". CERN, June 2002.
 [3] M. Sorbi et al. Field quality and losses for the 4.5T Superconducting Pulsed Dipole of SIS300. Proceedings Magnet Technology MT-20.
- [4] A. Jain et al. Measurements of Field Quality in GS1001 at High Ramp Rates. Internal Note.

Current effects in Superconducting Magnets

Magnetic field quality in SC magnets is determined by cable positioning and current effects (static and time-dependent)

- Persistent currents, its decay at constant current and reinduction (snapback)
- Field periodic pattern
 Coupling currents (between strands and between filaments) during ramps

Superconducting cable made of hard superconductor → hysteresis-like behavior (ramp rate dependent amplitude) → memory effects = dependence on previous cycles (powering history).

Field Quality vs. Beam Dynamics

Magnetic field expanded in Taylor series

$$-iB_x = B_N^{(r)} \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{z}{R_r}\right)^{n-1}$$
 $n=1$ dipolar comp
 $n=2$ quadrupolar

components allowed depending on magnet symmetries

1st step: static field errors

B., +

Field errors corresponding to the cycle flat top (4.5T) simulated with ROXIE $^{[3]}$

Acceptance vs. dynamic aperture for different momentum spreads when adding field errors to the dipoles

olar com

2nd step: time dependent field errors

Estimated variation of dynamic DA along a standard ramped cycle

At other facilities with SC magnets and lighter operation requirements (Tevatron, Hera, Rhic) the presence of:

- Non-allowed components (along whole cycle)
- Time dependent components (injection, flat top)
- Ramp rate dependent components (ramps)

limit machine operation!

- Different control methods used:
- static field description models
- off-line and on-line reference magnet systems