

Superconducting Wigglers at the Canadian Light Source

Ward A. Wurtz

13 April 2011

Joint School on Synchrotron Radiation and Free Electron Lasers Erice, Sicily, Italy

- CLS has two superconducting wigglers for the production of hard x-rays
- These wigglers cause losses of electrons during injection not explained by an ideal model
- Through measurements we have constructed a nonlinear model that has given us insights into the problem
- The injection losses are likely due to a sextupole resonance and amplitude dependent tune shifts
- After the scheduled shutdown of CLS is complete (May 2011), we will attempt to restore injection with wigglers by changing the betatron tunes

Properties of the Superconducting Wigglers

	SCW4.3 (BMIT)	SCW2.1 (HXMA)
Max. Working Field	4.3 T	2.1 T
Period Length	48 mm	34 mm
Main Poles	25	61
Side Poles	2	2
Pole Gap	13.9 mm	13.5 mm
K value	19	6.5
Photon Energy	10 - 100 keV	4 - 40 keV
Installation	Nov. 2007	Jan. 2005
Manufacturer	Budker INP	Budker INP

Beam Dynamics with Wigglers

Begin with relativistic Lorentz Force Law:

$$\frac{d\vec{p}}{dt} = q\vec{v} \times \vec{B}$$

Use the fact that the electrons are traveling at essentially the speed of light and change coordinates so that the longitudinal position is the independent coordinate instead of time **More Useful Equations of Motion:**

$$x'' = -\alpha \sqrt{1 + x'^{2} + z'^{2}} \left(z'B_{s} + x'z'B_{x} - (1 + x'^{2})B_{z} \right) \qquad \alpha \equiv \frac{e}{\gamma mc} = \frac{e}{p} = \frac{1}{B\rho}$$
$$z'' = -\alpha \sqrt{1 + x'^{2} + z'^{2}} \left(-x'B_{s} - x'z'B_{z} + (1 + z'^{2})B_{x} \right) \qquad \alpha \equiv \frac{e}{\gamma mc} = \frac{e}{p} = \frac{1}{B\rho}$$

neglect terms with squared or multiplied velocities as these are very small

$$x'' = -\alpha (z'B_s - B_z) \qquad z'' = \alpha (x'B_s - B_x)$$

Reference: P. Elleaume, "A New Approach to the Electron Beam Dynamics in Undulators and Wigglers", EPAC 1992

Measurement of Vertical Tune Shifts

Canadian Centre canadien Light de rayonnement Source synchrotron

Measurement of Horizontal Tune Shifts

Canadian Centre canadien Light de rayonnement Source synchrotron

Measurement of Beta-Beat

Canadian Centre canadien Light de rayonnement Source synchrotron

Correction of beta-beating

Light de rayonnement Source synchrotron

Chromaticity Measurements

- Measured chromaticity shifts
 - Measured shifts of first and second-order chromaticities for SCW4.3
 - Measured shift of first-order chromaticity for SCW2.1
 - Will attempt to measure shift in second-order chromaticity when wiggler cryogenic system repaired (May 2011)
- Shifts in first-order chromaticity indicate sextupole
 - Both wigglers show nearly equal shifts in first-order chromaticity
 - Likely due to a magnetic multipole moment
- Shifts in second-order chromaticity indicate octupole
 - SCW4.3 shows a moderate shift in second-order chromaticity
 - Likely due to a dynamic focusing effect (not a true multipole)

$$\nu_{x}(\delta) = \nu_{x,0} + \chi_{x}^{(0)}\delta + \chi_{x}^{(1)}\delta^{2} + \chi_{x}^{(2)}\delta^{3}$$

First-order chromaticity measurement

Second-order chromaticity measurement

Building a Non-Linear Model for Particle Tracking

- Parameters for a model used in tracking derived from chromaticity measurements
 - Need to build better 3D magnetic models that predict the measured values
- For SCW4.3
 - Ideal wiggler model
 - Matrix with R_{21} =0.0019 m⁻¹ (horizontal tune shift)
 - $K_2L = -0.73 \text{ m}^{-2}$ (chromaticity shift)
 - $K_3L = -250 \text{ m}^{-3}$ (second-order chromaticity shift)
- For SCW2.1
 - Ideal wiggler model
 - $K_2L = -0.73 \text{ m}^{-2}$ (chromaticity shift)

Effect of Linear Optics Correction

Canadian Centre canadien Light de rayonnement Source synchrotron

-15

-10

-5

0

Horizontal Position (mm)

5

10

15

(no damping)

Dynamic Aperture Tune Scan

Canadian Centre canadien Light de rayonnement Source synchrotron

Simulations run with elegant on the Westgrid cluster Orcinus. Each data point represents ~1 hour of computer time.

Off-momentum dynamic aperture with no insertion devices, ideal lattice and realistic apertures

Dynamic Aperture Tune Scan

Canadian Centre canadien Light de rayonnement Source synchrotron

Simulations run with elegant on the Westgrid cluster Orcinus. Each data point represents ~1 hour of computer time.

Off-momentum dynamic aperture with non-linear model of SCW4.3, correction of linear optics, ideal lattice and realistic apertures

Continuing Work

- Computer models of wigglers
 - Create 3D magnetic RADIA model for SCW4.3
 - Improve 3D magnetic RADIA model for SCW2.1
- Measurements
 - Higher order chromaticity of SCW2.1
 - Use kickers and turn-by-turn BPM to measure tune shift as a function of amplitude
 - Many more (ideals always welcome)
- Attempt to restore injection by changing the operating point

Discussion

Frequency Map Analysis

Canadian Centre canadien Light de rayonnement Source synchrotron

On-momentum frequency map for ideal lattice with realistic apertures and no insertion devices

Frequency Map Analysis

Canadian Centre canadien Light de rayonnement Source synchrotron

On-momentum frequency map for ideal lattice with realistic apertures, non-linear model of SCW4.3 and no correction of the linear optics

Frequency Map Analysis

Canadian Centre canadien Light de rayonnement Source synchrotron

On-momentum frequency map for ideal lattice with realistic apertures, non-linear model of SCW4.3 and local correction of beta functions and tunes

Light de rayonnement Source synchrotron

Importance of RF: Lost Particles

Without RF and Synchrotron Radiation 1 ×1 0-3 (ш æ delta 0.0100 0 5.0×10⁻⁵ 1 0×10-4 1.5×10-4 2.0×10-4 5.0×10-5 1.0×10-4 1.5×10-4 2.0×10-4 5.0×10-5 1.5×10-4 1.0×10-4 t (s) t (s) t (s) With RF and Synchrotron Radiation 3×10-2×10-1 ×1 0delta E E \times -2×10--3×10-1.5×10-4 5.0×10⁻⁵ 1.0×10-4 1.5×10-4 5.0×10-5 1.0×10-4 1.5×10-4 2.0×10-4 5.0×10-5 1.0×10-4 2.0×10-4 t (s) t (s) t (s)

Particle Lost on Vertical Aperture

Turn by turn current measured at injection with and without SCW4.3 using a Libera Brilliance unit's BPM sum

Light de rayonnement Source synchrotron **Efficiency Not Restored**

Turn by turn current measured at injection with SCW4.3: without any lattice correction and with a local beta correction and global tune correction

Marginal improvement in injection efficiency

Light de rayonnement Source synchrotron

Simulation of BPM Sum Data

- Observe same initial losses whether or not RF is on
- Observe loss of captured particles
 over hundreds of turns
- Observe changes in loss rate at the synchrotron frequency

Pole Diagrams

Some concern about field roll-off due to insufficient pole width, especially for SCW4.3. More modeling is needed.

Kickmaps for SCW2.1 calculated by RADIA

No RADIA model for SCW4.3 yet exists

Kickmaps do not explain injection losses due to SCW2.1 wiggler