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FEL Requirements
Parameter Value at injector Value at FEL
Energy 70 MeV 1.8 GeV
Peak Current 50 A 500 A
Slice normalized <0.6 ym 0.6 um
transverse emittance
Slice energy spread <5 keV 50 keV
Bunch Charge 300 pC 300 pC

Low emittance and energy spread: required
by the FEL process

Relatively high charge: determined by bunch G.Penn
length, peak current and shot-to-shot jitter |V| \(enturlnl,
Ji Qiang
A. Zholents
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Injector Design
J J

Bucking
Solenoid
Buncher Cavit Solenoids: End of injector:
A Knobs: y Knobs: Strengths 15 m
Phase and ~70 MeV
Amplitude

| () o ) o O OO RO

N\

VHF Gun Superconducting TESLA cavities.

(0 m) 9cell, 1.3 GHz, Eacc~14 Mev/m

Knobs: Field length: 1.32 m

Trans. Size, Knobs: Phase and Amplitude of first 2 cavities,
Pulse length Position of 1* cavity
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}\l 0 Knobs: Initial trans
| and long. beam size

*Initial normalized emittance: 1 mrad*o, from Cs2Te measurements (Miltchev et al, 2005)
*Peak field at the cathode is determined by the VHF Gun geometry (~19.5 MeV/m)
*Larger trans. size — larger emittance, lower space charge

*Larger long. size — longer pulse length, lower space charge

2= 0.000m
Longitudinal Distribution
o T = T T a E
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Knobs: Solenoids for
P emittance Compensatlpacecharge

defocusing

Sol. focusing

Different slices rotate
Current profile differently in phase
T T T space

sol

o ]

<30 i ]

sl

05570 =8 =6 =4 =2 0 2 4 &
t—t, (ps)

The trick is to align the ellipses, then
accelerate as fast as possible

Carlsten 1996
Serafini, Rosenzweig 1997
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A Knobs: Bunch
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compression
using velocity bunching

Increase the energy of the tail relatively
to the head — velocity differential will
lead to compression

Efficient only at low energies: AB~Ay/y®

Using a single cell cavity at O crossing:  Dephasing an accelerating cavity:

— Symmetric — Asymmetric (long tails)
— No acceleration — Accelerates at the same
time

Ferrario et al 2010
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ASTRA Simulations

 Particle-in-Cell code, includes trans. and long. space
charge, widely used for photoinjector simulations

* Typical run numbers:

* 300 pC charge

* 10k-50k particles

* Variable step size

* Variable grid

* Not enough to resolve microbunching, CSR

* Good enough for core properties, emittance growth
* FAST (10 mins-1hr for a single run)

http://www.desy.de/~mpyflo/
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Multiobjective Genetic Optimization
) P

The problem:

Find global optimum(s) for a problem with
multiple, non-linearly coupled knobs

The solution:

Multi-Objective Genetic Algorithms

The result is not a single
solution, but a population
of solutions approximating
a “Pareto front”.

Their relative merits are
then evaluated, and one
of them is chosen.

~ | Vilfredo Pareto
™ 1848-1923

s

Lots of algorithms.
We use NSGAZ2
(Deb 2002, Bazarov 2005)

Photos: wikipedia

f2(A) <f2(B)

f2 9



Pareto optimum for
e en and oz

Solution Population: 256
After 100s of generations
and days at lawrencium

Trans. Emittance vs Bunch Length
? T T T
; ) - -

Our chosen solution at
the end of the injector

R S

Bunch Length (mm)

i i i i i i i
8.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Trans. Emittance (mm-mrad)
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Slice properties of beam
@ ~70 MeV

Current profile Normalized slice trans. emittance
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Beam paremeter evolution
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Conclusions

*Simulations show the low emittance and moderate
compression required for the NGLS injector

*The linear and nonlinear space charge forces are
significant but under control

*A genetic optimizer is used to find a population of
solutions, and choose the optimum one

13
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Challenges

*Higher order correlations/instabilities seem to be under
control, but is always a challenge

*Investigate different bunch charges, esp. low charge
regime

eStart-to-end simulation of the FEL

Long. Phase Space (removed linear and quadratic correlations)
0.0005 T T T T T T T T

*Halo/tail management
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