Injector Beam Dynamics for a Next Generation Light Source

Christos Papadopoulos Erice 2011

Linear Accelerator for FEL

FEL Requirements

Parameter	Value at injector	Value at FEL
Energy	70 MeV	1.8 GeV
Peak Current	50 A	500 A
Slice normalized transverse emittance	$<0.6 \mu \mathrm{~m}$	$0.6 \mu \mathrm{~m}$
Slice energy spread	$<5 \mathrm{keV}$	50 keV
Bunch Charge	300 pC	300 pC

Low emittance and energy spread: required by the FEL process
Relatively high charge: determined by bunch length, peak current and shot-to-shot jitter
G. Penn
M. Venturini, Ji Qiang
A. Zholents

Injector Design

Bucking
Solenoid

Knobs: Initial trans. and long. beam size

-Initial normalized emittance: 1 mrad*${ }^{*}$, from Cs2Te measurements (Miltchev et al, 2005) -Peak field at the cathode is determined by the VHF Gun geometry ($\sim 19.5 \mathrm{MeV} / \mathrm{m}$) \bullet Larger trans. size \rightarrow larger emittance, lower space charge \bullet Larger long. size \rightarrow longer pulse length, lower space charge

Knobs: Solenoids for emittance compensation

Sol. focusing

The trick is to align the ellipses, then accelerate as fast as possible

Carlsten 1996
Serafini, Rosenzweig 1997

Increase the energy of the tail relatively to the head \rightarrow velocity differential will lead to compression
Efficient only at low energies: $\Delta \beta \sim \Delta \gamma / \gamma^{3}$

Using a single cell cavity at 0 crossing: Dephasing an accelerating cavity:

- Symmetric
- No acceleration
- Asymmetric (long tails)
- Accelerates at the same time

ASTRA Simulations

- Particle-in-Cell code, includes trans. and long. space charge, widely used for photoinjector simulations
- Typical run numbers:
- 300 pC charge
- 10k-50k particles
- Variable step size
- Variable grid
- Not enough to resolve microbunching, CSR
- Good enough for core properties, emittance growth
- FAST (10 mins-1 hr for a single run)

Multiobjective Genetic Optimization

The problem:
Find global optimum(s) for a problem with multiple, non-linearly coupled knobs
The solution:
Multi-Objective Genetic Algorithms

The result is not a single solution, but a population of solutions approximating a "Pareto front".
Their relative merits are then evaluated, and one of them is chosen.

Pareto optimum for εn and σz

Solution Population: 256 After 100s of generations and days at lawrencium

Our chosen solution at the end of the injector
$\checkmark(\sim 70 \mathrm{MeV})$

Slice properties of beam @ ~70 MeV

Bunch compression:
Flat

Emit. Compensation:
Still in progress, but not by much

Conclusions

- Simulations show the low emittance and moderate compression required for the NGLS injector
-The linear and nonlinear space charge forces are significant but under control
-A genetic optimizer is used to find a population of solutions, and choose the optimum one

Challenges

-Higher order correlations/instabilities seem to be under control, but is always a challenge

- Investigate different bunch charges, esp. low charge regime
-Start-to-end simulation of the FEL
-Halo/tail management

