

The Cavity Beam Position Monitor (BPM)

Massimo Dal Forno

Paolo Craievich, Raffaele De Monte, Thomas Borden, Andrea Borga, Mauro Predonzani, Mario Ferianis, Roberto Vescovo

Massimo Dal Forno

- Introduction: The Cavity BPM
- HFSS Simulations
- CST Simulations
- The new electronic system
- Electron beam test
- Outlook of the future work

Introduction: The Cavity BPM

- Devices able to determine the X and Y position of the electron beam in the beam pipe
- Based on a resonant cavity

Good resolution (~1µ target for FERMI@Elettra),
High signal level in single shot (good for FELs)

Massimo Dal Forno

- The electron beam excites the resonant modes of the cavity
- The first four resonant modes are the following:

The dipole mode: TM₁₁₀

- It is the position sensing mode
- Its intensity is proportional to the beam offset
- There are two different polarizations: vertical and horizontal

The separation of the monopole and of the two polarizations is achieved with the cavity-waveguide coupling

- The magnetic coupling works with "H_R" (radial component of H)
- Allows the separation of the two polarizations

- The signal of port 1, 3 is proportional to the X position
- The signal of port 2, 4 is proportional to the Y position

→ The electronics must separate the offset from the tilt component in quadrature (IQ demodulation or our approach)

HFSS Simulations

Aim: Simulating the RF parameters of the cavities with 90°, 180° and no symmetry planes:

Aim: Estimating the output signal levels, the voltage is given by the following relation:

$$V_{OUT} = \sqrt{2Z_0 \frac{\omega}{Q_{EXT}}} k_{010} q$$

Massimo Dal Forno

HFSS Simulations results

reference cavity						
6457						
6314						
42351						
731						
8.4						

BPM cavity					
f_{RES} (MHz)	6485				
Q_0	7900				
Q_{EXT}	150000				
$k_{110} (V/nC/mm^2)$	9.4				
$V_{OUT}@lnC(V)$	0.5				

Workbench measured frequencies:

CST Simulations

• Aim: Simulating the output signal levels with 1 nC of bunch charge

• Aim: designing a new electronic system that avoids the IQ demodulation

First type of circuit

The tilt component must be negligible with respect to the offset (for $1\mu m$, the tilt must be < 0.1 mrad)

The new electronic system

Advantages:

- Beam in the centre \rightarrow High output signal level ($\Sigma = \Delta$)
- Calibration system

Massimo Dal Forno

The in-tunnel test

- The prototype has been installed in tunnel
- Aim: determining the output voltage with 1 nC of bunch charge

Signal levels:

- Reference cavity: 2.52 V
- Cavity BPM, X offset: 0.33 V/mm
- Cavity BPM, Y offset: 0.30 V/mm

	with all the dramb and the second states				n Ne a e a		• • • • • •
			teré éléfek ése beléviptelé, es a Song Ése element de le composition de le	andre de la company de la c		() () () () () () () () () () () () () (
	and the second						
	a di kana kana kata manaka manaka mana ka	Linnels de al. a					
						dina kadan kana si aka Jumpo pipana si aka	hidronian kanang ka
	Angenta bear to be a sector						
	hite believe a start doorded as well to come		halliiddibhai ciiseaci ch		al de artic de ser al la de la des as das,	and al on a transformer	Inche Statistican
	a support of the second se		a manifestrated at Marcel				
C1 C2	300mV/div 50Ω 100mV/div 50Ω	B _W :8.0G B _W :8.0G		A' / -72.0mV Horz Dly: 0.0s			
G3 C4	100mV/div 50Ω	ч _W :8.0G Ви:8.0G					

Spectrum (FFT) of the BPM output signal

Massimo Dal Forno

Resolution

10 cavity BPMs have been installed in the undulator hall
Each one has a mover (Encoder resolution: 1 µm)

→End the electronics→Measure the resolution

Massimo Dal Forno

Thank you for your attention

Questions?

Massimo Dal Forno

- It is an unwanted mode
- Its signal voltage is only proportional to the beam intensity and does not depend on the beam position.

Working Frequency: 4.63 GHz

- Rejection achieved with:
 - Cut-off frequency of the rectangular waveguide
 - ↗ Cavity-Waveguide Coupling

- Waveguides behave as high-pass filter
- Cut-off frequency for the fundamental mode (TE10):

$$f_L = \frac{c}{2\pi} \frac{\pi}{a} = 5 \, GHz$$

The monopole, at 4.63 GHz is under cut-off

Rejection of the TM₀₁₀ mode: Cavity-Waveguide Coupling

 Magnetic coupling: only the magnetic field (*Hr*) of the dipole will couple with the waveguide

Massimo Dal Forno

Rejection of the TM₀₁₀ mode: Cavity-Waveguide Coupling

The monopole does not couple with the waveguide

The monopole (TM₀₁₀) has:

$$E_z = CJ_0 \left(\frac{j_{10}r}{R}\right)$$

$$H_{\phi} = -iC\frac{\omega\varepsilon_0 R}{j_{10}}J'_0 \left(\frac{j_{10}r}{R}\right)$$

Massimo Dal Forno

Cavity-Waveguide Coupling: Separation of the two dipole polarizations

However, due to the mechanical tolerances, the two polarizations are not perfectly orthogonal

- The orthogonal ports are not isolated between them
- This phenomena is called "Cross-Talking"

Consequences of the cavity-waveguide coupling

- The monopole does not couple with the waveguide
- It separates the vertical and the horizontal polarizations

An additional band-pass filter is placed to have only the dipole signal and to reject the higher modes

elettra

Energy

$$U = k \cdot q^2$$

$$Pext = \frac{\omega U}{Qext} = \frac{\omega}{Qext} \cdot k \cdot q^2$$

$$Vout = \sqrt{2 \cdot Z \cdot Pext} = \sqrt{2 \cdot Z \cdot \frac{\omega}{Qext} \cdot k} \cdot q \qquad \left(= \omega \sqrt{\frac{Z}{Qext} \left(\frac{R}{Q}\right)} \cdot q \right)$$

Massimo Dal Forno

Massimo Dal Forno

Tilt

Massimo Dal Forne