1.5 GHz 10W 3-pass Nd:YLF 3 kW 3-pass Nd:YLF
Nd:YLF oscillator+ » amplifier amplifier »
preamplifier 6.7 nd/pulse X300 2 pJ/pulse x5
[ Ji1od J
1908 pulses A o KW
2.33 nC/bunch : 10 ud/oul
1908 pulses 1.2 us . HJ/pulse
sores_ i :
Optical Gate Energy Stabiliser - W

4w I" S ) (Pockels Cell) |" (Pockels Cell) I" Ll

Current [mA]

P FUE

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

THE CERN ACCELERATOR SCHOOL

The Beam Measurements at PHIN Photo-Injector at CERN

O. Mete, (CERN, EPFL), E. Chevallay, A. Dabrowski, S. Débert, , K. Elsener, V. Fedosseev, T. Lefévre, M. Petrarca (CERN), D. Egger
(EPFL) R. Roux (LAL)

The demonstration of the high charge and the stability along the pulse train are the important issues for CTF3 and the CLIC drive beam. A new photo-injector for CTF3 and
CLIC drive beam has been designed and installed by collaboration between LAL, CCLRC and CERN within the framework of the CARE program. Beam based measurements
have been made during the commissioning runs of the PHIN 2008 and 2009 including measurements of the emittance, using multi-slit technique. After the first beam
measurements, the results were analyzed and compared with PARMELA simulations, an optimum working point has been proposed for the photo-injector.
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Time resolved energy of the beam was measured
by using a segmented dump. Regarding the time
resolved aspect of the measurement, the goal was
to measure the time variation of the energy along
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The measurement shows that the
energy along the train is stable
confirming the stability of the RF
system.

RF Photo Gun

A semiconductor, cesium telluride,
cathode was introduced on one end of
a 3 GHz RF gun with 2+1/2 cells in
order to extract the electrons.
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Beam Size Measurements

During the 2009 run beam scans have been performed with respect to
different laser spot sizes of 2, 3, 4 mm at 5.5, 5.2 and 5.7 MeV,
respectively. The asymmetric behavior that has been observed in the
previous run was no longer present. Although the discrepancy at the
focus region is still under investigation, it could be related to the limited
resolution of the optical system or a saturation effect.
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75 MV /m (4.8 MeV at 35°)

Charge (nC) 1.0 1.5 2.0 2.5
Trorusing(A) 106 201 203 206
¢z (mmmrad)(@Gun-Exit /@150 cm) 744 /7 108 /9.6 | 13.9 /119 | 16.2 / 13.8
€z (pm)(@Gun-exit/@Dump) 119 /72 | 12.7 /125 | 13.8 / 128 20.4 / 190
AFE(KeV) (@Gun-exit/@141.5 em) | 26.8 / 38.3 | 31.5 / 48.9 36 / 59 40 / 68.4
0.(ps) (@Gun-exit/@141.5 cm) 2.7 /29 27/3 2.8 /3.2 2.9/33
80 MV /m (5.2 MeV at 35°)
Charge (nC) 1.0 1.5 2.0 2.5
Ifocusing (A) 206 211 213 216
e (mmmrad)(@Gun-Exit /@150 cm) | 6.8 / 6.5 10 / 8.9 13 / 11.26 15.2 / 13.1
€, (pm)(@Gun-exit/@Dump) 11.5 /62.2 | 13.7 /99.8 | 13.3 /138 | 14.5 / 167.4
AE(KeV) (@Gun-exit/@141.5 ecm) | 20.8 / 32.1 | 25 /424 | 293 /524 | 33.1/615
0.(ps) (@Gun-exit/@141.5 cm) 2.6 /2.8 2.7/29 28 /3 2.9 /33
85 MV /m (5.5 MeV at 35°)
Charge (nC) 1.0 1.5 2.0 2.5
Iocusing(A) 213 218 223 225
ez (mmmrad)(@Gun-Exit /@150 cm) | 6.3 /5.9 9.2 /8.2 12 / 10.6 14 /12
€; (pm)(@Gun-exit/@Dump) 11 /31 12.1 / 42.7 | 124 /504 | 13.5 /724
AE(KeV) (@Gun-exit/@141.5 cm) | 16.1 / 19.1 | 18.7 / 25.3 | 22.4 / 31.4 | 255/ 36.8
0.(ps) (@Gun-exit/@141.5 cm) 2.6 /2.7 2.7 /2.8 2.7 /2.9 2.8 /34
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Data Analysis of Multi-Slit Method for Emittance Measurement

Intensity (a.u.)

Intensity a.u.)

T T
Raw Data
Defined Background Level

Intensity (a.u.)

Intensity (a.u)
~

35

Background Level = 600
T T

w10* Beamlets with Gaussian Fit Curves
300 5

€= The RMS emittance is: 7.9243(mm mrad)

Raw Data
Background, gof= 0.86226

250

intensity au.)
Intensity {a.u)

ZID
¥ {mm)

s 150

units

b)

Beamlets with Gaussian Fit Curves

p (arl)
o - N w

€= reconstructed phase space

-2 0 2
¥ {mm)

-4

How to determine the optimum background?
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Conclusion and Outlook
The beam measurements revealed the expected behavior agreeing with the simulations within the measured error ranges.
The simulations for the beam size measurements are consistent with the measurements except the focus region. The
1 pX10°  300Bunches (200ns) at 8SMV/m 2nG/Bunch. envelope behavior at the small beam sizes had to be investigated considering the possible limitations from the
PN instrumentation such as CCD saturation effect.
1 xr " %
o} The emittance measurements have been improved with respect to the previous run by replacing the CCD camera with an
§ intensified one enabling the usage of an aluminum OTR screen. The extensive study has been done on the appropriate
2 ooy +§Sc“f;;?iﬂ‘:fj§";)m) analysis of emittance measurement with multi-slit method. A standard analysis algorithm has been developed. The
N 04 —+— @Screen-2 (262.1 cm) Gaussian background has been used for the analysis. The systematic difference for the emittance is measured as \sim0.5
*— ©Segmented-Dump (286.1 o) mm mrad higher than the result of the Gaussian background when a polynomial background subtraction is applied. A n
R ISR AN algorithm has been implemented into the analysis code in order to determine the optimum background level. The beam-lets
T R S e occupying the 1\sigma of the profile is determined as the relevant beam-lets for the emittance calculation. The outer
Focusing Magnet Current (A) particles' contribution to the emittance has been investigated. Under the proper focusing conditions this contribution is found
to be minimized.
300 Bunches (200ns) at 85MV/m 2nC/Bunch
0.16 T T T T T T T . . o - - . age
orsl For the segmented dump, simulations showed that elements in the beamline such as the alumina screen significantly
' . increases the transverse size of the beam, due to multiple scattering and energy loss, to the point this contribution is much
o H***m% f larger than the dispersion due to energy spread. Although a reliable energy spread measurement was impossible under this
E Vol N i condition, the issue will be solved easily in the next commissioning run by replacing the alumina screen with a thin
o 012 o X A aluminum OTR screen.
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017 —+ @Segmented-Dump (286.1 cm) The focus of the next run will be on the stability measurements along the pulse train. The results will be compared with
L s PARMELA simulations. The optimized beam parameters, deliverable from the photo-injector, will be determined and used
0.08 A S as the input for drive beam PLACET simulations. The main goal will be to study the current limitations and future
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modifications in the set-up for the implementation of PHIN photo-injector as the CLIC drive beam electron source.



