

FACULTÉ DES SCIENCES

http://supra.unige.ch

Superconductors for magnets From the materials to the technical conductors

Carmine SENATORE

Group of Applied Superconductivity Department of Quantum Matter Physics University of Geneva, Switzerland

Outline

A short introduction to superconductivity

- Type-I vs. Type-II why Type-II is better?
- Vortex pinning and critical current

From the materials to the technical conductors

- LTS : Nb₃Sn properties and wire technology
- HTS : YBCO properties and wire technology

Discovery of Superconductivity in 1911

Drawbacks:

Loss-less currents cannot exceed the critical current I_c 1000+ superconducting compounds, very few for practical use

Superconductors History

Key facts about superconductors

1) There are two characteristic lengths in a superconductor

and

 $\lambda = \sqrt{\frac{m^*c^2}{4\pi n_s^2 e^{*2}}}$ penetration depth

 ξ defines the space modulation of the "superelectron" density n_s

 λ characterizes the distance to which a magnetic field penetrates into a superconductor

Key facts about superconductors

3) In a type-I superconductor, superconducting currents are confined to the surface in a λ -thick layer

4) In a type-II superconductor, the critical fields are related to the characteristic lengths

$$H_{c1} = \frac{\Phi_0}{4\pi\lambda^2} \ln \kappa = \frac{H_c}{\sqrt{2\kappa}} \ln \kappa \qquad H_{c2} = \frac{\Phi_0}{2\pi\xi^2} = \sqrt{2\kappa} H_c$$

5) In a type-II superconductor, magnetic flux penetrates beyond H_{c1} The entering flux is fractionated in vortices, each one carrying a flux quantum $\Phi_0 = \frac{hc}{2e}$

Vortices repel each other...

The Abrikosov lattice ... and arrange on a regular lattice

Vortex motion and dissipation: the Flux Flow

Let's focus on the effects of a transport current density J

On a single vortex

$$\boldsymbol{f} = \boldsymbol{J} \times \frac{\boldsymbol{\Phi}_{\mathbf{0}}}{\boldsymbol{c}} \boldsymbol{\hat{z}}$$

On the vortex lattice

$$F = \sum f = n_v f = J \times n_v \frac{\Phi_0}{c} \hat{z} = J \times \frac{B}{c}$$

Therefore, vortices tend to move transverse to J. If v is their velocity

The Flux Flow resistivity
$$\rho_{\rm ff} = \rho_n \frac{{\pmb B}}{{\pmb B}_{\rm c2}}$$

Bardeen and Stephen, PR 140 (1965) A1197

Vortex-defect interaction

Let's consider defects – precipitates, grain boundaries, etc. – whose size is comparable with the coherence length ξ

The force to extract the vortex from the defect is $f_p = -\nabla U(r)$

Vortex-defect interaction

 J_c is the critical current density

If
$$f < f_p$$
 then $v = 0$ and $\rho = 0$
If $f > f_p$ then $v \neq 0$ and $\rho \neq 0$

Only superconductors with defects are truly superconducting (ρ = 0) !!

Vortex pinning and critical state: the Bean model

Critical state: Hysteresis loop

Superconductors History

Why superconducting wires are (almost) all multifilamentary ?

Why superconducting wires are all multifilamentary ?

With the subdivision of the superconducting layer in filaments, hysteretic losses are reduced but the critical current $I_c = J_c A_{sc}$ is unchanged

... but this is not the only reason ...

If ΔQ_{ext} is the initial perturbation, the heat balance for the slab is

$$c \varDelta T = \varDelta Q_{ext} + \frac{\mu_0 J_c^2 d^2}{3(T_c - T_{op})} \varDelta T$$

Because of the energy stored in the current, the effective specific heat is

$$\boldsymbol{c}_{eff} = \frac{\Delta \boldsymbol{Q}_{ext}}{\Delta \boldsymbol{T}} = \boldsymbol{c} - \frac{\mu_0 \boldsymbol{J}_c^2 \boldsymbol{d}^2}{\boldsymbol{3} \left(\boldsymbol{T}_c - \boldsymbol{T}_{op} \right)}$$

 c_{eff} can become zero \Rightarrow ultimate thermal catastrophe !!

Flux jumps and Thermal instabilities

The stability condition is

$$\boldsymbol{c}_{eff} = \boldsymbol{c} - \frac{\mu_0 \boldsymbol{J}_c^2 \boldsymbol{d}^2}{\boldsymbol{3} \left(\boldsymbol{T}_c - \boldsymbol{T}_{op} \right)} > \boldsymbol{0}$$

A superconducting wire must be designed in such a way that

$$\frac{\mu_0 J_c^2 d^2}{c (T_c - T_{op})} < 3$$

And this demands the subdivision of the superconductor in fine filaments

Field and temperature dependence of J_c

The critical surface J_c(B,T,...)

J_c depends also on:

- the applied stress
- the magnetic field orientation (only for anisotropic superconductors)

$YBCO \rightarrow the way to get 20 T dipoles and beyond$ $EUCARD^2 ARIES$

Introduction to Nb₃Sn

Nb₃Sn is the prototype of A15 superconductors

B.T. Matthias et al., PR 95 (1954) 1435

0.6 0.8
0.8
17
17
17
1./
1.8
15.0
15.0
10.6
12.7
9.6
8.8

A15 are intermetallic compounds with A₃B formula

Nb₃Sn : the Superconductor for high fields (today)

	<i>T_c</i> [K]	<i>B_{c2}</i> [T]
Nb ₃ Sn	18.0	30+

Nb_{3+x}Sn_{1-x} is superconducting also when deviates from stoichiometry

A. Godeke, SuST 19 (2006) R68

How to rise H_{c2} – Let's play it dirty

For a clean, ordered superconductor

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2}$$

Disorder reduces the electron mean free path $\,\ell$, which in turn leads to decrease of ξ

$$\frac{\mathbf{1}}{\xi(\ell)} = \frac{\mathbf{1}}{\xi(\infty)} + \frac{\mathbf{1}}{\ell}$$

An useful expression of H_{c2} in the dirty limit

$$\boldsymbol{H_{c2}}(\boldsymbol{T}=\boldsymbol{0}) \cong \frac{\boldsymbol{k_{B}}\boldsymbol{e}}{\mu_{0}} \boldsymbol{N}(\boldsymbol{E_{F}}) \boldsymbol{\rho_{n}} \boldsymbol{T_{c}} \propto \boldsymbol{\gamma} \boldsymbol{\rho_{n}} \boldsymbol{T_{c}}$$

How to rise H_{c2} in Nb₃Sn

$H_{c2} \propto \gamma \rho_n T_c$

Resistivity vs. Sn at.%

 H_{c2} vs. T at various Sn at.%

Reducing Sn content rises ρ_n , but reduces T_c . Other ideas ?

Graphs from A. Godeke, PhD Thesis, UTwente

Alloying (doping) Nb₃Sn to rise $H_{c2} = H_{c2} \propto \gamma \rho_n T_c$

The additions of Ta and Ti are particularly beneficial

 $H_{c2}(4.2 K)$

 $H_{c2}(0 K$

= 0.89

(Nb,Ta)₃Sn and Nb₃(Sn,Ti)

M. Suenaga et al., JAP 59 (1986) 840 R. Flükiger et al., Cryogenics 48 (2008) 293

Industrial fabrication of Nb₃Sn wires

Three technologies have been developed at industrial scale

Wires are then reacted at ~650°C for >100 hours to form Nb₃Sn

The Internal Sn diffusion process

- A Sn rod is inserted in the subelement core
- After the insertion of Sn, only cold deformations are possible
- Subelement size ranges between 20 and 100 μm
- A long-duration multistep reaction schedule is required to form Nb₃Sn
 Pictures from C. Sanabria, PhD Thesis, FSU

The Powder-In-Tube method

- NbSn₂ and Sn powders are used as Sn source
- Subelement size ranges between 20 and 100 μm
- A long-duration multistep reaction schedule is required to form Nb₃Sn

Microstructure of the A15 phase after reaction

Internal Sn

Powder-In-Tube

Filament size ~5 μm

Subelement size ~50 μm Filament size ~50 μm

High Sn content & appropriate Ta/Ti doping to get high B_{c2} and thus high in-field J_c Also microstructure is directly related to the J_c performance Grain boundaries act as the main vortex pinning centers Small grain size implies high grain boundary density and thus high J_c

Microstructure of the A15 phase after reaction

Bronze route

Filament size ~5 μm

Outer region Equiaxed grains ~ 150 nm 21-25 at.% Sn

Inner region Columnar grains ~ 400 nm 18-21 at.% Sn

Internal Sn

Powder-In-Tube

Subelement size ~50 µm

Almost everywhere Fine grains ~ 150 nm 24-25 at.% Sn Filament size ~50 μm

Outer region Fine grains ~ 150 nm 23-24 at.% Sn

Inner region Large grains ~ 1 μm 25 at.% Sn

Critical current density vs. magnetic field Best performance achieved so far in industrial wires

How do we get the ultimate Nb₃Sn?

Internal oxidation and grain refinement in Nb₃Sn @ Ohio State University

Idea to form fine precipitates in Nb to impede the A15 grain growth Use of a Nb-Zr alloy: Zr has stronger affinity to oxygen than Nb Oxygen supply added to the composite: oxidation of Zr and formation of nano-ZrO₂

X. Xu et al., APL 104 (2014) 082602 X. Xu et al., Adv. Mat. 27 (2015) 1346

Average grain size is reduced down to 36 nm Greatly enhanced pinning in binary Nb₃Sn

Result need to be transferred to Ti- and Ta- alloyed Nb₃Sn

High Temperature Superconductors are different animals ...

HTS materials for applications

The evolution to the present wires and tapes

Y123 Coated Conductor

Darwin's finches

Bi2223 Powder-In-Tube tape

Bi2212 Powder-In-Tube wire

Layered structure and Anisotropy

Charge carriers have effective masses that depend on the crystallographic orientation

 $\frac{m_c}{m_{ab}}$ ranges between 50 and 10'000 in cuprates

The superconductor lengths depend on the carrier mass: $\xi \propto \frac{1}{\sqrt{m}}$ and $\lambda \propto \sqrt{m}$

Anisotropy of the critical fields B_{c1} and B_{c2}

The superconductor anisotropy parameter

$\gamma = $	m _c	λ_{c}	ξab		Bi2212	Bi2223	Y123
	m _{ab}	$=\frac{1}{\lambda_{ab}}=$	$=\frac{\xi_c}{\xi_c}$	γ	~150	~30	~7

Grain Boundaries in HTS

Grain boundaries in Y123 (YBCO)

Hilgenkamp and Mannhart, RMP 74 (2002) 485

For angles above 8-10°, the J_c^{GB} is reduced by a factor >100 !! In order to get high J_c in the conductor, biaxial texturing is needed Alignment of the grains is needed in all crystallographic orientations

Looking from above

The template is a metallic substrate coated with a multifunctional oxide barrier

Biaxial texturing – within < 3° – is obtained

but with some also drawbacks:

- pronounced anisotropic behaviour
- complex and expensive manufacturing process

Presently produced by Sequenced of the superconductor Function of the superconductor of

Alternative approaches for growing epitaxial REBCO on flexible metallic substrates in km-lengths

Performance overview: $J_c(s.f.,77K)$ vs. $J_c^{\perp}(19T,4.2K)$

Artificial pinning: "genetically-modified" REBCO

Introduction of artificial nano-defects to control vortex pinning, reduce anisotropy and enhance performance

nano-columns oriented along the c-axis Average BZO size 5.5 nm Average spacing ~ 12 nm Density = 6.9 × 10¹¹ cm⁻²

BaZrO₃ (BZO) precipitates are in form of

Selvamanickam el al., APL <u>106</u> (2015) 032601

Engineering vs. superconducting layer performance

REBCO and Bi2223 tapes retain the anisotropic properties of the superconductor Data shown here correspond to the unfavorable orientation wrt the field The in-field properties of **Bi2212** wires are fully isotropic **Operate at high current density is a necessary condition, but it is not sufficient**

Other crucial requirements:

- Have high tolerance to stress Magnetic forces
- Be safe in case of magnet quench Quench detection, NZPV
- Have low magnetization Applications to NMR, MRI, HEP magnets
- Have a persistent joint technology Applications to NMR, MRI

Conductor contest: Nb₃Sn vs REBCO

	Nb ₃ Sn 🧔	REBCO
Geometry	round wire	tape
SC fraction	~35%	~1%
In-field Anisotropy	1, Isotropic	~5
Multifilamentary	Yes, twisted	No, single layer
Operation boundaries	2.2 K, 23.5 T * 4.2 K, 19 T *	4.2 K, UHF 77 K, ~3 T
Mechanical properties	Some issues with transversal loads	Almost OK, but delamination issues
Disadvantages	Still margin to improve the performance? Cost!!	Long lengths under development Cost!!

* in solenoidal coils

Practical conductors for accelerator magnets : Why cables ?

Superconducting wires have current capability of few hundred Amps Dipoles and quadrupoles require large operating currents ~ 10 kA

- To keep the inductance low
- To lower the charging voltage
- To ease magnet protection

HL-LHC Nb₃Sn cable

 $E = \frac{1}{2}LI^{2} \qquad V = L\frac{I}{t} = \frac{2E}{It}$ $V(I_{op} = 250A) = 40 \times V(I_{op} = 10kA)$

REBCO tapes \rightarrow *Roebel cables*

Both are fully transposed cables. Transposition length and number of wires or tapes can be adapted to the needs of the application

Round wires \rightarrow Rutherford cables

Summary

What we have learned

- How to carry a current without dissipation Why just being a superconductor is not enough
- How to enhance the critical current
 Avoid perfection → Defects to pin vortices
- How to make a superconducting wire *"classical" metallurgy and Nb₃Sn*

thin film technology and REBCO coated conductors

Thank you for the attention !

...time for questions...

Carmine SENATORE carmine.senatore@unige.ch http://supra.unige.ch

If you want to know more about applied superconductivity in Geneva, visit http://supra.unige.ch

Our activities focus on the development of both low- and high-T_c superconductors for applications in various fields, from the high field magnets for NMR/MRI systems and particle accelerators to the emerging applications in the electric power infrastructure.

The activities of the laboratory are supported by the following institutions:

osting... Read more →

Operate at high current density is a necessary condition, but it is not sufficient

Other crucial requirements:

- Have high tolerance to stress Magnetic forces
- Be safe in case of magnet quench Quench detection, NZPV
- Have low magnetization Applications to NMR, MRI, HEP magnets
- Have a persistent joint technology Applications to NMR, MRI

Magnetic stresses in the winding

Hoop stress levels above 100 MPa are common

As an example, the NHMFL 32 T magnet will operate at 400 MPa

In a real winding adjacent turns press on each other and develop 3-D stresses

In straight-sided coils such as accelerator magnet, the conductor experiences large transverse forces

F = **175** ton/*m* in a LHC dipole

And also thermal stresses

Mismatch in thermal contraction at the cooldown

Strain-induced changes in the critical current The case of Nb₃Sn

Reversible strain effects

Why superconducting properties depend on strain

Under strain the crystal structure deforms and this induces change both in the phonon spectrum and the electronic bands and thus on T_c and B_{c2}

Reversible strain effects in Nb₃Sn wires

Cubic-shaped stress-free cell for Nb₃Sn

CH

DEVIATORIC Change of the cell shape

Reversible strain effects in Nb₃Sn wires: lattice parameters

Bronze route wire: Nb₃Sn lattice parameters vs <u>axial</u> strain @ 4.2K

Lattice parameters and I_c under axial strain

B. Seeber et al., Rev. Sci. Instr. 76 (2005) 093901

Max current1000 ASample length1.1 meterVoltage taps distance126 mmElectrical field criterion $0.01 \,\mu$ V/cmStrain (ϵ)up to \pm 1.2 %

From I_c vs. strain to I_c vs. stress

Bronze Route wire

Bronze Route, Internal Sn and PIT: a comparison

Degradation upon transverse loads

High field dipoles based on high $J_c Nb_3 Sn$ Rutherford cables require coil pre-stresses larger than 100 MPa, with peak stress of ~200 MPa at operation

Are the Nb₃Sn wires in the cable able to withstand such a high stress level? Which degradation is tolerable?

Nb₃Sn Rutherford cable for HL-LHC, 40 strands

- Nb₃Sn wires are deformed during cabling
 - Cables are braided with glass fiber
- The winding is impregnated with resin

Is it possible to extrapolate the behaviour of the cable from a single wire experiment?

۲

The WASP concept for I_c vs. transverse stress

How the measurement works

BRUKER Bruker EST	Wire ID	Diameter [mm]	# of filaments	Filament size/shape	Cu/nonCu	Non-Cu J _c (12T,4.2K) [A/mm²]
	#31712 #14310 Fresca2	1.0	192	~50 μm round	1.22	2450

How the measurement works

BRUKER Bruker EST	Wire ID	Diameter [mm]	# of filaments	Filament size/shape	Cu/nonCu	Non-Cu J _c (12T,4.2K) [A/mm²]
	#31712 #14310 Fresca2	1.0	192	~50 μm round	1.22	2450

I_c vs. transverse stress: epoxy vs. stycast

The change of resin, from epoxy to stycast, leads to an increase of σ_{irr} by > 50 MPa The result is comparable to the value found with epoxy + glass fiber sleeve

FEM: stress redistribution in the wire

Irreversible degradation is determined by filament cracks and residual strain on Nb₃Sn imposed by plastically deformed Cu

FEM suggests that smaller filaments and higher Cu/nonCu ratio lead to higher stress tolerance

C. Calzolaio, CS et al., SuST 28 (2015) 055014

XRD Microtomography Void morphology in RRP wires

Experiments performed at the European Synchrotron Radiation Facility from Sep 30 to Oct 02 2015
And what about REBCO tapes ?

- **REBCO CCs are inherently strong**, ~50% is a high strength alloy
- Very low stress effect \rightarrow curves are flat in rev. region
- Irreversible stress limits above 500 MPa
- The only weakness is delamination...

C. Barth, G. Mondonico and CS, SUST 28 (2015) 045011

REBCO Roebel cables under transverse compression

- 2 REBCO tape manufacturers
- 2 different impregnation resins
- Irreversible stress limit > 400 MPa

