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Recap of transverse beam dynamics I + II

H.Schmickler, CERN

Corresponds to the
expected Level of the “successful student” after the Introductory CAS

Future High Energy Colliders, Zϋrich, 21.2-5.3.2018
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16 hours of compact lectures summarized in 2 hours.

Only possible by leaving out most of the mathematics and 
by explaining the concepts behind.
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Basics (only 5 minutes): 
- Phenomenology of Special relativity, formulae for relativistic beams
- simple examples of E-fields and B-fields, multipole expansion of B-fields

Linear Optics:
- Hamiltonian formalism derivative of Hill’s equation from Hamiltonian

Hamiltonian in different Coordinate Systems, weak focusing

- linear optics: motion of single particle in a lattice, phase space plots
- trajectory, closed orbit, dispersion, weak focusing
- strong focusing, tune, chromaticity
- linear Imperfections, down-feed, coupling             

- “A taste” of non-linear dynamics

Liouville’s Theorem:
- Definition of emittance
- emittance preservation in conservative systems 
- filamentation due to non-linearities

Phenomenology of Collective Effects:
- Space Charge

- Touschek and Intrabeam Scattering
- Wakefields

Slides partially or fully taken from
the lecturers in Budapest:

S. Sheehy
W. Herr

B. Holzer
G. Franchetti

A. Wolski
R. Tomas
F. Tecker

V. Kain (Erice 2017)
A. Cianchi (Egham 2017)
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1: Relativistic particles

Conservation of transverse momentum
 A moving object in its frame S’  has a mass  m’ = Τ𝑚 𝛾

Or  𝑚 = 𝛾𝑚0 =
𝑚0

1−(
𝑣

𝑐
)2
≅ 𝑚0+ 

1

2
𝑚0𝑣

2(
1

𝑐2
)  (approximation for small v)

Multiplied by 𝑐2:

𝑚𝑐2 ≅ 𝑚0𝑐
2 +

1

2
𝑚0𝑣

2 = 𝑚0𝑐
2 + 𝑇

Interpretation:
 Total energy  𝐸 𝑖𝑠 𝐸 = 𝑚 ∙ 𝑐2

 For small velocities the total energy is the sum of the kinetic energy plus the rest energy

 Particle at rest has rest energy 𝐸0 = 𝑚0 ∙ 𝑐
2

 Always true (Einstein):  𝑬 = 𝒎 ∙ 𝒄𝟐 = 𝜸𝒎𝟎 ∙ 𝒄
𝟐
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Relativistic momentum 𝑝 = 𝑚𝑣 = 𝛾𝑚0𝑣 = 𝛾𝑚0β𝑐

From page before (squared):

𝐸2 = 𝑚2𝑐4 = 𝛾2𝑚0
2𝑐4 = ( 

1

1−𝛽2
)𝑚0

2𝑐4= ( 
1−𝛽2+𝛽2

1−𝛽2
)𝑚0

2𝑐4 = (1 + 𝛾2𝛽2)𝑚0
2𝑐4

𝐸2 = (𝑚0𝑐
2)2 + (𝑝𝑐)2

𝐸

𝑐
= (𝑚0𝑐)

2 + 𝑝2

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = eV/c2 𝐸2 = 𝑚0
2 + 𝑝2

Due to the small rest mass 
electrons reach already 
the speed of light with 
relatively low kinetic 

energy, but protons only in 
the GeV range
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For those, who really want to calculate…
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Electromagnetic Fields and forces onto charged particles

• Described by Maxwell’s equations and by the Lorentz-force
• Lots of mathematics, we will only “look” at the equations
• Only electric fields can transfer momentum to charged particles
 EM cavities for acceleration   F. Tecker

• Magnetic fields are used to bend or focus the trajectory of charged particles
 construction of different types of accelerator magnets

• Also electrostatic forces can bend and focus beams; but since the forces are 
small we often neglect this part 
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But: for specific cases we also use electrostatic elements

quadrupole

Separators for electron and positron beams in the same vacuum chamber
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We need real magnets in an accelerator…not any 
arbitrary shapes of magnetic fields, but nicely 
classified field types by making reference to a 
multipole expansion of magnetic fields:
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Back to relativity: transformation of fields into a moving frame

Lecture of 
W. Herr
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Transverse Beam Dynamics
??? high intensity beam described in 6D phase space??? No…

Starting point:
- Single particle in single magnetic element
- complete decoupling of long., hor.& ver. motion
- particle with nominal momentum

My first accelerator:
- Single particle in many magnetic elements
- circular structure: synchrotron
- twiss parameters, orbit, tune…

Off-momentum particle:
- Dispersion
- Momentum compaction
- Chromaticity…a taste of non-linearities

Finally a beam of many particles (not too many!)
- emittance
- Liouville’s theorem
- adiabatic damping and radiation damping

But: 
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Linear Optics – Hamiltonian (1/3)

A little reminder of classical mechanics:
- Take a set of “canonical conjugate variables” (q, p in a single one dimensional case) 
- q is called the generalized coordinate and p the generalized momentum
- Construct a function H, which satisfies the dynamical equations of the system:

- H “= the Hamiltonian “ of the system is a constant of motion 
(= H does not explicitly depend on t) .

- The Hamiltonian of a system is the total energy of the system: H = T +V 
(sum of potential and kinetic energy)

𝜕𝑞

𝜕𝑡
= ሶ𝑞 =

𝜕𝐻

𝜕𝑝

𝜕𝑝

𝜕𝑡
= ሶ𝑝 = −

𝜕𝐻

𝜕𝑞
and 

Proof:

Used x instead of q just to test your attention
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Linear Optics – Hamiltonian (2/3)

This leads immediately to the question:
What are canonically conjugate variables?
* Complete answer: Lecture of W.Herr later this course

Short answer:
Several combinations are possible, the most relevant for us are
- x (space) and p (momentum)  
- E (energy) and t (time).
We can learn most of the physics, when we construct quantities from these 
canonical variables, which are constants of motion (energy, action…)

* Hint to a more complete answer:
- Describe the particle motion by a Lagrange function of generalized coordinates and generalized velocities and 

time.
- define an action variable and assume that nature is made such that the action between any two points of 
particle motion is stationary

- This is fulfilled for Lagrange functions satisfying the Euler-Lagrange equation
- And this leads finally to the definition of generalized momenta instead of generalized velocities, the definition 

of the Hamiltonian function and then to the two equations of motion as shown on the last slide.
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Recall: what is the “action” variable; what is phase space

qx

px

Define action “S”:=න
𝑡1

𝑡2

𝑝 𝑑𝑞

“Stationary” action principle:= 
Nature chooses path from t1 to t2 such that the action integral is a minimum and stationary 
 we have a new invariant, which we can use to study the dynamics of the system

This shows only one of the 
three phase-spaces



x

x’

x

px

Trace space Phase space

Warning: We often use the term phase space for the 6N dimensional space defined by 
x, x’ (space, angle), but this the “trace space” of the particles.
At constant energy phase space and trace space have similar physical interpretation
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Linear Optics – Hamiltonian (3/3)

Example: Mass-spring system

𝐻 = 𝑇 + 𝑉 =
1

2
k 𝑥2+ 

𝑝2

2𝑚
= E

Hamiltonian formalism to obtain the equations of motion:

𝛿𝑥

𝛿𝑡
= ሶ𝑥 =

𝜕𝐻

𝜕𝑝
=
𝑝

𝑚
or p=m ሶ𝑥 = mv

𝛿𝑝

𝛿𝑡
= ሶ𝑝 = −

𝜕𝐻

𝜕𝑥
= -kx

We are used to start with the force equation:
𝐹 = 𝑚𝑎 = 𝑚 ሷ𝑥 = - kx
With the well known sinusoidal solution for x(t).

Instead we look at the trajectory of the system in a phase space. 
In this simple case the Hamiltonian itself is the equation of the ellipse.
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A further look at phase-space plots

𝑡 = 𝑡0

t = 𝑡0 + Τ𝑇 4

- The particle follows in phase space a trajectory, which has an elliptic shape.
- In the example, the free parameter along the trajectory is time ( we are used to express the space-

coordinate and momentum as a function of time)
- This is fine for a linear one-dimensional pendulum, but it is not an adequate description for transverse 

particle motion in a circular accelerator
 we will choose soon “s”, the path length along the particle trajectory as free parameter

- Any linear motion of the particle between two points in phase space can be written as a matrix 

transformation:    𝑥
𝑥′

(𝑠)= 
𝑎 𝑏
𝑐 𝑑

𝑥
𝑥′

(𝑠0)

- In matrix annotation we define an action “J” as product J:= 
1

2

𝑥
𝑥′

(𝑠)  𝑥
𝑥′

(𝑠0).

- J is a motion invariant and describes an ellipse in phase space. The area of the ellipse is 2𝜋𝐽

Why all this? Later we will define the emittance of  a beam as the average action variable of all particles… 
but for the moment we stick to  single particles … and we follow them through magnetic elements.

Increasing t
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Why at all “Hamiltonians”?

• Why not just Newton’s law and Lorentz force?
Newton requires rectangular coordinates and time ; for curved trajectories 
one needs to introduce “reaction forces”.

• Hamiltonian equations of motion are two systems of first order <-> 
Lagrangian treatment yields one equation of second order.

• Hamiltonian equations use the canonical variables p and q, 

Lagrangian description uses  q and ൗ𝜕𝑞
𝜕𝑡 and t

p, q are independent, the others not.

• Several people use Hill’s equation as starting point:
- always needs an “Ansatz” for a (periodic) solution: 
No real accelerator is built fully periodically
- Hill’s equation follows directly out of a simplified Hamiltonian description
(later slide)

• Last not least: (material of the CAS advanced course: )
The Poisson brackets of p or q with the Hamiltonian encode the time 
behaviour of  p and q: Basis for any numerical integration
(Werner Herr, Non Linear Dynamics II)
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Particle Motion through accelerator components

Linear treatment: matrix multiplication 𝑥
𝑥′

(𝑠)= 
𝑎 𝑏
𝑐 𝑑

𝑥
𝑥′

(𝑠0)

More general treatment: application of a map: 𝑥
𝑥′

(𝑠)= M 𝑥
𝑥′

(𝑠0)

• the map can be any function of x and x’, but must not depend on the input parameters x (s0) and x’(s0);
• the map must be symplectic (more details: again W. Herr this course)

(by the way: every matrix is a map, but not every map is a matrix)

Symplecticity:  energy conservation

• Following a particle through various elements is equivalent to multiplying the maps.

First (simple) case:
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Back to the Hamiltonian for a moment:

So far we have been switching from time-dependent variables to s-dependent variables without 
paying attention to it:
In a linear 1 D motion this is a equivalent since s= vt
But if we want to describe motion transverse to a curved reference line, 
we must use “s” as independent variable. At every moment we have perpendicular to the tangent 
vector of the particle trajectory a transverse Cartesian coordinate system.
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Where are we now?

- we describe every element in the trajectory of a particle with the corresponding Hamiltonian.
- we describe the particle motion through an element by a matrix (map) multiplication onto its phase-
space vector. 
- we generate more complex accelerator configurations by multiplying the maps of the induvial 
elements.
- we have changed the coordinate system and describe now the trajectory of a particle as a function of 
“s” and not of “t”.
- But: we are still treating single particles in a single passage through an accelerator component.

What comes next?

- We show that Hill’s equations come naturally out of the Hamiltonian formalism
- We look at transverse focusing…in particular a FODO lattice
- We look again and again at phase space diagrams.
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Such a field (force) 
we need for 
focusing
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Weak focusing from dipoles

This means that we can construct a focusing circular accelerator based only on dipoles…
in particular when ρ is small.

This has been done in the 1950’s and it was called “ a weak focusing synchrotron”
For this evening (with a cold beer):
How about the vertical plane? There are no dipoles. Or why do the particles not fall down?
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We need stronger focusing….quadrupoles
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1
cosh sinh

sinh cosh

 
 

  
 
 
 

defoc
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KM

K K l K l

The negative sign in the Hamiltonian makes the same 
quadrupole defocusing the other plane.

Positive = defocusing
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Transfer Matrix in 6-D

In order to calculate numbers one usually defines a FODO cell from the 
middle of the first F-quadrupole up to the middle of the last F-quadrupole.

Hence the resulting transfer matrix looks a little different:

M= 𝑀𝑄(2𝑓0) ∙ 𝑀𝐷 𝐿 ∙ 𝑀𝑄(−𝑓0) ∙ 𝑀𝐷 𝐿 ∙ 𝑀𝑄(2𝑓0) 
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More details on the Illustrating Example

1mm

1

0

0.75

0.16

0

−.2

−.54

−.15
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Our first synchrotron

The previous example of 100 consecutive FODO cells describes very well a regular 
transport line or a linac (in which we have switched off the cavities).

If we add dipoles into the driftspaces, the situation for the transverse particle motion 
does not change (neglecting the weak focusing part).

So actually with the previous description we also describe a very simple regular 
synchrotron.
The phase space ellipse we can compute provided we know the total transfer map 
(matrix)  Mtot:

J= 
1

2

𝑥
𝑥′

(𝑠0)  𝑥
𝑥′

(𝑠0 + 𝐶) =
1

2

𝑥
𝑥′

(𝑠0) Mtot
𝑥
𝑥′

(𝑠0 )

The phase space plots will look qualitatively the same as in the previous case.

Definition: trajectory (single passage)  or closed orbit (multiple passages):
(1)

Fix point of the transfer matrix…in our cases so far the “0” centre of all ellipses.



Orbit Acquisition

Horizontal

•This orbit excursion
is too large!



Orbit Correction (Operator Panel)



Orbit Correction (Detail)
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Courant – Snyder formalism / Twiss parameters

• Same beam dynamics
• Introduced in the late 50’s by 
• The classical way to parametrize the evolution of the phase space 

ellipse along the accelerator

Basic concept of this formalism:

1) Write the transfer matrix in this form (2 dimensional case):

𝑀 = 𝐼 𝑐𝑜𝑠𝜇 + 𝑆 ∙ 𝐴 𝑠𝑖𝑛𝜇

I =
1 0
0 1

; S =
0 1
−1 0

;  A= 
𝛾 𝛼
𝛼 𝛽

2) M must be symplectic  𝛽𝛾 − 𝛼2 = 1

3) Four parameters: 𝛼 𝑠 ; 𝛽 𝑠 ; 𝛾 𝑠 𝑎𝑛𝑑 𝜇 𝑠 , with one interrelation (2)
 Three independent variables

4) Again, the preserved action variable J describes an ellipse in phase-space:

𝐽 =
1

2
( 𝛾𝑥2+ 2𝛼𝑥p + 𝛽𝑝2)
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Example: Propagation of twiss parameters along s between two focusing quadrupoles
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Example: Beta function between two strong focusing quadrupoles

𝐴𝑠
0
= 

𝛾 𝛼
𝛼 𝛽  𝐴𝑠= 𝑀𝑇 𝐴𝑠

0
𝑀

1 𝑠
0 1

Drift M =

Starting from waist       𝛼 = 0

And in Matrix-Annotation:

𝐴𝑠
0
=
𝛾0 𝛼0
𝛼0 𝛽0

= 
𝛾0 0
0 𝛽0

=
ൗ1 𝛽0

0

0 𝛽0

Using: 𝛽𝛾 − 𝛼2 = 1

𝐴𝑠 = 
1 0
𝑠 1

∙
ൗ1 𝛽0

0

0 𝛽0
∙
1 𝑠
0 1

=
ൗ1 𝛽0 Τ𝑠 𝛽0

Τ𝑠 𝛽0
𝛽0 + ൗ𝑠2

𝛽0

𝛽𝑠 = 𝛽0 + ൗ𝑠2
𝛽0

𝛽𝑠 = 𝐶2𝛽0 - 2SC 𝛼0 + 𝑆2𝛾0 = 𝛽0+ ൗ𝑠2
𝛽0
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Interpretation of the Twiss parameters (1/2)

1) Horizontal and vertical beta function 𝛽𝐻,𝑉 𝑠 :

• Proportional to the square of the projection of the phase space 
ellipse onto the space coordinate

• Focusing quadrupole  low beta values

Although the shape of phase space changes along s, the rotation of the particle on 
the phase space ellipse projected onto the space co-ordinate looks like an harmonic 
oscillation with variable amplitude:   called BETATRON-Oscillation

𝑥 𝑠 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝛽 𝑠 ∙ 𝑐𝑜𝑠ሼ𝜇 𝑠 + ሽ𝜑
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𝛼 = −
1

2

𝑑𝛽

𝑑𝑠

α indicates the rate of change of β along s
α zero at the extremes of beta (waist)

𝜇 = 𝑠1
𝑠2 1

𝛽
ds Phase Advance: Indication how much a particle 

rotates in phase space when advancing in s

Of particular importance: Phase advance around a complete turn of a circular 
accelerator, called the betatron tune Q (H,V) of this accelerator

𝑄𝐻,𝑉 = 
1

2𝜋
0
𝐶 1

𝛽𝐻,𝑉
𝑑𝑠

Interpretation of the Twiss parameters (2/2)

2.)

3.)
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The betatron tunes 𝑄𝐻,𝑉

• Part of the most important parameters of a circular accelerator
• The equivalent in a linac is called “phase advance per cell”
• For a circular accelerator it is the phase advance over one turn in 

each respective plane.

• In large accelerators the betatron tunes are 
large numbers (LHC ˜ 65), i.e. the phase 
space ellipse turns about 65 times in one 
machine turn.

• We measure the tune by exciting transverse 
oscillations and by spectral analysis of the 
motion observed with one pickup.
This way we measure the fractional part of 
the tune; often called 𝒒𝑯,𝑽

• Integer tunes (fractional part= 0) lead 
to resonant infinite growth of 
particle motion even in case of only 
small disturbances.
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Importance of betatron tunes

The couple (QH ,QV ) is called the 
working point of the accelerator.
Below: tune measurement 
example from LEP
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Slides on “off-momentum” particles in a synchrotron 

What happens: A particle with a 

momentum deviation 𝛿 =
𝛿𝑝

𝑝
> 0 gets 

bent less in a dipole.

• In a weakly focusing synchrotron it would just 
settle to another circular orbit with a bigger 
diameter

• In an alternate gradient synchrotron it is more 
complicated: The focusing/defocusing is also 
dependent on the momentum, so the resulting 
orbit follows the optics of the accelerator.

We describe the dispersion as a function of s as 𝐷 𝑠 ; 
the resulting position of a particle is thus simply:

𝑥𝛿𝑝= 𝑥0+ 𝐷 𝑠
𝛿𝑝

𝑝

Typical values of D(s) are some meters, with
𝛿𝑝

𝑝
= 10−3

the orbit deviation becomes millimeters



p

p
sDxD


 *)(

Measurement example

HERA Standard Orbit

dedicated energy change of the stored beam

 closed orbit is moved to a  

dispersions trajectory

HERA Dispersion Orbit

This gives also an example of an 

orbit measurement.
More on this: again R.Jones (BI)



Momentum compaction factor

If a particle is slightly shifted in momentum it 
will have a different orbit and the orbit length is 
different.

The “momentum compaction factor” is defined 
as:p+p

p

𝛼𝑐 =
ൗ𝑑𝐿
𝐿

ൗ𝑑𝑝
𝑝

𝛼𝑐 =
𝑝

𝐿

𝑑𝐿

𝑑𝑝

Typical numbers: 𝛼𝑐 ≈ 10−3… 10−4; ൗ∆𝑝
𝑝 ≈ 10−3 Τ∆𝐿

𝐿 ≈ 10−6…10−7

Much more on this in long. dynamics (F. Tecker).
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Finally: a beam
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We focus on “bunched” beams, i.e. many (10 11) particles bunched 
together longitudinally (much more on this in the RF classes).

From the generation of the beams the particles have transversally a 
spread in their original position and momentum.

Source: ISODAR (Isotope at rest experiment)



Gaussian beam profile in x and p
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Liouville’s Theorem (1/2)
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1. All particle rotate in phase space with the same angular velocity (in the linear case)
2. All particle advance on their ellipse of constant action
3. All constant action ellipses transform the same way by advancing in “s”

 Since volumes in phase space are preserved, (1)-(3) means  That the whole beam 
phase space density distribution transforms the same way as the individual constant 

action ellipses of individual particles.



Liouville’s Theorem (2/2)
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We now define the emittance of a beam as the average action of all particles!

 Since the action J of a particle is constant and the phase space area A covered 
by the action ellipse is 𝐴 = 2𝜋𝐽 , we can represent the whole beam in phase 
space by an ellipse with a surface = 2𝜋 𝐽 *

 all equations for the propagation of the phase space ellipse apply equally
for the whole beam

!!! In case we talk about a single particle, the ellipse we draw is “empty” and any particle 
moves from one point to another; if we consider a beam, the ellipse is full of particles!!!

• There are several different definitions of the emittance ε, also different 
normalization factors. This depends on the accelerator type, but the above 
definition describes best the physics.

• Another often used definition is called RMS emittance
𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥2 𝑝2 − 𝑥𝑝 2 or 𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥2 𝑥′2 − 𝑥𝑥′ 2

attention: the first definition describes well the physics, the second describes  
what we eventually can measure

*



54A. Cianchi

RMS emittance
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Importance of RMS emittance

Even when the phase-space area is zero, if the distribution lies on a curved 
line its rms emittance is not zero.
RMS emittance is not an invariant for Hamiltonian with non linear terms. 



Remarks
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1. We have already identified the action as a preserved 
quantity in a conservative system 
the emittance of a particle beam is preserved in a 
conservative beam line.

2. The sentence above is often quoted as Liouville’s
theorem, but this is incorrect. Liouville’s theorem 
describes the preservation of phase space volumes, 
the preservation of the phase space of a beam is then 
just results from the Hamiltonian description.

3. We can identify the constant in the previous equation:

𝑥 𝑠 = 𝜀 ∙ 𝛽 𝑠 ∙ 𝑐𝑜𝑠ሼ𝜇 𝑠 + ሽ𝜑



More on beam emittance

H.Schmickler, CERN 57

The reference momentum increases during acceleration
𝑃0 = 𝛽0𝛾0𝑚𝑐 → 𝑃1 = 𝛽1𝛾1𝑚𝑐 𝛽, 𝛾 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

we can show:            𝛽0𝛾0𝜖0 = 𝛽1 𝛾1𝜖1
So the transverse emittances scale with the product 𝛽𝛾

For this reason we define:

Other ways to influence the emittance (advanced subjects):
- make it bigger by error (injection errors….)
- make it smaller by cooling (stochastic cooling; electron-cooling….)

Not to be confused with:
Radiation damping = Reduction in emittance due to the emission of 
photons as synchrotron radiation

normalized emittance 𝜀𝑁: = 𝛽𝛾𝜀 and we call 𝜀 the geometric emittance
The “shrinking” of the transverse emittance during acceleration is called 
“adiabatic damping”       (only 𝜀 = 𝑐𝑜𝑛𝑠𝑡 ∗ 𝑥2 𝑥′2 − 𝑥𝑥′ 2 scales with energy)



What do we normally measure from the phase-space ellipse?

• At a given location in the 
accelerator we can measure 
the position of the particles, 
normally it is difficult to 
measure the angle…so we 
measure the projection of 
the phase space ellipse onto 
the space dimension:
called a profile monitor

σ = 𝜀𝛽 + D ൗ∆𝑝
𝑝

Attention! The standard 2 D image of a 
synchrotron light based beam image is 
NOT a phase space measurement
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Phase space mapping

Measurements Simulations
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A. Cianchi et al., “High brightness electron beam emittance evolution measurements in an rf 

photoinjector”, Physical Review Special Topics Accelerator and Beams 11, 032801,2008

Phase space evolution



A first taste of non-linearities (1/6)
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• So far we have completely neglected the longitudinal plane
• Still, we will not couple the motion in the longitudinal and transverse plane 

(advanced course), but we need to consider 

“off momentum particles” with a longitudinal momentum 
∆𝑝

𝑝0
≠ 0.

• We already defined the Dispersion function, which describes the change in orbit
• Now we look at what happens to the focusing in the quadrupoles:



A first taste of non-linearities (2/6)
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• Due to the change in focusing strength of the quadrupoles with varying 
momentum, particles have different betatron-tunes:

• Definition: Chromaticity (H,V) := Dependence of tune on momentum

• ∆𝑄 = 𝑄′ ∆𝑝

𝑝
or relative chromaticity ξ =

𝑄′

𝑄

• Is this bad? : Yes, the working point gets a “working blob”
• We need to correct. How?

i) Inserting a magnetic element where we have dispersion (this separates in space 
particles with lower and higher momenta
ii) Having there a “quadrupole”, for which the strength grows for larger distances 
from the centre: a sextupole



A first taste of non-linearities (3/6)
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We will have a high price to pay for this chromaticity correction!
 we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick” in the 
transverse momentum:

0
'

*
'

ss
x

x
M

x

x


















We choose a fixed value k2L = - 600 m-2  and  we construct phase space 
portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

0.2 ∙ 2𝜋 𝑡𝑜 0.5 ∙ 2 𝜋



A first taste of non-linearities (4/6)
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A first taste of non-linearities (6/6)
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Another useful example: Injection missteering

Example:



H.Schmickler, CERN 67



H.Schmickler, CERN 68



H.Schmickler, CERN 69



H.Schmickler, CERN 70



H.Schmickler, CERN 71



H.Schmickler, CERN 72



H.Schmickler, CERN 73

Linear Imperfections
• Up to now we have constructed an alternate –gradient focusing synchrotron
• We have a well chosen working point
• We have corrected chromaticity
• (We still cannot accelerate!   see F. Tecker (long. Dynamics)
• We assume: 

- All magnetic elements have the calculated field strength and field quality
- All magnetic elements are in the right place and powered with the right polarity

• Reality tells us:
- Magnets have field errors, have other multipole components, have time varying 
fields due to ripple in the connected power converter
- Magnets are wrongly mounted with horizontal and/or vertical offsets, rotations 
or tilts

• These effects influence:
- the beta functions and phase advance around the ring (implicitly the tunes)
- the closed orbit
- the coupling between horizontal and vertical motion
…

• We need to diagnose and correct: Strong interaction between beam 
measurements and corrections (see also R.Jones BDI talks)
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Dipole Errors

error effect correction

strength (k) change in deflection
change excitation current, 

replace magnet

lateral shift none

tilt additional vertical deflection corrector dipole magnet
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Quadrupole Errors (1/2)
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Quadrupole Errors 2/2
Error type effect on beam  correction(s) 

strength Change in focusing, 
“beta-beating” 

Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra dipole kick Excitation of a corrector 
dipole magnet 

tilt Coupling of the beam 
motion in the two planes 

Excitation of a additional 
“skewed quadrupoles (450) 
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Beta-beating (1/2)
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Beta-beating (2/2)



H.Schmickler, CERN 79

Quadrupole Errors 3/3

Any tilted quadrupole is 
seen as a normal 
quadrupole plus another 
quadrupole tilted by 450. 
(skew quad)

Note that in a skew quad 
Fx = ksy and Fy = ksx
produce coupling 
between the x and y 
planes

Additional skew quads in 
an accelerator are used 
to compensate coupling
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Coupling control is most important in synchrotron light 
sources, since small vertical emittance (yielding high 
brightness of the photon beams) is predominantly achieved by 
decoupling the x and y planes.
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Last not least: Sextupole errors (1/2)
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Last not least: Sextupole errors (2/2)

Error type effect on beam  correction(s) 

strength Change in chromaticity 
correction, beta-beating 

Change excitation current, 
Repair/Replace magnet 

Lateral shift Extra quadrupole and skew 
quadrupole, beat-beating, 
tune change, coupling 

Compensation with 
quadrupoles and skew 
quadrupoles, realignment 

tilt Error in the chromaticity 
correction 

Excitation of a additional 
“skewed sextupoles (450) 

 

A horizontally 
(vertically) 
displaced 
sextupole is seen 
as a centred 
sextupole plus an 
offset quadrupole 
(skew quadrupole)
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Correction summary

Effect of dipole kicks (𝜃𝑖 ; Φ𝑖) on closed orbit (CO)

Effects of strength error in quadrupoles

• Best correction: identify error source and repair(realignment; coil repair…)
• If not: Typically close to every quadrupole small dipole correctors are 

installed. So by measurement campaigns and data analyses corrections 
strength for these small dipoles and to (skew) quadrupoles are applied.

• More on this in the diagnostics lecture and the advanced part.
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Last not least: Collective effects

Collective effects:
= Summary term for all effects when the coulomb force of the particles in a bunch 
can no longer be neglected; in other words when there are too many particles…

We distinguish:
i) self interaction of the particles within a bunch:

1) space charge effects

2) Intra beam scattering
3) Touschek scattering

leads to emittance growth and particle loss
ii) Interaction of the particles with the vacuum wall

concept of impedance of vacuum system
leads to instabilities of single bunches and multiple bunches
iii) Interaction of with particles from other counter-rotating beam

 beam-beam effects (more later this school)

Most is very advanced matter  here only concepts and buzz-words
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Space-charge Forces
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Space Charge: Scaling with energy

Electrical field : repulsive force between two charges of equal polarity
Magnetic field: attractive force between two parallel currents
after some work: 

 space charge diminishes with ൗ1 𝛾2 scaling

 each particle source immediately followed by a linac or RFQ for acceleration

Recall from 
relativity
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Space Charge Tune Shift
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“footprint” 
of particles 
with space 
charge tune 
shift.

The effect 
dramatically 
reduces at 
higher 
energies

Space 
charge 
always
defocusing
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Intrabeam Scattering
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Touscheck effect



Interaction of beam with vacuum chamber
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Bunch in a conducting pipe with sudden change
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All together
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Impedance
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Impedance

The real (resistive) part dissipates energy, the imaginary part creates instabilities 



Consequences of impedances
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Energy loss on pipes heating (important in a superconducting accelerator)

Tune shift

Broad
Band
Model

narrow
resonances

Single bunch instabilities (head-tail)

Multibunch instabilities 
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1) Back to school: relativity, EM fields, magnets…
2) Hamiltonian and canonical variables  equations of motion + invariants; map-approach
3) Single particle in various magnetic elements…action as invariant
4) multiple elements; circular accelerator
5) Twiss parameters
6) Finally a beam: emittance and emittance preservation
7) A taste of non-linearities
8) Linear imperfections (and some corrections)
9) Collective effects

Summary



Recommended reading:
• A. Wolski, Beam Dynamics in high energy particle accelerators,

Imperial College Press, ISBN 978-1-78326-277-9
• CAS proceedings and references therein


