Superconducting RF Systems II

Cavities of different shapes

Erk JENSEN, CERN

Photo: Reidar Hahr

Elliptical cavities – the *de facto* standard for SRF

FERMI 3.9 GHz

S-DALINAC 3 GHz

CEBAF 1.5 GHz

HEPL 1.3 GHz

KEK-B 0.5 GHz

CESR 0.5 GHz

SNS $\beta = 0.61, 0.81, 0.805$ GHz

HERA 0.5 GHz

TRISTAN 0.5 GHz

LEP 0.352 GHz

cells

Practical RF parameters 1

• Average accelerating gradient: $E_{acc} = \frac{\sqrt{\omega W(R/Q)}}{l_{active}}$

tive

The ratio shows sensitivity of the shape to the **field emission** of electrons.

peak on the wall

Epeak

 E_{acc}

The ratio shows limit in E_{acc} due to the breakdown of superconductivity (**quench**, Nb: \approx 190 mT).

courtesy: Jacek Sekutovicz/DESY

CAS Zurich

Superconducting RF Systems II

Practical RF parameters 2

 $G \cdot (R/Q)$

- Both G and R/Q are purely geometric parameters.
- Like the shunt impedance R, the product $G \cdot (R/Q)$ is a measure of the power loss for given acceleration voltage V_{acc} and surface resistance R_s . Minimize R_s :

Optimize geometry maximizing $G \cdot (R/Q)$.

Single-cell versus multi-cell cavities

- Advantages of single-cell cavities:
 - It is easier to manage HOM damping
 - There is no field flatness problem.
 - Input coupler transfers less power
 - They are easy for cleaning and preparation

- Advantages of multi-cell cavities:
 - much more acceleration per meter!
 - better use of the power ($R \rightarrow n R$)
 - more cost-effective for most applications

Superconducting RF Systems II CAS Zurich

6

Practical RF parameters 3

Cell-to-cell coupling k_{cc} will determine the width of the passbands in multi-cell cavities.

Field flatness

- Field amplitude variation from cell to cell in a multi-cell structure
- Should be small for maximum acceleration.

Photo:

Reidar Hah

• Field flatness sensitivity factor a_{ff} for a structure made of N cells:

$$\frac{\Delta A_i}{A_i} = a_{ff} \frac{\Delta f}{f_i}$$

 a_{ff} is related to the cell-to-cell coupling as $a_{ff} = \frac{N^2}{k_{cc}}$ and describes the sensitivity of the field flatness on the errors in individual cells. courtesy: Jacek Sekutovicz/DESY

Criteria for Cavity Design (1)

- Here: Inner cells of multi-cell structures
 - Parameters for optimization:
 - Fundamental mode: $\frac{R}{Q}$, G, $\frac{E_{\text{peak}}}{E_{acc}}$, $\frac{B_{\text{peak}}}{E_{acc}}$, k_{cc} .
 - Higher order modes: k_{\perp} , k_z .
- The elliptical cavity design has distinct advantages:
 - easy to clean (rinse)

Photo:

Reidar Ha

- little susceptible to MP can be conditioned ...
- Geometric parameters for optimization:
 - iris ellipse half axes: *a*, *b*:
 - iris aperture radius: r_i ,
 - equator ellipse half axes: A, B +
- Problem: 7 parameters to optimize, only 5 to play with – some compromise has to be found!

Criteria for Cavity Design (2)

Criterion	RF parameter	Improves if	examples
high gradient	high gradient E_{peak}/E_{acc} r_i r_i	<i>r</i> :	TESLA,
operation			CEBAF 12 GeV HG
low cryogenic losses	$\frac{R}{Q} \cdot G$ 1	r_i	CEBAF LL
High I_{beam}	k_{\perp}, k_z 🖊	r_i	B-factory RHIC cooling LHeC

We see here that r_i is a very "powerful" variable to trim the RF-parameters of a cavity. Of course it has to fit the aperture required for the beam!

Effect of r_i

• Smaller r_i allows to concentrate E_z where it is needed for acceleration

Photo: Reidar Hahr

Example: cell optimization at 1.5 GHz

A. Mosnier, E. Haebel, SRF Workshop 1991

Equator shape optimization

• B_{peak}/E_{acc} (and G) change when changing the equator shape.

13

42 mm

20 mm

Minimizing HOM excitation

HOMs loss factors ($k_{loss,\perp}$, k_{loss})

 $r_i = 40 \text{ mm}$

 $R/Q = 152 \Omega$ $B_{\text{peak}}/E_{acc} = 3.5 \text{ mT/(MV/m)}$ $E_{\text{peak}}/E_{acc} = 1.9$

 $r_i = 20 \text{ mm}$

 $R/Q = 86 \Omega$ $B_{\text{peak}}/E_{acc} = 4.6 \text{ mT/(MV/m)}$ $E_{\text{peak}}/E_{acc} = 3.2$

courtesy: Jacek Sekutovicz/DESY

CAS Zurich

Superconducting RF Systems II

Cell-to-cell coupling k_{cc}

 $r_i = 40 \text{ mm}$

 $R/Q = 152 \Omega$ $B_{\text{peak}}/E_{acc} = 3.5 \text{ mT/(MV/m)}$ $E_{\text{peak}}/E_{acc} = 1.9$

 $r_i = 20 \text{ mm}$

 $R/Q = 86 \Omega$ $B_{\text{peak}}/E_{acc} = 4.6 \text{ mT/(MV/m)}$ $E_{\text{peak}}/E_{acc} = 3.2$

courtesy: Jacek Sekutovicz/DESY

CAS Zurich

Superconducting RF Systems II

Scaling the frequency

 $\times 2 =$

f_{π}	[MHz]	2600
R/Q	[Ω]	57
r/Q	[Ω/m]	2000
G	[Ω]	271

f_{π}	[MHz]	1300
R/Q	[Ω]	57
r/Q	[Ω/m]	1000
G	[Ω]	271

 $r/Q = (R/Q)/l \propto f$

(or $(R/Q)/\lambda = \text{const}$)

Historic evolution of inner cell geometry

courtesy: Jacek Sekutovicz/DESY

CAS Zurich

Superconducting RF Systems II

Cavity optimization example

Photo:

7-cell 1.3 GHz structure for **bERLinPro**

Band diagram (top) and Q-factors (bottom)

Galek et al.: IPAC2013

Reminder:

Photo:

Reidar Hah

0-mode

 π -mode

HOMs: Example 5-cell cavity

Photo:

Reidar Hahr

courtesy: Rama Calaga/CERN

HOM dampers

- Ferrite absorbers: broadband damper, room temperature
- Waveguides: better suited for higher frequencies (size!)
- Notch filters: narrow-band; target specific mode

ferrite absorber

waveguides

notch filter

bandpass filter double notch

Multi-cell cavities require broadband dampers!

Fundamental Power Coupler – FPC

• The Fundamental Power Coupler is the connecting part between the RF transmission line and the RF cavity

Photo:

Reidar Hal

- It is a specific piece of transmission line that also has to provide the cavity vacuum barrier.
- FPCs are amongst the most critical parts of the RF cavity system in an accelerator!
- A good RF design, a good mechanical design and a high quality fabrication are essential for an efficient and reliable operation.

courtesy: Eric Montesinos/CERN

Magnetic (loop) coupling

- The magnetic field of the cavity main mode is intercepted by a coupling loop
- The coupling can be adjusted by changing the size or the orientation of the loop.
- Coupling: $\propto \iiint \vec{H} \cdot \vec{J}_m \, dV$

courtesy: David Alesini/INFN

Electric (antenna) coupling

- The inner conductor of the coaxial feeder line ends in an antenna penetrating into the electric field of the cavity.
- The coupling can be adjusted by varying the penetration.
- Coupling $\propto \iiint \vec{E} \cdot \vec{J} \, dV$

courtesy: David Alesini/INFN

Non-elliptical cavities

Photo: Reidar Hahn

27

II CAS Zurich

Useful relations

Protons/H- (A = 1, Q = 1)

Photo: Reidar Hahn

$$p = \gamma \beta m_0 c = \frac{\gamma \beta E_0}{c}$$
$$E = W + E_0 = \gamma E_0$$
$$W = (\gamma - 1)E_0$$
$$F_{\xi} = |e|\xi$$
$$W = |e|V_{\text{eff}} \cos \varphi$$

Heavy lons (A, Q)

$$p = \gamma \beta A m_0 c = \frac{\gamma \beta A E_0}{c}$$
$$E = W + A E_0 = \gamma A E_0$$
$$W/A = (\gamma - 1) E_0$$
$$F_{\xi} = Q e \xi$$
$$W/A = (Q/A) V_{\text{eff}} \cos \varphi$$

Particle velocity vs. kinetic energy

Accelerating electrons vs. accelerating ions

Example: a 300kV DC bias is enough to get electrons going at a relativistic speed (ie E_o =511keV so γ =1.58, v/c= β =0.78) – for protons a 300kV bias only produces v/c= β =0.025 – for A=30 v/c= β =0.005

- Electron 0.511MeV/c²
 - 300kV γ=1.58, v/c=β=0.78
 - 550MeV γ=1011, v/c=β=1
- Protons 938 MeV/c²
 - 300kV γ=1.003, v/c=β=0.025
 - 550MeV γ=1.58, v/c=β=0.78

8 gm

ARIEL 300kV e-gun

TRIUMF 500MeV cyclotron

CAS Zurich

Superconducting RF Systems II

CAS Zurich

Accelerating electrons vs. accelerating ions

Electrons

Photo:

Reidar Hal

Common building blocks – all designed for $\beta = 1$.

lons

Various building blocks – different technologies, each optimized for a certain velocity range

CAS Zurich Superconducting RF Systems I

Limitations of elliptical cavities

Elliptical cavities have been designed starting at $\beta \ge 0.5$ for CW applications, for $\beta \ge 0.6$ for pulsed (SNS, ESS).

Reidar Ha

The π -mode requires cell-to-cell distance of $\beta\lambda/2$, but outer diameter \approx 0.9 λ , i.e. at low β the cavity looks more like bellows, sensitive to LFD!

Resonator types for low beta acceleration

- Quarter wave resonator (QWR) $\beta \approx 0.04 \dots 0.2$
- Half wave resonator (HWR) $\beta \approx 0.1 \dots 0.5$
- Single spoke resonator (SSR) $\beta \approx 0.15 \dots 0.7$
- Multi-spoke resonator (MSR) $\beta \approx 0.06 \dots 1$
- For comparison: Elliptical cavities $\beta \approx 0.5 \dots 1$

Coaxial resonator

- Consider a coaxial geometry with grounded end plates, an inner conductor with radius *a* and an outer conductor with radius *b*.
- A standing wave occurs with E_r vanishing on the end walls at z = 0 and z = d.
- The remaining non-zero field components are

$$B_{\theta} = \frac{\mu_0 I_0}{\pi r} \cos\left(\frac{p\pi z}{d}\right),$$

$$E_r = -j2 \sqrt{\frac{\mu_0}{\varepsilon_0} \frac{I_0}{2\pi r}} \sin\left(\frac{p\pi z}{d}\right),$$

where $\omega = \frac{p\pi c}{d}, p = 1, 2, 3, ...$

• Peak voltage:

Photo:

$$\widehat{V}(z) = \int_{a}^{b} E_{r}(z) dr = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{I_{0}}{\pi} \ln \frac{b}{a} \sin \left(\frac{p\pi z}{d}\right)$$

CAS Zurich Superconducting RF Systems II

B-Field

Quarter-wave resonator (QWR)

The most popular coaxial TEM mode cavity is the quarter wave resonator - capacitively loaded $\lambda/4$ transmission line

Photo:

- The inner conductor is open at one end with a resonant length of $(1+2p)\lambda/4, p = 0,1,2,...$
- For acceleration, p = 0 is chosen.
- The maximum voltage builds up on the open tip – the maximum current at the root.
- A beam tube is arranged near the end of the tip.

Half-wave resonator (HWR)

In the HWR the beam port is at the centre of the inner conductor of a coaxial resonator, coincident with the maximum voltage for p = 1.

Photo:

- Magnetic fields loop around the inner conductor with peak fields at the shorted ends.
- For acceleration, p = 1 is chosen.

s II CAS Zurich

Superconducting RF Systems II

QWR vs. HWR

- QWR is the cavity of choice for low beta applications where a low frequency is needed
 - requires ~50% less structure compared to HWR for the same frequency rf power loss is ~50% of HWR for same frequency and β_0 .
 - allows low frequency choice giving larger longitudinal acceptance.
 - R/Q twice that of HWR.

Photo:

- Asymmetric field pattern introduces vertical steering especially for light ions that increases with velocity avoid use for $\beta_0 > 0.2$.
- Less mechanically stable than HWR due to unsupported end (microphonics).
- HWR is chosen in mid velocity range ($\beta_0 > 0.2$) or where steering must be eliminated (i.e. high intensity light ion applications)
 - produces twice rf losses for the same β_0 and λ .
 - is 2x longer for the same frequency.
 - Pluses are the symmetric field pattern and increased mechanical rigidity.

HWR vs. Single Spoke Resonator (SSR)

- A single spoke resonator (SSR) is another variant of the half-wave TEM mode cavity class.
- In HWR the outer conductor is coaxial with the inner conductor (with diameter $\beta_0 \lambda$) while in the spoke cavities the outer cylinder is co-axial with the beam tube with diameter $\lambda/2$. It means that for $\beta_0 < 0.5$ the SSR has a larger overall physical envelop than the HWR for the same frequency.
- Thus for low beta applications (0.1 < β < 0.25) HWRs are chosen at ≈ 160 MHz, while SSRs are preferred at ≈ 320 MHz.
- The spoke geometry allows an extension along the beam path to provide multiple spokes in a single resonator giving higher effective voltage, but with a narrower transit time acceptance.

Single spoke - SSR

Cavity types – QWRs

Typical range: $0.04 < \beta < 0.2$ $50 \text{ MHz} \le f \le 160 \text{ MHz}$

ANL β=0.077, 0.085 72.5MHz

CAS Zurich

01-Mar-18

Cavity types – HWRs

IMP β=0.10, f=162.5MHz

IFMIF β=0.11, f=175MHz

FRIB β=0.29, 0.53 f=322MHz

ANL β=0.112, f=162.5MHz

FRIB β=0.29, 0.53 f=322MHz

Typical range: $0.1 < \beta < 0.5$ 140 MHz $\leq f \leq$ 325 MHz

CAS Zurich

01-Mar-18

Cavity types – SSRs

IHEP β=0.12, f=325MHz

325 MHz, $\beta_0 = 0.82$ Single-Spoke Cavity

FNAL β=0.215, f=325MHz

TRIUMF/RISP β =0.3, f=325MHz

Typical range: $0.15 < \beta < 0.7$ $320 \text{ MHz} \le f \le 700 \text{ MHz}$

Cavity types – multi-cell

ESS/IPN β=0.50, f=352MHz

IAP 360 MHz, β_0 ~0.1 19 gap CH resonator

500 MHz, $\beta_0 = 1$ Double-Spoke Cavity

1 m ANL β=0.63, f=345MHz

IMP CH β=0.067, f=162.5MHz

CH: Crossbar H-mode

01-Mar-18

Accelerating cavity velocity/frequency chart

Photo:

Transit Time factor vs. β for multiple gaps

Photo:

High- β spoke cavities

- High velocity spoke cavities with $\beta > 0.8$ are being designed as alternative to elliptical cavities
- Features:

Photo:

Reidar Hal

- relatively compact
 - between 20% and 50% smaller (radially) for low-β cavities
 - for high β diameter close to TM counterparts
- allows low frequency at reasonable size
- mechanically stable high shunt impedance

325 MHz β =0.82 Single Spoke Cavity

500 MHz β =1.0 Double Spoke Cavity

Deflecting mode cavities

TRIUMF 650MHz

double quarter wave (DQW) - 400MHz - BNL/CERN

RF Dipole (RFD) – 400MHz – ODU/CERN

RFD - multi-cell - 953MHz - ODU

Prototype HL-LHC Crab Cavity prototypes

"DQW" (vertical deflection)

Electric Field

Magnetic Field

"RFD" (vertical deflection)

The real thing (HL-LHC Crab Cavity)

CERN-PHOTO-201708-196-10

Photo: Reidar Hahn

Tuners

01-Mar-18

Small boundary perturbation

- Perturbation calculation is used to understand the basics for cavity tuning it is used to analyse the sensitivity to (small) surface geometry perturbations.
 - This is relevant to understand the effect of fabrication tolerances.

unperturbed: ω_0

- Intentional surface deformation or introduced obstacles can be used to tune the cavity.
- The basic idea of the perturbation theory is use a known solution (in this case the unperturbed cavity) and assume that the deviation from it is only small. We just used this to calculate the losses (assuming H_t would be that without losses).
- The result of this calculation leads to a convenient expression for the (de)tuning:

$$\frac{\omega - \omega_0}{\omega} = \frac{\iiint_{\Delta V}(\mu_0 |H_0|^2 - \varepsilon |E_0|^2) dV}{\iiint_V (\mu_0 |H_0|^2 + \varepsilon |E_0|^2) dV}$$

perturbed: ω

John C. Slater 1900 – 1976

Slater's Theorem

Lorentz force detuning ("LFD")

- The presence of electromagnetic fields inside the cavity lead to a mechanical pressure on the cavity.
- Radiation pressure: $P = \frac{1}{4} (\mu_0 |H|^2 \varepsilon_0 |E|^2)$
- Deformation of the cavity shape:

- Frequency shift: $\Delta f = K L |E_{acc}|^2$; typical: $K L \approx -(1 \dots 10) Hz / (\frac{MV}{m})^2$
- This requires good stiffness and the possibility to tune rapidly!

Tuner principle

• Slow tuners:

Photo:

Reidar Hah

- compensate for mechanical tolerances,
- realized with stepper motor drives
- Fast tuners:
 - compensate Lorentz-force detuning and reactive beam loading
 - realized with piezo crystal (lead zirconate titanate PZT)
- Tuning of SC cavities is often realized by deforming the cavity:

courtesy: Eiji Kako/KEK

Superconducting RF Systems II CAS Zurich

Microphonics

- Driven by mechanical vibration in the environment.
- QWRs are particularly problematic due to the pendulum action of the inner conductor, which can have very low mechanical frequencies ((50 ... 100) Hz)
 - need to reduce the RMS detuning to $\ll 10\%$ of the available BW to avoid nuisance
 - the other option is to increase the BW (lower Q_L , costs power)
- Mitigation:

Photo:

- stiffening during design/manufacture
- centering the inner conductor by plastic deformation so that df/dx = 0.
- adding passibe dampers
- reduce environmental noise

Frequency compensation/tuning

- For QWRs a tuning plate at the open end near the beam tube is generally used.
- For QWRs with removable tuning plate, a Nb puck can be welded to it this reduces the cavity f_0 by increasing the equivalent C.
- This puck can be trimmed after final fabrication

01-Mar-18

CAS Zurich