Large Circular Collider Studies Overview

CAS – Future Colliders - Zuerich M. Benedikt, 22 February 2018

Introduction

- > Full exploitation of LHC \rightarrow HL-LHC project
- ➢ Lepton Collider Studies → FCC-ee and CEPC
- ➢ Hadron Collider Studies → FCC-hh, SppC, HE-LHC

Discoveries by colliders

Colliders are powerful instruments in High Energy physics for particle discoveries and precision measurements

Many open questions remaining

Standard model describes known matter, i.e. 5% of the universe!

- what is dark matter?
- what is dark energy?

galaxy rotation curves, 1933 - Zwicky

- why is there more matter than antimatter?
- why do the masses differ by more than 13 orders of magnitude?
- do fundamental forces unify in single field theory?
- what about gravity?
- Is there a "world equation theory of everything"? ...
 K. Borras

Goal of High Luminosity LHC (HL-LHC)

implying an integrated luminosity of 250 fb⁻¹ per year,

design oper. for $\mu = 140$ (\rightarrow peak luminosity 5 10³⁴ cm⁻² s⁻¹)

Operation with levelled luminosity! (beta*, crossing angle & crab cavity)

→ 10x the luminosity reach of first 10 years of LHC operation!!

HL-LHC upgrade – full LHC exploitation

HL-LHC significantly increases data rate to improve statistics, measurement precision, and energy reach in search of new physics Gain of a factor 5 in rate, factor 10 in integral data wrt initial design

LHC upgrade goals: performance optimization

• Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

- → maximize bunch intensities $(1.1 \rightarrow 2.2 \times 10^{11})$ → Injector complex
- → minimize the beam emittance $(3.75 \rightarrow 2.5 \,\mu\text{m})$ Upgrade LIU
- → minimize beam size ($\beta * 0.55 \rightarrow 0.15$ m);
- → compensate for 'F' geometry crossing;
- → improve machine 'Efficiency'

- → New triplet quadrupoles
- ➔ Crab Cavities
- minimize number of unscheduled beam aborts

LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb-1

HL-LHC technical bottleneck: Radiation damage to triplet magnets

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magr coils receive a similar radiation dos @ 10 times higher integrated luminosity 3000 fb⁻¹! → Shielding!

- → Requires larger aperture!
- → New magnet technology
- → LHC: 70mm at 210 T/m →HL@ 150mm diameter 140 T/m
- → LHC: 8T peak field at coils → HL> 12T field at coils (Nb₃Sn)!

High Luminosity LHC project scope

High Energy Colliders under study

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2019)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- **80-100 km tunnel infrastructure** in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- *p-e (FCC-he) option,* integration one IP, FCC-hh & ERL
- HE-LHC with FCC-hh technology

CEPC-SppC outline

Lepton collider studies

FCC-ee and CEPC

- Both designs based on separate vacuum chambers and magnetic channels for electrons and positrons
- Much higher number of bunches and beam current compared with LEP machine (single chamber, only few bunches)
- > Overall limiting parameter is synchrotron radiation:
 - 100 MW for FCC-ee
 - 60 MW for CEPC
 - Determines maximum luminosities

Synchrotron radiation

- Lepton colliders: name of the game here luminosity: as many collisions as possible → high beam current, small beam size.
- Energy reach of circular e⁺e⁻ colliders is limited due to synchrotron radiation of charged particles on curved trajectory:

$$\Delta E \propto (E_{kin}/m_0)^4/\rho$$

$$m_{prot} = 2000 m_{electr}$$

$$\Delta E_{electron} \sim 10^{13} \Delta E_{proton}$$

1

FCC-ee parameters

parameter	Z	WW H (ZH) ttbar		ar	
beam energy [GeV]	45	80	120	175	182.5
beam current [mA]	1390	147	29	6.4	5.4
no. bunches/beam	16640	2000	393	48	39
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.7	2.8
SR energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.21
total RF voltage [GV]	0.1	0.44	2.0	9.5	10.9
SR power [MW]	100				
horizontal beta* [m]	0.15	0.2	0.3	1	1
vertical beta* [mm]	0.8	1	1	2	2
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.34	1.45
vert. geom. emittance [pm]	1.0	1.0	1.3	2.7	2.7
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>30	>7	>1.5	>1.3

Parameters of CEPC double ring

	Higgs	W	Z	S
Number of IPs				
Energy (GeV)	120	80	45.5	
Circumference (km)		100		
SR loss/turn (GeV)	1.68	0.33	0.035	
Half crossing angle (mrad)		16.5		
Piwinski angle	2.75	4.39	10.8	
N_{e} /bunch (10 ¹⁰)	12.9	3.6	1.6	
Bunch number	286	5220	10900	
Beam current (mA)	17.7	90.3	83.8	
SR power /beam (MW)	30	30	2.9	
Bending radius (km)				
Momentum compaction (10 ⁻⁵)				
$\beta_{IP} x/y (m)$				
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029	
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076	
$\xi_x/\xi_y/IP$	0.024/0.094	0.009/0.055	0.005/0.0165	
$V_{RF}(GV)$	2.14	0.465	0.053	
f_{RF} (MHz) (harmonic)	650 (217500)			
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67	
Bunch length σ_{z} (mm)	3.48	3.7	5.18	
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)	
Energy spread (%)	0.098	0.066	0.037	
Energy acceptance requirement (%)	1.21			Q. Qin
Energy acceptance by RF (%)	2.06	1.48	0.75	
Photon number due to beamstrahlung	0.25	0.11	0.08	
Lifetime due to beamstrahlung (hour)	1.0			
Lifetime (hour)	0.33 (20 min)	3.5	7.4	物理研究所
<i>F</i> (hour glass)	0.93	0.96	0.986	ergy Physics
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	2.0	4.1	1.0	

Lepton collider luminosities

FEED Top-up injection concept

Beside the collider ring(s), a booster of the same size (same tunnel) must permanently provide beams for top-up injection

- same RF voltage, but low power (~ MW)
- top up frequency ~0.1 Hz
- booster injection energy ~10-20 GeV
- bypass around the experiments

Injector complex for e⁺ and e⁻ beams of 10-20 GeV

Injector similar to Super-KEKB injector is suitable

FCC-ee optics design

Interaction region: asymmetric optics design

- To limit (MeV) synchrotron radiation from upstream dipoles to detector
- <100 keV up to ~500 m from interaction point</p>

Lepton collider layouts

Efficient 2-in-1 FCC-ee arc magnets

Very large range of operation parameters

- Voltage and beam current ranges span more than factor > 10²
- No single RF system solution satisfying requirements

FCC-ee operation concept & RF staging

Integral luminosities for physics define running time, total ~14 years.

Three sets of RF cavities to cover all options for FCC-ee & booster:

- high intensity (Z, FCC-hh): 400 MHz mono-cell cav (4/cryomodule)
- higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)
- ttbar machine complement: 800 MHz five-cell cavities (5/c.m.)

Hadron collider studies

- FCC-hh, SppC and HE-LHC
 - All based on higher magnetic fields and new SC materials for accelerator magnets
 - FCC-hh and HE LHC use Nb₃Sn,
 - SppC uses Fe-based SC
 - FCC-hh and SppC based on larger bending radius and tunnel circumference of ~100 km
 - > HE LHC uses existing LHC tunnel infrastructure

hadron collider parameters (pp)

parameter	FCC-hh		HE-LHC	(HL) LHC				
collision energy cms [TeV]	100		25	14				
dipole field [T]	16		16		16		16	8.3
circumference [km]	100		27	27				
# IP	2 main & 2		2 & 2	2 & 2				
beam current [A]	0.5		1.27	(1.12) 0.58				
bunch intensity [10 ¹¹]	1 (0.2)	1 (0.2)	2.5	(2.2) 1.15				
bunch spacing [ns]	25 (5)	25 (5)	25 (5)	25				
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55				
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	34	(5) 1				
peak #events/bunch crossing	170	1020 (204)	1070 (214)	(135) 27				
stored energy/beam [GJ]	8.4		1.4	(0.7) 0.36				
synchrotron rad. [W/m/beam]	30		4.1	(0.35) 0.18				

SPPC main parameters (updated)

Parameter	Unit	Value		
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	Т	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	cm ⁻² s ⁻¹	1.2×10^{35}	1.0x10 ³⁵	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	А	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0×10^{11}	1.5x10 ¹¹	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	

pp/p-pbar in the L-E plane

FCC-hh luminosity evolution

phase 1: $\beta^*=1.1 \text{ m}$, $\Delta Q_{tot}=0.01$, $t_{ta}=5 \text{ h}$, 250 fb⁻¹ / year

phase 2: $\beta^*=0.3$ m, $\Delta Q_{tot}=0.03$, $t_{ta}=4$ h, 1 ab⁻¹ / year

Interplay of radiation damping, luminosity burn-off, controlled transvers blow-up

FCC-hh beam screen prototype

Synchrotron radiation (~ 30 W/m/beam (@16 T) (cf. LHC <0.2W/m) ~ 5 MW total load in arcs

- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW \rightarrow 100 MW el.)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud, impedance, etc.

FCC-hh cryosystem – efficiency

Nb₃Sn is one of the major cost & performance factors for

FCC-hh and is given highest attention

FCC hh ee he

16 T dipole options and plans

Short model magnets (1.5 m lengths) will be built 2017 – 2022 Long model production with industry 2023 - 2026

Beam power & machine protection

8 GJ kinetic energy per beam

- O(20) times LHC (3 x bunches, 7 x energy)
- Airbus A380 at 720 km/h
- 2000 kg TNT
- 400 kg of chocolate
 - Run 25,000 km to spent calories

Up to **500 kW collision debris per experiment** Mainly lost in triplets, challenge for lifetime and quench

Triplet design allows **thick shielding**, **tungsten** ≤ **55 mm**

Dose ≤ 30 MGy → survives project lifetime (20 ab⁻¹)

Collimation system design ongoing (optics & HW)

 Goal is sustain beam lifetimes down to 12 minutes (11MW losses) → Looks achievable

FCC layout and integration concept

- Two high-luminosity experiments (A & G)
- Two experiments & injection (L & B)

- FCC-hh integration concept
- 5.5 m diameter tunnel

- Betatron cleaning (J), momentum cleaning (F)
- Extraction insertion (D), RF insertion (H)

SPPC Layout and tunnel cross-section

中國科學院為能物招研究所 Institute of High Energy Physics

Q. Qin

FCC-hh injector complex

- Injection from SPS_{upgrade} around 1.3 TeV
- SPS_{upgrade} could be based on fast-cycling SC magnets, 6-7T, ~ 1T/s ramp, cf. SIS 300
- SPS_{upgrade} would also be an ideal injector for HE LHC (alternative to 450 GeV SPS)

Progress on site investigations

Alig	nment	Shafts	C)uery	
Cho	ose alignme	ent option			
V4v	ariation_v20	017-2 🗸	1		
Tuni	nel elevatio	n at centre:	322m	ASL	
\square					
Grad	l. Params				
		Azimut	h (°):	-2	3.5
	Slo	pe Angle x-	x(%):	0.	.3
	Slo	pe Angle y-	y(%):	0.	.08
LO	AD	SAVE		C	ALCULATE
Alig	nment centr	e		-	
X:	2499941		Y:	1107	760
				CP 2	
	Angle	Depth	An	gle	Depth
LHC	37°	49m		-40°	83m
SPS		121m			126m
TI2		121m			126m
T18		51m			118m

Geolo	gy mei	rsected by Sn	iants Sn	an Depins						
		Shaft Depth (m)				Geology (m)				
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limestone			
А	152									
в	121									
С	127									
D	205									
Е	89									
F	476									
G	307									
Н	266									
T	198									
J	248									
к	88									
L	172									
Total	2449	66	0	492	1892	0	0			

Alignment Profile

5.2% 5.5% 4.7%

Progress on site investigations

Alignment Shafts Query Alignment Location	Geol	ogy Inter	sected by Sh	afts Sh	aft Depths			
Choose alignment option			Sha	aft Depth (m)	1211		Geology	(m)
V4variation_v2017-2	Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limestone
Tunnel elevation at centre:322mASL	A	152						
Grad. Params	в	121						
Azimuth (°): -23.5	c	127						
Slope Angle x-x(%): 0.3	D D	205						
Slope Angle y-y(%): 0.08	E And I State I	89						
LOAD SAVE CALCULATE	F	476						
Alignment centre	G - G	307						
X: 2499941Y: 1107760	н	266						
CP 1 CP 2		198						
Angle Depth Angle Depth	S C A D A D J	248						
LHC 37° 49m -40° 83m	к	88						
SPS 121m 126m		172						
TI2 121m 126m	Tota	2440	66	0	402	1002	0	0
TI8 51m 118m	Tota	2449	00	U	492	1892	U	U

Alignment Profile

- 90 100 km fits geological situation well
 Connected to LHC as potential injector
- Detailed investigations on implementation of the preferred 97.75 km variant

CE schedule study

HE-LHC: Topics requiring special attention

Many aspects extrapolated/copied from HL-LHC/FCC-hh. Important exceptions:

Tunnel integration and magnet technology

- **compact 16 T** magnets (stray field, etc..) (LHC tunnel 3.8 m vs. FCC-hh 5.5 m)
- HE-LHC Nb₃Sn magnets must be bent 9 mm horizontal orbit shift (vs. 2 FCC-hh)

Straights

- low-beta insertions, longer triplet than HL-LHC, β* reach
- collimation insertions, LHC optics scaling not applicable, warm dipole length increase
- extraction straights length of kicker & septum sections

Injector and injection energy

- physical & dynamic aperture and beam size at injection
- impedance and beam stability,
- field swing of 16 T magnets...

HE-LHC integration aspects

Working hypothesis for HE LHC design: No major CE modifications on tunnel and caverns

- Similar geometry and layout as LHC machine and experiments
- Maximum magnet cryostat external diameter compatible with LHC tunnel ~1200 mm
- Classical cryostat design gives ~1500 mm diameter!

Strategy: optimize 16 T magnet, compatible with HE LHC and FCC-hh :

- Allow stray-field and/or cryostat as returnyoke
 - **Optimization of inter-beam distance**
 - → Smaller diameter relevant for FCC-hh cost

LHC tunnel diameter 3.8 m

16 T dipole integration approach

e-h colliders – LHeC

CDR Study assumptions:

-Assume parallel operation to HL-LHC

-Limit power consumption to 100 MW

 \rightarrow (beam & SR power < 70 MW)

→ 60 GeV beam energy

-Int. Luminosity > 100 * HERA -Peak Luminosity > 10³³ cm⁻²s⁻¹

-ERL identified as baseline option

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

IOP Publishing

Motivation: Accelerator Technology Development

Energy Recovery Linac concept: First proposal 50 years ago M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965

First Tests: Done at SCA @ Stanford in 1986

Recirculating Linac with Energy Recovery

60 GeV acceleration with Recirculating Linacs:

Animation from A. Bogacz (JLab) @ ERL'15

→ Three accelerating passes through each of the two 10 GeV linacs (efficient use of LINAC installation!)

 \rightarrow 60 GeV beam energy

Recirculating Linac with Energy Recovery (H_{\odot})

Collisions with one HL-LHC Beam:

Animation from A. Bogacz (JLab) @ ERL'15

→ Collisions with one of the LHC proton beams

\rightarrow 1/2 RF wave length shift on return arc following the collision

Recirculating Linac with Energy Recovery (LHeO

60 GeV deceleration with Recirculating Linacs:

Animation from A. Bogacz (JLab) @ ERL'15

 \rightarrow Three decelerating passes through each of the two 10 GeV linacs → Beam dump at injection energy (e.g. 500 MeV)

Return Arc Dipoles optimization

Vertical Separation A. Bogacz (JLab) @ ERL2015, Stony Brook University y [cm] Spreader 1, 3 and 5 150 Arc 1 (10 GeV) 100 Arc 3 (30 GeV) 50 Arc 5 (50 GeV) -50 1000 2000 3000 4000 5000 6000 7000 8000 z[cm]

Magnet design

- keep idea of recycling Ampere-turns
- stack the apertures vertically but offset them also transversally
- same vertical gap, 25 mm
- simple coils, same powering circuit
- as before, trim coils can be added for two apertures, to give some tuning

LHeC ring-linac with ERL parameters UHO

Two 1 km long, 10 GeV

SC LINACs with

Super Conducting Recirculating Linac with Energy Recovery

Choose $\frac{1}{3}$ of LHC circumference \rightarrow

tune un dumn		\sim						
10-GeV linac con	np. RF injector	3	3 accelerating and					
10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	PROTONS	ELECTRONS				
Beam Energy [GeV]	7000	60	7000	60				
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	1	1				
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20	3.75	50				
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	0.1	0.12				
rms Beam size σ* _{x,y} [μm]	4	4	7	7				
rms Beam divergence σ□* _{x,y} [µrad]	80	40	70	58				
Beam Current @ IP[mA]	1112	25	430 (860)	6.6				
Bunch Spacing [ns]	25	25	25 (50)	25 (50)				
Bunch Population	2.2*10 ¹¹	4*10 ⁹	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹				
Bunch charge [nC]	35	0.64	27	(0.16) 0.32				

SRF cavity development & ERL test facility

5-cell 800 MHz cavity, JLAB prototype for FCC-ee (top mode) & FCC-eh; also single-cell cavities for all FCC's

optimized for high current operation

1

FCC-eh: 60 GeV e⁻ from Energy Recovery Linac (ERL)

LHeC, HE-LHeC, FCC-eh configuration

C. Cook @ FCC week in Rome

FCC-Technical schedules

schedule constrained by 16 T magnets & CE

- \rightarrow earliest possible physics starting dates
- FCC-hh: 2043
- FCC-ee: 2039
- HE-LHC: 2040 (with HL-LHC stop LS5 / 2034)

Conclusion & Acknowledgements

- Strong worldwide activities on studies for large circular colliders centered around FCC and CEPC/SppC.
- Many challenging topics and areas for R&D, requiring strong international collaboration to develop optimized designs and the technologies needed for construction.
- We depend and rely on young enthusiastic participants (with a long breath!) to push our field forward and you are warmly invited to join/enforce the ongoing efforts!
- Many thanks to colleagues in FCC collaboration and CEPC/SppC for valuable input, in particular to A. Ballarino, O. Bruning, K. Oide, Q. Qin, L. Rossi, D. Schulte, D. Tommasini and F. Zimmermann for provision of slides and detailed discussions.

Reserve slides

LHC Limitations and HL-LHC challenges

- Insertion quadrupole magnets lifetime and aperture:
 - → New stronger insertion magnets with increased aperture
- Geometric Reduction Factor: → SC Crab Cavities
 - → New technology and first application for a hadron storage ring!
- Performance Optimization: Pileup density → Lumi levelling
 - → requires virtual luminosity >> target levelled luminosity
- Beam power & losses → addt'l collimators in dispersion suppressors
- Machine effciency and availability:
 # R2E → removal of all electronics from tunnel region
 # e-cloud → beam scrubbing (conditioning of surface), etc
- Technical bottle necks (e.g. cryogenics)
- Civil Engineering (underground)

HL LHC project landmarks

HL-LHC Challenges: Crossing Angle

• Parasitic bunch encounters:

Operation with ca. 2800 bunches @ 25ns spacing → approximately 30 unwanted collisions per Interaction Region (IR).

Operation requires crossing angle prop. $1/\sqrt{\beta^*}$. → Factor 2 increase, 2 x 150 to 2 x 300 µrad)

Perturbations from long-range beam-beam interaction: efficient operation requires large beam separation at unwanted collision points

\rightarrow Separation of 10 -12 σ **\rightarrow** larger triplet apertures for HL-LHC!

HL-LHC Upgrade Ingredients: Crab Cavities

Geametrictiesminosity

- Reduction Factor:
 Reduces the effect of geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Challenging space constraints:
 - requires novel compact cavity design

HL-LHC crab cavity designs

LHC Challenges: Beam Power

Unprecedented beam power:

Collimation system upgrades

CERN Mich CAS

Dispersion Suppressor collimators – 11 T Nb3Sn Dipole (LS2 -2018)

Implementation & Performance Projection:

The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat:
11T Nb₃Sn dipole

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

More than 1.2 km of LHC !! Plus technical infrastructure (e.g. Cryo and Powering)!!

Colliders constructed and operated

Main SC Magnet system FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 4578 *units*, 14.3 *m long*, 16 $T \Leftrightarrow \int Bdl \sim 1 MTm$

Stored energy ~ 200 GJ (GigaJoule) ~44 MJ/unit

Quads: 762 *magnets*, 6.6 *m long*, 375 *T/m*

LHC

Bore diameter: 56 mm
Dipoles: 1232 units, 14.3 m long, 8.3 T ⇔ ∫ Bdl~0.15 MTm
Stored energy ~ 9 GJ (GigaJoule) ~7 MJ/unit
Quads: 392 units, 3.15 m long, 233 T/m

Beam power & machine protection

Stored energy 8.4 GJ per beam

 Factor 25 higher than for LHC, equivalent to A380 (560 t) at nominal speed (850 km/h). Can melt 12t of copper.

- Collimation, control of beam losses and radiation effects (shielding) are of prime importance.
- Injection, beam transfer and beam dump all critical.

Machine protection issues to be addressed early on!

Hydrodynamic tunneling: beam penetrates ~300 m in Cu

FCC-hh beam dilution system

R&D on Superconducting Septa

Need an extraction system for safely removing the beam from the collider hybrid system: short overall length with high robustness & availability

RF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-ZH, ee-tt and ee-WW

- Baseline options 400 MHz Nb/Cu @4.5 K, ◀—▶ 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components

FCC-ee MDI optimisation

HE-LHC cryogenic layout

Higher heat load and integration limitations (Cryo-line diameter) requires installation of 8 additional 1.8 K refrigeration units wrt. LHC

- 2.3 kW @ 1.8 K (~ LHC size)
- P elect: ~500 kW per unit

 P elect: ~6500 kW per cryoplant (cf. 4200 kW for LHC cryoplant)

Large Circular Collider Studies Michael Benedikt CAS Zürich, 22 February 2018

HE-LHC IR optics & triplet shielding

triplet lengths:

HE-LHC: 56 m (13.5 TeV)

HL-LHC: 41. 8m, LHC: 30.4 m

ca. 11 m space for crab cavities

- Triplet quadrupoles with 2 cm inside tungsten shielding
- For 10 ab⁻¹ total luminosity: 30-40 MGy peak radiation (peak at Q3 can be reduced with shielding)

Work on collimation insertions ongoing

[*I0**(3)]

CERN Circular Colliders & FCC

Must advance fast now to be ready for the period 2035 – 2040 Goal of phase 1: CDR by end 2018 for next update of European Strategy

Large Circular Collider Studies Michael Benedikt CAS Zürich, 22 February 2018