INSTABILITIES

Introduction to Instabilities
Longitudinal beam instabilities - basics
"Negative Mass" Instability - qualitative
Stability Diagram \quad quantitative
Landau Damping
Longitudinal Stability Criterion
Impedance (resonator)
Bunched beam longitudinal instability:
one bunch; many bunches
Microwave instability
More on Longitudinal Instabilities
Line spectra: single particle, single bunch
Higher-order coupled-bunch modes
Cures

Introduction to Instabilities

Longitudinal beam instabilities - basics
"Negative Mass" Instability - qualitative - quantitative

Stability Diagram
Landau Damping
Longitudinal Stability Criterion
Impedance (resonator)
Bunched beam longitudinal instability: one bunch; many bunches
Microwave instability
More on Longitudinal Instabilities
Line spectra: single particle, single bunch Higher-order coupled-bunch modes Cures

Transverse Instabilities

Fields and forces
Transverse coupling impedances
Spectrum of beam signals
Instability of un-bunched beam
Bunched beam: Head-Tail instability

- zero chromaticity
- non-zero chromaticity shifts beam line spectrum
Many bunches - long and short
- growth rate
- stability vs. impedance

Resistive wall instability
Transverse wake fields Cures

Further Reading:

A. Hofmann, Single beam collective phenomena - longitudinal, CAS Erice, 1976, CERN 77-13, p. 139
J.L. Laclare, Coasting beam instabilities, 1992 CAS Jyväskylä, CERN 94-01, pp. 349
J.L. Laclare, Bunched beam coherent instabilities, 1985 CAS Oxford, CERN 87-03, pp. 264
J. Gareyte, Observation and correction of instabilities in circular accelerators, CERN SL/91-09 (AP), Joint US-CERN Accelerator School, Hilton Head Island, USA, 1990
F. Pedersen, Multi-bunch instabilities, CERN PS 93-36 (RF), Joint US-CERN Accelerator School, Benaldamena, Spain 1992
A.W. Chao, Physics of collective beam instabilities in high energy accelerators, John Wiley\&Sons, New York, 1993

Longitudinal Beam Instabilities - Basic Mechanism

Wall current I_{w} due to circulating bunch Vacuum pipe not smooth, I_{w} sees an IMPEDANCE (resistive, capacitive, inductive)

Impedance $\mathrm{Z}=\mathrm{Z}_{\mathrm{r}}+\mathrm{i} \mathrm{Z}_{\mathrm{i}}$ Induced voltage $V \sim I_{w} Z=-I_{B} Z$

V may act back on the beam \rightarrow INSTABILITIES INTENSITY DEPENDENT
General Scheme to investigate instabilities
Step 1: Start with a nominal particle distribution (i.e. longitudinal position, density,...) Step 2: Compute fields and induced wall currents with a small perturbation of this nominal distribution, and determine forces acting back on the beam
Step 3: Calculate change of distribution due to these forces:
If Initial Small Perturbation

INCREASED? INSTABILITY DECREASED? STABILITY

"Negative Mass" Instability - Qualitative

The self-force F (proportional to $-\partial \lambda / \partial \mathbf{s}$) \longrightarrow Increases energy of particles in B
$\gamma<\gamma_{\mathbf{t}}:$ IF $\Delta \mathrm{E} \uparrow \quad \omega_{0} \uparrow \quad$ A and B move away from the STABLE hump eroding the mountain
$\gamma>\gamma_{\mathrm{t}}:$ IF $\quad \Delta \mathrm{E} \uparrow \quad \omega_{0} \downarrow \quad \mathrm{~A}$ and B move towards the hump,
UNSTABLE enhancing the mountain

It all depends
on γ_{t} !

Negative Mass Instability: Fields Created by Beam

For small perturbations of $\lambda(\mathrm{s})$

$$
\begin{array}{lll}
\mathrm{E}_{\mathrm{r}}=\frac{\mathrm{e} \lambda}{2 \pi \varepsilon_{0}} \frac{1}{\mathrm{r}} & \mathrm{~B} \phi=\frac{\mu_{0} \mathrm{e} \lambda \beta \mathrm{c}}{2 \pi} \frac{1}{\mathrm{r}} & \mathrm{r} \geq \mathrm{a} \\
\mathrm{E}_{\mathrm{r}}=\frac{\mathrm{e} \lambda}{2 \pi \varepsilon_{0}} \frac{\mathrm{r}}{\mathrm{a}^{2}} & \mathrm{~B} \phi=\frac{\mu_{0} \mathrm{e} \lambda \beta \mathrm{c}}{2 \pi} \frac{\mathrm{r}}{\mathrm{a}^{2}} & \mathrm{r} \leq \mathrm{a}
\end{array}
$$

STOKES'LAW: $\underset{\text { LINE }}{\oint} \overrightarrow{\mathrm{E}} \mathrm{d} \vec{\ell}=-\frac{\partial}{\partial \mathrm{t}} \int \underset{\text { SURFACE }}{ } \int \overrightarrow{\mathrm{B}} \mathrm{d} \vec{\sigma}=-\frac{\partial}{\partial \mathrm{t}} \Delta \mathrm{s} \int_{0}^{\mathrm{b}} \mathrm{B} \phi \mathrm{dr}$
With $\frac{\partial \lambda}{\partial \mathrm{t}}=-\frac{\partial \lambda}{\partial \mathrm{s}} \frac{\mathrm{ds}}{\mathrm{dt}}=-\beta \mathrm{c} \frac{\partial \lambda}{\partial \mathrm{s}}$ and $\mathrm{g}_{0}=1+2 \ln (\mathrm{~b} / \mathrm{a})$, one gets $\quad \mathrm{E}_{\mathrm{s}}=-\frac{\mathrm{eg}_{0}}{4 \pi \varepsilon_{0}} \frac{1}{\gamma^{2}} \frac{\partial \lambda}{\partial \mathrm{~s}}+\mathrm{E}_{\mathrm{W}}$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{W}}=0: \text { perfectly conducting } \\
\text { smooth wall } \\
\mathrm{E}_{\mathrm{s}}=-\frac{\mathrm{eg} g_{0}}{4 \pi \varepsilon_{0}} \frac{1}{\gamma^{2}} \frac{\partial \lambda}{\partial \mathrm{~s}}
\end{gathered}
$$

Longitudinal "space charge" field

$$
\begin{gathered}
\mathrm{E}_{\mathrm{W}} \neq 0 \text { : Inductive wall } \\
\mathrm{E}_{\mathrm{w}}=-\frac{\mathrm{L}}{2 \pi \mathrm{R}} \frac{\mathrm{dI}_{\mathrm{w}}}{\mathrm{dt}}=-\frac{\mathrm{L}}{2 \pi \mathrm{R}} \mathrm{e} \beta \mathrm{c} \frac{\partial \lambda}{\partial \mathrm{t}}=\frac{\mathrm{L}}{2 \pi \mathrm{R}} \mathrm{e} \beta^{2} \mathrm{c}^{2} \frac{\partial \lambda}{\partial \mathrm{t}} \\
\text { Voltage per turn } \mathrm{U}_{\mathrm{s}}=\mathrm{e} \beta \mathrm{cR} \omega_{0} \mathrm{~L} \frac{\partial \lambda}{\partial \mathrm{~s}}
\end{gathered}
$$

Negative Mass Instability: Field Acting Back on Beam

$\lambda(\mathrm{s})$ has n humps and rotates with Ω near $\mathrm{n} \omega_{0}$
$\lambda=\lambda_{0}+\lambda_{1} \mathrm{e}^{\mathrm{i}(\mathrm{n} \Theta-\Omega \mathrm{t})}, \mathrm{I}+\mathrm{I}_{0}+\mathrm{I}_{1} \mathrm{e}^{\mathrm{i}(\mathrm{n} \Theta-\Omega \mathrm{t})} \quad$ instantaneous density and current

voltage per turn (small) AC component longitudinal impedance

$$
\Omega=n \omega_{0}+\Delta \Omega \quad \text { slightly perturbed frequency }
$$

A SHORTCUT TO CALCULATE $\Delta \Omega$

$\underbrace{\left[\begin{array}{c}\mathrm{E}_{0} \beta^{2} \gamma \\ 2 \pi \eta \mathrm{hf}_{0}{ }^{2} \mathrm{e}\end{array}\right.}_{" \mathrm{~m} "} \ddot{\varphi}+\mathrm{V}_{0} \varphi=0$
$\mathrm{V}_{0} \ldots$ voltage per turn
$\mathrm{f}_{0} \ldots$. ..evolution frequency
$\eta . . .1 / \gamma^{2}-1 / \gamma_{t}^{2}$
$\mathrm{E}_{0} \ldots$...particle rest energy
equation of small-amplitude synchrotron oscillations in a stationary bucket

$$
\ddot{\varphi}+[\underbrace{\frac{e^{\eta h \mathrm{~V}_{0} \omega_{0}{ }^{2}}}{2 \pi \mathrm{E}_{0} \beta^{2} \gamma}}_{\omega_{\mathrm{s}}{ }^{2}}] \varphi=0 \quad \omega_{\mathrm{s}} \ldots \text { synchrotron frequency }
$$

Negative Mass Instability: Shortcut to Compute $\Delta \Omega$

Replace ω_{s} by $\Delta \Omega$
Replace $h V_{0}$ by beam-induced voltage in $\mathbb{Z} \mathbf{I}_{0}$ with $\mathbb{Z}=\mathbb{Z}_{\mathrm{r}}+\mathbf{i} \mathbb{Z}_{\mathrm{i}}$ complex impedance

$$
(\Delta \Omega)^{2}=\left(\Omega-\mathrm{n} \omega_{0}\right)^{2}=-\mathrm{i} \frac{\mathrm{e} \eta \omega_{0}^{2} \mathrm{n}_{0}}{2 \pi \beta^{2} \mathrm{E}_{0} \gamma}\left(\mathrm{Z}_{\mathrm{r}}+\mathrm{i} \mathrm{Z}_{\mathrm{i}}\right)
$$

Complex Frequency shift required to sustain self-consistent modulation

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{I}(\mathrm{t}, \Theta)=\mathrm{I}_{0}+\mathrm{I}_{1} \underbrace{\mathrm{e}^{\Delta \Omega_{\mathrm{i}} \mathrm{t}}} \mathrm{e}^{\mathrm{i}\left(\mathrm{n} \Theta-\left(\mathrm{n} \omega_{0}+\Delta \Omega_{\mathrm{r}}\right) \mathrm{t}\right)} \\
\begin{array}{l}
\text { growth or or } \\
\text { damping }
\end{array}
\end{array}\right\} \text { ff modulation pattern } \quad{ }_{\text {real frequency shift }} \\
& \square Z_{r}=0 \\
& \text { From } \mathrm{U}_{\mathrm{s}}=-\mathrm{I}_{1} \mathrm{e}^{\mathrm{i}(\mathrm{n} \Theta-\Omega \mathrm{t})} \mathrm{Z} \text { and } \mathrm{Z}_{0}=1 / \varepsilon_{0} \mathrm{c}=377 \Omega \\
& Z_{i}=\frac{\mathrm{ng}_{0} Z_{0}}{2 \beta \gamma^{2}} \text { "space charge" impedance } \\
& \mathrm{Z}_{\mathrm{i}}=-\mathrm{n} \omega_{0} \mathrm{~L} \text { inductive impedance } \\
& \Delta \Omega=\Delta \Omega_{\mathrm{r}}+\mathrm{i} \Delta \Omega_{\mathrm{i}} \\
& \square \mathbb{Z}_{\mathrm{r}} \neq 0 \text { (more realistic) } \\
& \Delta \Omega_{\mathrm{i}} \neq 0 \\
& \text { always one unstable } \\
& \text { solution }
\end{aligned}
$$

Stability Diagram

\square Relates (complex) growth rate $\Delta \Omega$ to (complex) impedance Z

$$
(\Delta \Omega)^{2}=-\mathrm{i} \xi\left(\mathrm{Z}_{\mathrm{r}}+\mathrm{i} \mathrm{Z}_{\mathrm{i}}\right)=\xi\left(\mathrm{Z}_{\mathrm{i}}-\mathrm{i} \mathrm{Z}_{\mathrm{r}}\right)=\left(\Delta \Omega_{\mathrm{r}}+\mathrm{i} \Delta \Omega_{\mathrm{i}}\right)^{2}
$$

\square Plot contours $\Delta \Omega_{\mathrm{i}}=$ const (= equal growth rate) into $\mathbb{Z}_{\mathrm{r}}, \mathbb{Z}_{\mathrm{i}}$ plane. Equating real and imaginary parts yields parabolae for $\Delta \Omega_{\mathrm{i}}=$ const $\quad \Rightarrow \mathrm{Zr}=2 \Delta \Omega_{\mathrm{i}} \sqrt{\mathrm{Z}_{\mathrm{i}} / \xi+\Delta \Omega_{\mathrm{i}}^{2} / \xi^{2}}$

Decoherence of two particles

In real machines the beam features a frequency spread, so individual particles move with different speeds around the ring \rightarrow the coherent motion becomes confused and may collapse faster than the rise time of the instability

Landau Damping - Basic Idea

$\mathrm{S}=\frac{\mathrm{N}}{2 \Omega_{0}} \int_{\Omega_{1}}^{\Omega_{2}} \frac{\mathrm{~d} \frac{\operatorname{dg}(\Omega)}{\mathrm{d} \Omega}}{\Omega-\omega} \mathrm{d} \Omega \cdot \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$
Overall coherent response obtained by integrating the single-particle responses of the n oscillators

s	Coherent response of oscillators to excitation inside their frequency
range	

Landau Damping and Stability Diagram

$$
\begin{aligned}
& \text { range of } \\
& \text { osillators } \\
& \dot{\Omega} \dot{\oplus} \quad \dot{\Omega} 2 \cdot \operatorname{Re}(\Omega)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (in phase with excitation) (out of phase) }
\end{aligned}
$$

Stability Diagram with Landau Damping

DAMPING INSIDE

STABILITY LIMIT
CONTOURS OF INCREASING GROWTH RATE
$\operatorname{Re}(Z)$
RESISTIVE

CIRCLE USED FOR "KEIL- SCHNELL" CRITERION

The form of the "bottle" depends on $\mathbf{g}(\Omega)$; for most distributions, a circle can be inscribed, giving a handy approximation for the stability limit of un-bunched beams

$$
\left|\frac{\mathrm{Z}}{\mathrm{n}}\right| \leq \mathrm{F} \frac{\mathrm{~m}_{0} \mathrm{c}^{2} \beta^{2} \gamma|\mathrm{n}|}{\mathrm{e}} \frac{(\Delta \mathrm{p} / \mathrm{p})^{2}}{\mathrm{I}_{0}} \text { KEIL-SCHNELL }
$$

Landau Damping only works if coherent frequency lies inside the frequency spread of the oscillators

Coasting Beam Longitudinal Instability: Example

Increase in $\Delta \mathrm{p} / \mathrm{p}$ due to coasting beam longitudinal instability in the CERN PS during debunching of protons.
Driving impedance: narrow-band cavity around 114 MHz .
Horizontal axis: $\Delta \mathbf{f}$ proportional to $\Delta \mathbf{p} / \mathbf{p}$ measured via "Schottky" scan on a spectrum analyser
Vertical axis: time, circa 200 ms , moving downwards.

Impedance of a Resonator

Resonator equivalent to RLC circuit
$\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{LC}}}$ resonance frequency

$\mathrm{Q}=\mathrm{R} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}=\frac{\mathrm{R}}{\omega_{\mathrm{r}} \mathrm{L}}$ quality factor
$\ddot{\mathrm{V}}+\frac{\omega_{\mathrm{r}}}{\mathrm{Q}} \dot{\mathrm{V}}+\omega_{\mathrm{r}}^{2} \mathrm{~V}=\omega_{\mathrm{r}} \frac{\mathrm{R}}{\mathrm{Q}} \dot{\mathrm{I}}$
$\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \mathrm{e}^{-\mathrm{t}} \cos \left[\omega_{\mathrm{r}} \sqrt{1-1 / 4 \mathrm{Q}^{2}} \mathrm{t}+\varphi\right]$

HOW TO COMPUTE IMPEDANCE?

\square Excite RLC circuit with $\mathbf{I}=\mathbf{I}_{0} \mathbf{e}^{\mathbf{i} \omega \mathrm{t}}$, any $\omega(-\infty<\omega<\infty)$
\square Look for solutions of the form $\mathbf{V}(\mathrm{t})=\mathbf{V}_{0} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$
Insert these expressions into the differential equation above:

$$
-\omega^{2} V_{0} e^{i \omega t}+i \frac{\omega \omega_{r}}{Q} V_{0} e^{i \omega t}+\omega_{r}^{2} V_{0} e^{i \omega t}=i \frac{\omega_{r} \omega R}{Q} I_{0} e^{i \omega t}
$$

$$
\Rightarrow \mathrm{Z}(\omega)=\frac{\mathrm{V}_{0}}{\mathrm{I}_{0}}=\mathrm{R} \frac{1}{1+\mathrm{iQ} \frac{\omega^{2}-\omega_{\mathrm{r}}^{2}}{\omega \omega_{\mathrm{r}}}}
$$

Impedance of an RLC circuit - also used for longitudinal resonators
$\mathbf{V}_{\mathbf{0}}$ is complex since in general not in phase with exciting current $\mathbf{I}_{\mathbf{0}}$

Impedance of a Resonator

$\mathrm{Z}(\omega) \approx \mathrm{R}_{\mathrm{s}} \frac{1-\mathrm{i} 2 \mathrm{Q} \frac{\Delta \omega}{\omega_{\mathrm{r}}}}{1+\left(2 \mathrm{Q} \frac{\Delta \omega}{\omega_{\mathrm{r}}}\right)^{2}}$

Impedance of a narrow-band (high-Q) Cavity with $\Delta \omega=n \omega_{0}-\omega_{\mathrm{r}}, \mathrm{R}_{\mathrm{S}}=$ shunt impedance
The excitation signal in such a cavity decays slowly: the field induced by the beam is memorized for many turns

Single Bunch + Narrow-Band Cavity: "Robinson" Instability

"Dipole" mode or "Rigid Bunch" mode

The single bunch rotates in longitudinal phase plane with ω_{s} :
synchronous phase ϕ and energy also vary with ω_{s}

Bunch sees resonator at $\omega_{\mathbf{r}} \cong \omega_{\mathbf{0}}$

$$
\omega<\omega_{\mathrm{r}}
$$

Whenever $\Delta \mathbf{E}>\mathbf{0}$:

- ω increases (below transition)
- sees larger real impedance R_{+}
- more energy taken from beam
> STABILIZATION
Whenever $\Delta \mathbf{E}>0$:
- ω decreases (above transition)
- sees smaller real impedance R_{+}
- less energy taken from beam
> INSTABILITY
$\omega>\omega_{\mathrm{r}}$
UNSTABLE

STABLE

Longitudinal Instabilities with Many Bunches

\square Fields induced in resonator remain long enough to influence following bunches
Assume $\mathrm{M}=4$ bunches performing synchrotron oscillations

\square Four possible phase shifts between four bunches
M bunches, phase shift of Coupled-Bunch mode n : $2 \pi \frac{\mathrm{n}}{\mathrm{M}}, 0 \leq \mathrm{n} \leq \mathrm{M}-1 \Rightarrow$ M modes

Coupled-Bunch Mode Stability: Qualitative

Longitudinal Microwave Instability

- Generated by
- Signature: bunch with high-frequency density modulation
- wave length << bunch length (frequencies $\mathbf{1 0 0} \mathbf{~ M H z . . . 1 ~ G H z) ~}$
- Fast growth rates - even leptons concerned

BROAD-BAND IMPEDANCE

All elements of a synchrotron are "lumped" into one low-Q resonator yielding the impedance (p. 12)

$$
\begin{array}{|ll|}
\hline \mathrm{Z}(\omega)=\mathrm{R}_{\mathrm{S}} \frac{1-\mathrm{i} \mathrm{Q} \frac{\omega^{2}-\omega_{\mathrm{r}}^{2}}{\omega \omega_{\mathrm{r}}}}{1+\left(\mathrm{Q} \frac{\omega^{2}-\omega_{\mathrm{r}}^{2}}{\omega \omega_{\mathrm{r}}}\right)^{2}} & \mathrm{Q} \approx 1 \\
\omega_{\mathrm{r}} \approx 1 \mathrm{GHz} \\
\hline
\end{array}
$$

For small $\omega, \quad Z(\omega) \approx i \frac{R_{s} \omega}{Q \omega_{\mathrm{r}}}=\mathrm{i} \frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{Q}} \frac{\omega}{\omega_{0}} \frac{\omega_{0}}{\omega_{\mathrm{r}}}=\mathrm{i} \frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{Q}} \frac{\omega_{0} \mathrm{n}}{\omega_{\mathrm{r}}}$ and with (p. 10) $\quad \mathrm{Q}=\frac{\mathrm{R}_{\mathrm{s}}}{\omega_{\mathrm{r}} \mathrm{L}}$

$$
\left|\frac{\mathrm{Z}}{\mathrm{n}}\right|_{0}=\mathrm{L} \omega_{0} \quad \begin{aligned}
& \text { "Impedance" of a } \\
& \text { synchrotron in } \Omega
\end{aligned}
$$

-This inductive impedance is caused mainly by discontinuities in the beam pipe

- If value high, the machine is prone to instabilities
- Typically 20... 50Ω for old machines
$-<1 \Omega$ for modern synchrotrons

Microwave Instability - Stability Limit

- The Broad-Band Impedance with $\mathrm{Q}=1$ has little memory
$>$ No coupling between consecutive bunches
$>$ Microwave instability is a single bunch effect
- leading to longitudinal bunch blow-up
- In lepton machines also called "turbulent bunch lenthening"

STABILITY LIMIT: Apply Keill-Schnell criterion for unbunched beams to instantaneous current and momentum spread

$$
\left.\left|\frac{\mathrm{Z}}{\mathrm{n}}\right| \leq \mathrm{F} \frac{\mathrm{~m}_{0} \mathrm{c}^{2} \beta^{2} \gamma \mid \eta}{\mathrm{e}} \right\rvert\,\left[\frac{(\Delta \mathrm{p} / \mathrm{p})^{2}}{\mathrm{I}}\right]_{\text {instant }}
$$

KEIL-SCHNELL-BOUSSARD CRITERION
protons: $\mathrm{F} \sim 0.65$ leptons: $\mathrm{F} \sim 8$

short bunch
more stable

long bunch
more unstable
CAS Zeuthen 9/2003: Instabilities

Longitudinal Spectrum - Single Particle and Bunch

Seen by a current monitor

SINGLE PARTICLE

Fourier Series

$$
\lambda(\mathrm{t})=\frac{\mathrm{e}}{\beta \mathrm{c}} \sum_{\ell=-\infty}^{+\infty} \delta\left(\mathrm{t}-\ell \mathrm{T}_{0}\right)
$$

SINGLE BUNCH

$$
\mathrm{I}_{\mathrm{k}}(\mathrm{t})=\sum_{\mathrm{k}=-\infty}^{+\infty} \mathrm{I}\left(\mathrm{t}-\mathrm{kt}_{0}\right)
$$

Fourier Series

Spectrum

$$
\lambda(\mathrm{t})=\frac{\mathrm{e} \omega_{0}}{2 \pi} \sum_{\mathrm{n}} \sum_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{in} \omega_{0} \mathrm{t}}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{k}}(\mathrm{t})=\mathrm{I}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{I}_{\mathrm{n}} \cos \left(\mathrm{n} \omega_{0} \mathrm{t}\right) \\
& \text { with } \\
& \mathrm{n}
\end{aligned} \begin{aligned}
& \mathrm{I}_{\mathrm{n}}=\frac{2}{\mathrm{~T}_{0}} \int_{0}^{T_{0} / 2} \mathrm{~T}_{0} / 2 \mathrm{I}_{\mathrm{k}}(\mathrm{t}) \cos \left(\mathrm{n} \omega_{0} \mathrm{t}\right) \mathrm{dt}
\end{aligned}
$$

Robinson Instability: Quantitative

$\tau_{\mathrm{k}} \quad=\hat{\tau} \cos \omega_{\mathrm{s}} \mathrm{t} \quad$ mod ulation of bunch passage time
$\mathrm{I}_{\mathrm{k}}(\mathrm{t})=\sum_{\mathrm{k}=-\infty}^{+\infty} \mathrm{I}\left(\mathrm{t}-\mathrm{kT} \mathrm{T}_{0}-\tau_{\mathrm{k}}\right)=\mathrm{I}_{0}+\sum_{\mathrm{p}=1}^{\infty} \mathrm{I}_{\mathrm{p}} \cos \left(\mathrm{p} \omega_{0}(\mathrm{t}+\tau)\right)$

A single bunch performing synchrotron oscillations around a synchronous phase or time

Assume $p \omega_{0} \hat{\tau} \ll 1$ (small synchrotron oscillations)
$\mathrm{I}_{\mathrm{k}}(\mathrm{t}) \approx \mathrm{I}_{0}+\underbrace{\sum_{\mathrm{p}=1}^{\infty} \mathrm{I}_{\mathrm{p}} \cos \left(\mathrm{p} \omega_{0} \mathrm{t}\right)}_{\text {Main lines }}-\frac{\omega_{0} \hat{\tau}}{2} \sum_{\mathrm{p}=1}^{\infty} \mathrm{I}_{\mathrm{p}} \mathrm{p}[\underbrace{\sin \left(\left(\mathrm{p} \omega_{0}+\omega_{\mathrm{s}}\right) \mathrm{t}\right)}_{\begin{array}{c}\text { upper } \\ \text { side-bands }\end{array}}+\underbrace{\sin \left(\left(\mathrm{p} \omega_{0}-\omega_{\mathrm{s}}\right) \mathrm{t}\right)}_{\begin{array}{c}\text { lower } \\ \text { side }- \text { bands }\end{array}}]$

Spectrum of a single bunch performing small-amplitude synchrotron oscillations

Coupled Bunch Modes, Dipole \& Higher Order

Dipole ($m=1$) and higher-order ($m=2,3,4$) modes in a synchrotron with 5 bunches Two adjacent bunches shown. Note phase shifts between adjacent bunches

Longitudinal Instabilities - Cures

- Robinson Instability, generated by main RF cavities: Tune resonance frequency ω_{r} such that bunch frequency $\begin{aligned} & \mathbf{h} \omega_{0}<\omega_{r} \text { for } \gamma<\gamma_{t} \\ & \mathbf{h} \omega_{0}>\omega_{r} \text { for } \gamma>\gamma_{t}\end{aligned}$
- Cavities "Parasitic" Modes are damped by "Higher Order Mode Dampers" (HOM): the unwanted mode is picked up by an antenna and sent to a damping resistor.
\square Unwanted Resonators in beam pipe: RF shield protects the beam mimicking a smooth beam pipe
- Microwave Instabilities: Reduce Broad-Band Impedance by smooth changes in beam pipe cross section and shielding cavity-like objects. Large $\Delta \mathrm{p} / \mathrm{p}$
 helpful but costly in RF voltage.
- Coupled-Bunch Mode Instabilities: Run synchrotrons with 1 ore 2 bunches (bunch-to-bunch phase shift of 0 or π are always longitudinally stable) (limited to small synchrotrons)

Longitudinal Instabilities - Feedback Systems

\square Principle
The phase (or amplitude) deviation is measured in a synchronous detector and corrected in an accelerating gap which must cover the bandwidth
\square In-phase $(n=0)$ dipole ($m=1$) mode: normally tackled by the phase loop which locks the beam phase to the cavity RF voltage phase
In-phase ($n=0$) quadrupole ($m=2$) mode: These bunch-shape oscillations are treated by feeding back the observed amplitude oscillation to the RF cavity

- Coupled-Bunch instabilities (dipole modes, $m=1$) are controlled by a feedback system which tackles (i) each bunch (out of M bunches) or (ii) each mode n ($n=0,1, \ldots, M-1$) individually. In both approaches the required bandwidth is $\sim \frac{1}{2} M \omega_{0}$

Transverse Beam Instabilities - Fields and Forces

Transverse Coupling Impedance

$$
\mathrm{Z}_{\mathrm{T}}(\omega)=\mathrm{i} \frac{\oint[\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}}]_{\mathrm{t}} \mathrm{ds}}{\beta \mathrm{I} \delta}=\frac{\text { Deflecting field (integrated around the ring) }}{\text { dipole moment of exciting current }}
$$

because of phase shift between dipole moment I δ and deflecting field

Relation between \mathbf{Z}_{T} and \mathbf{Z}_{L}

(longitudinal impedance called Z so
far), for a resistive round pipe:
The wall current I_{W} generates a voltage \mathbf{V} around the ring:

$$
\begin{aligned}
& V=2 \pi R E_{0} \cong 4 I_{w} Z_{L} \Rightarrow E_{0} \cong 4 \frac{I_{w} Z_{L}}{2 \pi R} \\
& I_{w}=-\frac{1}{2} \frac{\delta}{b} I\left(\text { i.e.if } \delta=b I_{w}=-\frac{1}{2} I\right) \\
& B_{x}=\frac{i}{\omega} \frac{E_{0}}{b} e^{i \omega t}=-i \frac{2 \delta}{\omega b^{2}} \frac{Z_{L} I}{2 \pi R} e^{i \omega t}
\end{aligned}
$$

Inserting B_{x} and putting $\mathrm{E}=0$ yields

Handy approximate relation between Z_{T} and Z_{L}

Transverse Impedance Z_{T} vs.
Longitudinal Impedance Z_{L}

	Z_{L}	Z_{T}
Unit	Ω	Ω / m
Symmetry	$\operatorname{Re}\left[\mathrm{Z}_{\mathrm{L}}(\omega)\right]=\operatorname{Re}\left[\mathrm{Z}_{\mathrm{L}}(-\omega)\right]$	$\operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}(\omega)\right]=-\operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}(-\omega)\right]$
Real Part	even	odd
Symmetry	$\operatorname{Im}\left[\mathrm{Z}_{\mathrm{L}}(\omega)\right]=-\operatorname{Im}\left[\mathrm{Z}_{\mathrm{L}}(-\omega)\right]$	$\operatorname{Im}\left[\mathrm{Z}_{\mathrm{T}}(\omega)\right]=\operatorname{Im}\left[\mathrm{Z}_{\mathrm{T}}(-\omega)\right]$
Imaginary part	odd	even
Typical values for a synchrotron	$\sim \Omega$	$\sim \mathrm{M} / \mathrm{m}$

$\mathrm{Z}_{\mathrm{T}}(\omega) \cong \frac{2 \mathrm{c}}{\mathrm{b}^{2}} \frac{\mathrm{Z}_{\mathrm{L}}}{\omega}$

Why negative frequencies?
To make calculations simpler

Transverse and Longitudinal Impedances

Resonator-type object \dagger Fields and Forces

Z_{L}
Z_{T}

Resistive Wall
R....machine radius
$\rho . .$. vacuum chamber resistivity
$\delta \ldots$...wall thickness
$\operatorname{Re}\left(Z_{T}\right)=\frac{2 \mathrm{cR}}{\omega \mathrm{b}^{3}} \frac{\rho}{\delta}($ low $\omega)$

Broad-Band (with Q=1)

Transverse Beam Signals - Time and Frequency

Single particle on central orbit - longitudinal signal

$$
\lambda(\mathrm{t})=\frac{\mathrm{e}}{2 \pi \mathrm{R}} \sum_{\mathrm{n}=-\infty}^{+\infty} \mathrm{e}^{\mathrm{in} \omega_{0} \mathrm{t}}
$$

Single particle, oscillating transversally

$$
\begin{aligned}
& y=\hat{y} \cos \left(\omega_{\beta} t+\varphi\right) \\
& \omega_{\beta}=Q \omega_{0}=(k+q) \omega_{0}
\end{aligned}
$$

fractional tune

Spectrum $\hat{\mathrm{d}}(\omega)$

- constant amplitude
- lines at $(\mathrm{n}+\mathrm{Q}) \omega_{0}$, n any integer

Example: $Q=2.25$

$$
(q=0.25)
$$

Compute spectrum

Position monitor signal for $q \sim 0.1$

$$
\begin{aligned}
d(t) & =\hat{y} \cos \left(Q \omega_{0} t+\phi\right) \cdot \frac{e}{2 \pi R} \sum_{n=-\infty}^{+\infty} e^{i n \omega_{0} t} \\
& =\frac{1}{2} \frac{e \hat{y}}{2 \pi R}\left[e^{i\left(Q \omega_{0} t+\phi\right)}+e^{-i\left(Q \omega_{0} t+\phi\right)}\right] \sum_{h=-\infty}^{+\infty} e^{i n \omega_{0} t}
\end{aligned}
$$

$$
d(t)=\frac{e \hat{y}}{2 \pi R} \sum_{n=-\infty}^{+\infty} \cos \left[(n+Q) \omega_{0} t+\phi\right]
$$

SEEN BY SPECTRUM ANALYSER

Transverse Instabilities - Unbunched Beam

MODE PATTERN

MODE: particles are arranged around the synchrotron with a strict correlation between transverse particle positions.
The mode shown is $n=4$. If one takes a snapshot at $t=0$ one has $y(t=0, \theta)=y_{4} e^{-4 i \theta}$
A single particle always rotates with revolution frequency ω_{0} but the pattern rotates with $\omega_{\mathrm{n}} \neq \omega_{0}$; how to compute ω_{n} ?

- A particle is at azimuth θ_{0} at $t=0$. Its position evolves as $y_{\theta_{0}}(t)=y_{n} e^{i\left(Q \omega_{0} t-n \theta_{0}\right)}$
- after time t its azimuth is $\theta=\theta_{0}+\omega_{0} \mathrm{t}$, so $\theta_{0}=\theta-\omega_{0} \mathrm{t} \quad$ and $\mathrm{y}(\theta, \mathrm{t})=\mathrm{y}_{\mathrm{n}} \mathrm{e}^{\mathrm{i}\left[(\mathrm{Q}+\mathrm{n}) \omega_{0} t-\mathrm{n} \theta\right]}$
- condition for $\mathrm{y}(\mathrm{t}, \theta)=$ const yields $(\mathrm{Q}+\mathrm{n}) \omega_{0} \mathrm{t}-\mathrm{n} \theta=0 \rightarrow \theta(\mathrm{t})=(1+\mathrm{Q} / \mathrm{n}) \omega_{0} \mathrm{t} \rightarrow$

Rotation frequency of mode pattern

$$
\omega_{\mathrm{n}}=\dot{\theta}=\left(1+\frac{\mathrm{Q}}{\mathrm{n}}\right) \omega_{0}
$$

	$\mathrm{n}<-\mathrm{Q}$ $0<\omega_{\mathrm{n}}<\omega_{0}$	$-\mathrm{Q}<\mathrm{n}<0$ $\omega_{\mathrm{n}}<0$	$\mathrm{n}>0$ $\omega_{\mathrm{n}}>\omega_{0}$
pattern moves	slower than particle	backwards	faster than particle
wave	slow	backwards	fast

Snapshots at $t_{0}(1), t_{0}+\Delta t(2), t_{0}+2 \Delta t(3)$

Unbunched Beam - Transverse Growth Rate

Only one mode n (one single line) grows, so only Z_{T} around frequency $(\mathbf{Q}+\mathbf{n}) \omega_{0}$ relevant

- Assume $e(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})_{\mathrm{T}}$ constant around the ring for a given y

$$
\begin{aligned}
& F=e(\vec{E}+\vec{v} \times \vec{B})_{T}=-i \frac{e \beta I Z_{T}}{2 \pi R} y(\theta, t) \quad Z_{T}=i \frac{\int_{0}^{2 \pi R}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})_{\mathrm{T}} \mathrm{ds}}{\beta y I} \\
& F(\theta, t)=-i \frac{e \beta I Z_{T}}{2 \pi R} y_{n} e^{i\left[(Q+n) \omega_{0} t-n \theta\right]}
\end{aligned}
$$

- Force on a single particle on azimuth $\theta(\mathrm{t})=\theta_{0}+\omega_{0} \mathrm{t}$
- This particle's betatron amplitude $\mathrm{y}(\mathrm{t})$ satisfies
- With $\omega_{0} \mathrm{R}=\beta \mathrm{c}$ and $\gamma \mathrm{m}_{0}=\mathrm{E} / \mathrm{c}^{2}$
- Single particle oscillation changed to

$$
\mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{n}} \mathrm{e}^{\mathrm{i}\left[\left(\mathrm{Q} \omega_{0}+\Delta \Omega\right) \mathrm{t}-\mathrm{n} \theta_{0}\right]}
$$

For unbunched beam, only slow wave unstable

Unstable if $\operatorname{Im}(\Delta \Omega)<0$
$>\operatorname{Re}\left[\mathbf{Z}_{\mathbf{T}}\left((\mathrm{Q}+\mathbf{n}) \omega_{0}\right)\right]<\mathbf{0}$
$>(\mathrm{Q}+\mathrm{n})<0$ slow waves!

Transverse Instabilities - Bunched Beams

Bunch shape observed with current monitor

All particles perform synchrotron oscillations - their energy changes with frequency ω_{s}

ZERO CHROMATICITY

$$
\xi=\frac{\mathrm{dQ}}{\mathrm{Q}} / \frac{\mathrm{dp}}{\mathrm{p}}=0
$$

All particles have same betatron tune Q - even with changing energies

RIGID BUNCH MOTION ($m=0$) [A. SESSLER ~1960]

All particles in the bunch start at $t=0$ with same betatron phase. Although synchrotron motion sweeps them back and forth and changes their energy, they all oscillate in phase
transverse position $\mathrm{y}(\tau) * \operatorname{current} \mathrm{I}(\tau)=$ position monitor signal

Transverse Instabilities - Head-Tail Modes

Karlheinz SCHINDL/ CERN
CAS Zeuthen 9/2003: Instabilities

Head-Tail Modes with Non-Zero Chromaticity

$\xi \neq 0: Q$ varies along the
 synchrotron orbits

assume

$$
\begin{aligned}
& \xi=\frac{d Q / Q}{d p / p}>0, \\
& \gamma<\gamma_{t}\left[\eta=\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}<0\right]
\end{aligned}
$$

How to calculate χ :

$$
\Delta \mathrm{Q}=\xi \mathrm{Q} \frac{\Delta \mathrm{p}}{\mathrm{p}}, \frac{\Delta \mathrm{p}}{\mathrm{p}}=-\frac{1}{\eta} \frac{\Delta \mathrm{f}_{0}}{\mathrm{f}_{0}}=\frac{1}{\eta} \frac{\Delta \mathrm{~T}_{0}}{\mathrm{~T}_{0}}, \Delta \mathrm{Q}=\frac{\xi}{\eta} \mathrm{Q} \frac{\Delta \mathrm{~T}_{0}}{\mathrm{~T}_{0}}
$$

Time delay τ_{k} of a particle relative to the head of the bunch changes per machine turn k :

$$
\frac{\mathrm{d} \tau_{\mathrm{k}}}{\mathrm{dk}}=\Delta \mathrm{T}_{0}
$$

Accumulated phase shift χ_{k} after k machine turns:

$$
\chi_{\mathrm{k}}=2 \pi \int_{0}^{\mathrm{k}} \Delta \mathrm{Q}_{\text {per turn }} \mathrm{dk}=\underbrace{\frac{2 \pi}{\mathrm{~T}_{0}} \frac{\xi}{\eta} \mathrm{Q} \iint_{0}^{\mathrm{k}} \frac{\mathrm{~d} \tau_{\mathrm{k}}}{\mathrm{dk}} \mathrm{dk}=\frac{\xi}{\eta} \mathrm{Q} \omega_{0} \tau_{\mathrm{k}} .{ }^{2} .}_{\omega_{0}}
$$

Total phase shift between head and tail

$$
\chi=\frac{\xi}{\eta} \mathrm{Q} \omega_{0} \times 2 \hat{\tau}
$$

The pattern can be kept stationary if the particles' betatron phases are arranged as in the figure

Head-Tail Phase Shift Changes Bunch Spectrum

The shorter the bunch length $\hat{\tau}$, the larger the width of the spectrum

The wiggly signal passes through a position monitor which sees

- during bunch passage time $2 \hat{\tau}$
- a phase shift of χ radians
- the monitor (or an impedance) "sees" an additional frequency

$$
\omega_{\xi}=0
$$

Chromaticity Frequency ω_{ξ}

$$
\omega_{\xi}=\frac{\xi}{\eta} \mathrm{Q} \omega_{0}
$$

Transverse Instabilities - Many Bunches

Transverse positions of bunches arranged to form a pattern of n waves around the synchrotron
> Coupled-bunch mode n With M bunches, bunch-tobunch betatron phase shift $2 \pi n / M$

- y(s) short bunches

- $n=2$ (waves), $M=16$ (bunches)
- bunch-to-bunch betatron phase shift $\pi / 4$
- Head-tail phase shift small
- behaves like coasting beam

- y (s) long bunches

- $n=2, M=8$
- bunch-to-bunch betatron phase shift $\pi / 2$
- Head-tail phase shift χ large
- can only be sustained with a certain value $\chi \neq 0$

Spectrum for

- $M=4$ bunches
- $m=0$ nodes within the bunch
- $q=0.25$
- coupled-bunch modes $n=0,1,2,3$

Bunched Beam - Transverse Growth Rates

Frequency shift, unbunched beam: Instability if $\operatorname{Im}(\Delta \Omega)<0 \rightarrow \operatorname{Re}\left(Z_{T}\right)<0$

$$
\Delta \Omega=\frac{\mathrm{i}}{4 \pi \mathrm{Q}} \frac{\mathrm{c}}{\mathrm{E} / \mathrm{e}} \mathrm{I} \mathrm{Z}_{\mathrm{T}} \quad \mathrm{Z}_{\mathrm{T}} \text { taken at }(\mathrm{n}+\mathrm{Q}) \omega_{0}
$$

Bunched beam, mode m

- Sum over lines of bunch spectrum $\mathrm{d}_{\mathrm{m}}(\omega)$
- Calculate deflecting field
$\sim Z_{T}(\omega) \mathrm{d}_{\mathrm{m}}(\omega)$ and the force
- Put this force into singleparticle equation
- Take sum over $-\infty<\mathrm{p}<\infty$

One bunch:

$$
\omega_{\mathrm{p}}=(\mathrm{p}+\mathrm{Q}) \omega_{0}
$$

M bunches, coupled-bunch mode $n: \omega_{\mathrm{p}}=(\mathrm{n}+\mathrm{kM}+\mathrm{Q}) \omega_{0},-\infty<\mathrm{k}<\infty$

STABILITY?

Unstable if $\operatorname{Im}(\Delta \Omega)<\mathbf{0}$ $\rightarrow \Sigma_{\mathrm{p}} \operatorname{Re}\left[\mathbf{Z}_{\mathrm{T}}\left(\omega_{\mathrm{p}}\right)\right] \mathbf{d}_{\mathrm{m}}{ }^{2}\left(\omega_{\mathrm{p}}-\omega_{\xi}\right)<0$	- Unstable if $\operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}(\omega)\right]<0$ as $\mathbf{d}_{\mathbf{m}}{ }^{2}\left(\omega_{\mathrm{p}}-\omega_{\xi}\right)>0$
only with negative frequencies - only slow waves unstable	

Bunched Beam Transverse Stability vs. Impedance

Narrow-Band Resonator

- only two spectral lines contribute to the sum
- Fields stored long enough to act on subsequent bunches during several turns

For any "normal" transverse impedance

$$
\Sigma \operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}\right] \mathrm{d}_{0}{ }^{2}>0 \rightarrow \text { stable } \quad \Sigma \operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}\right] \mathrm{d}_{0}{ }^{2}<0 \rightarrow \text { unstable }
$$

$$
\begin{gathered}
\omega_{\xi}>\mathbf{0} \\
\Sigma \operatorname{Re}\left[\mathrm{Z}_{\mathrm{T}}\right] \mathrm{d}_{0}{ }^{2}>0 \rightarrow \text { stable }
\end{gathered}
$$

$\omega \xi>0$

Resistive Wall Transverse Instability

$$
\operatorname{Re}\left(\mathrm{Z}_{\mathrm{T}}\right)=\frac{2 \mathrm{cR}}{\omega \mathrm{~b}^{3}} \frac{\rho}{\delta}(\operatorname{low} \omega)
$$

$\rho .$. resistivity of beam pipe
$\delta \ldots$ wall thickness (low frequency) or skin depth (high frequencies)

- not a "normal" transverse impedance
$\operatorname{Re}\left(Z_{T}\right)$
- dominant line at $\operatorname{Re}\left(Z_{T}\right)$ most negative at very low frequency
- dominant mode normally $m=0$ but cannot be stabilized by setting $\omega_{\xi}>0$
- setting Q above an integer (q < 0.5) puts dominant line near the origin but at $\operatorname{Re}\left(Z_{T}\right)>0$ thus stabilizing the beam

$$
\begin{aligned}
& \text { For the resistive wall } \\
& \text { impedance, fractional } \\
& \text { tune } q<0.5 \text { preferable } \\
& \text { (A.Sessler 60ies) }
\end{aligned}
$$

Further increasing ω_{ξ} (by varying ξ with sextupoles) may drive the hump of $m=1,2$ etc. onto this dominant line, thus switching from one mode to the next.

Horizontal Head-Tail Instabilities in CERN PS

Transverse Wake Fields

Instead of treating instability dynamics in the frequency domain as done so far, one can do it in the time domain by using "Wake Fields"
What is a Wake Field?
Point charge q_{1} passes through a resonator with a transverse displacement δ.
The induced Wake field W will act on the subsequent charge q_{2}.

The Wake Field concept is very useful for impedances with short memory where the fields do not act on subsequent bunches but only on particles within the same bunch (single-bunch effects). Example: broad-band impedance (low-Q resonator)

Transverse Wake Fields - A Simple Model

Approximate bunch by just two superparticles "head" (1) and "tail" (2) with Ne/2 charges each

If head is displaced by δ, force on particle in tail is

Both head $\left(y_{1}\right)$ and tail $\left(y_{2}\right)$ oscillate with same betatron frequency ω_{β}

Excitation on right-hand side has same frequency

$$
\begin{array}{ll}
\mathrm{f}=\mathrm{e} \frac{\mathrm{Ne}}{2} \mathrm{~W}_{1} \delta & \text { Model by A. Chao } \\
\mathrm{y}_{1}=\delta \cos \omega_{\mathrm{B}} & \text { same } \\
\text { frequency }
\end{array}
$$

tail amplitude y_{2} grows linearly with time

Transverse Instabilities - Cures

- As for longitudinal impedances: damp unwanted HOM's, protect beam by RF shields
- For "normal" transverse impedances, operate with a slightly positive chromaticity frequency $\omega_{\xi} \rightarrow$ for $\gamma<\gamma_{t}$ set $\xi<0$ (by sextupoles)

$$
\rightarrow \text { for } \gamma>\gamma_{t} \text { set } \xi>0
$$

$\omega_{\xi}=\frac{\xi}{\eta} \mathrm{Q} \omega_{0}$

- For the resistive wall impedance:
> operate machine with a betatron tune just above an integer
\Rightarrow use highly conductive vacuum pipe material to reduce $\operatorname{Re}\left(\mathrm{Z}_{T}\right)$ and growth rate
- Landau damping also works in the transverse plane; a betatron frequency spread
$\Delta \omega_{\beta}$ is generated by octupoles (betatron tune depends on oscillation amplitude)
- TRANSVERSE FEEDBACK
- position error in PU
\rightarrow angle error in deflector
- betatron phase from PU to deflector $\sim(2 n+1) \pi / 2$
- electronic delay \equiv beam travel time from PU to deflector

