INSTABILITIES

Introduction to Instabilities

Longitudinal beam instabilities - basics
"Negative Mass" Instability - qualitative
- quantitative

Stability Diagram
Landau Damping
Longitudinal Stability Criterion
Impedance (resonator)
Bunched beam longitudinal instability:
one bunch; many bunches
Microwave instability

More on Longitudinal Instabilities

Line spectra: single particle, single bunch Higher-order coupled-bunch modes Cures

Transverse Instabilities

Fields and forces
Transverse coupling impedances
Spectrum of beam signals
Instability of un-bunched beam
Bunched beam: Head-Tail instability

- zero chromaticity
- non-zero chromaticity shifts beam line spectrum

Many bunches - long and short

- growth rate
- stability vs. impedance

Resistive wall instability
Transverse wake fields
Cures

Further Reading:

- A. Hofmann, Single beam collective phenomena longitudinal, CAS Erice, 1976, CERN 77-13, p. 139
- J.L. Laclare, Coasting beam instabilities, 1992 CAS Jyväskylä, CERN 94-01, pp. 349
- J.L. Laclare, Bunched beam coherent instabilities, 1985 CAS Oxford, CERN 87-03, pp. 264
- J. Gareyte, Observation and correction of instabilities in circular accelerators, CERN SL/91-09 (AP), Joint US-CERN Accelerator School, Hilton Head Island, USA, 1990
- F. Pedersen, Multi-bunch instabilities, CERN PS 93-36 (RF), Joint US-CERN Accelerator School, Benaldamena, Spain 1992 A.W. Chao, Physics of collective beam instabilities in high energy accelerators, John Wiley&Sons, New York, 1993

Longitudinal Beam Instabilities – Basic Mechanism

Wall current I_w due to circulating bunch Vacuum pipe not smooth, I_w sees an IMPEDANCE (resistive, capacitive, inductive)

 $\begin{aligned} & \text{Impedance } Z = Z_r + iZ_i \\ & \text{Induced voltage } V \sim I_w \ Z = -I_B \ Z \end{aligned}$

V may act back on the beam

INSTABILITIES INTENSITY DEPENDENT

General Scheme to investigate instabilities

Step 1: Start with a nominal particle distribution (i.e. longitudinal position, density,...)

Step 2: Compute fields and induced wall currents with a small perturbation of this nominal distribution, and determine forces acting back on the beam

Step 3: Calculate change of distribution due to these forces:

If Initial Small Perturbation

INCREASED? INSTABILITY
DECREASED? STABILITY

"Negative Mass" Instability - Qualitative

Un-bunched beam in a proton/ion ring Line density $\lambda(s)$ [particles/m]

is modulated around the synchrotron

Line density modulation

Zooming in one modulation

WILL THE HUMPS INCREASE OR ERODE?

The self-force F (proportional to $-\partial \lambda/\partial s$)

Increases energy of particles in B

Decreases energy of particles in A

$$\gamma < \gamma_t$$
: IF $\Delta E \uparrow \omega_0 \uparrow$ A and B move away from the hump eroding the mountain $\gamma > \gamma_t$: IF $\Delta E \uparrow \omega_0 \downarrow$ A and B move towards the hump, enhancing the mountain

It all depends on γ_t!

Negative Mass Instability: Fields Created by Beam

For small perturbations of $\lambda(s)$

$$E_{r} = \frac{e\lambda}{2\pi\epsilon_{0}} \frac{1}{r} \qquad B\phi = \frac{\mu_{0}e\lambda\beta c}{2\pi} \frac{1}{r} \qquad r \geq a$$

$$E_{r} = \frac{e\lambda}{2\pi\epsilon_{0}} \frac{r}{a^{2}} \qquad B\phi = \frac{\mu_{0}e\lambda\beta c}{2\pi} \frac{r}{a^{2}} \qquad r \leq a$$

$$E_{r} = \frac{e\lambda}{2\pi\epsilon_{0}} \frac{r}{a^{2}} \qquad B\phi = \frac{\mu_{0}e\lambda\beta c}{2\pi} \frac{r}{a^{2}} \quad r \le a$$

STOKES'LAW:
$$\oint \vec{E} d\vec{\ell} = -\frac{\partial}{\partial t} \int_{SURFACE} \vec{B} d\vec{\sigma} = -\frac{\partial}{\partial t} \Delta s \int_{0}^{b} B \phi dr$$

With
$$\frac{\partial \lambda}{\partial t} = -\frac{\partial \lambda}{\partial s} \frac{ds}{dt} = -\beta c \frac{\partial \lambda}{\partial s}$$
 and $g_0 = 1 + 2 \ln(b/a)$, one gets $\frac{E_s}{e} = -\frac{eg_0}{4\pi\epsilon_0} \frac{1}{\gamma^2} \frac{\partial \lambda}{\partial s} + \frac{E_w}{e}$

$$\mathbf{E}_{\mathbf{s}} = -\frac{\mathbf{e}\mathbf{g}_0}{4\pi\epsilon_0} \frac{1}{\gamma^2} \frac{\partial \lambda}{\partial \mathbf{s}}$$

Longitudinal "space charge" field

$$\begin{split} E_{W} &\neq 0 \text{: Inductive wall} \\ E_{W} &= -\frac{L}{2\pi R} \frac{dI_{W}}{dt} = -\frac{L}{2\pi R} e\beta c \frac{\partial \lambda}{\partial t} = \frac{L}{2\pi R} e\beta^{2} c^{2} \frac{\partial \lambda}{\partial t} \\ &\quad Voltage \ per \ turn \quad U_{S} = e\beta cR\omega_{0}L \frac{\partial \lambda}{\partial s} \end{split}$$

Negative Mass Instability: Field Acting Back on Beam

 $\lambda(s)$ has n humps and rotates with Ω near $n\omega_0$

$$\lambda = \lambda_0 + \textcolor{red}{\lambda_1} e^{i(n\Theta - \Omega t)} \ , \ I + I_0 + \textcolor{red}{I_1} e^{i(n\Theta - \Omega t)} \ \ instantaneous \ density \ and \ current$$

$$U_{s} = -I_{1} e^{i(n\Theta - \Omega t)} \qquad Z(\Omega)$$
voltage per turn (small) AC component longitudinal impedance

U_s perturbs the motion of the pattern and leads to a complex frequency shift $\Delta\Omega = \Delta\Omega_{\rm r} + i\Delta\Omega_{\rm i}$

$$\Omega = n\omega_0 + \Delta\Omega$$

slightly perturbed frequency

A SHORTCUT TO CALCULATE $\Delta\Omega$

$$\left[\frac{E_0 \beta^2 \gamma}{2\pi \eta h f_0^2 e}\right] \ddot{\varphi} + V_0 \varphi = 0$$
"m"

 V_0 ...voltage per turn f₀revolution frequency $\eta \dots 1/\gamma^2 - 1/\gamma_t^2$ E_0 ...particle rest energy

equation of small-amplitude synchrotron oscillations in a stationary bucket

$$\ddot{\varphi} + \left[\frac{e\eta h V_0 \omega_0^2}{2\pi E_0 \beta^2 \gamma} \right] \varphi = 0$$

$$\omega_s \dots \text{ synchrotron frequency}$$

Negative Mass Instability: Shortcut to Compute $\Delta\Omega$

- \square Replace ω_s by $\triangle\Omega$
- \square Replace hV_0 by beam-induced voltage in ZI_0 with $Z = Z_r + iZ_i$ complex impedance

$$(\Delta\Omega)^2 = (\Omega - n\omega_0)^2 = -i\frac{e\eta\omega_0^2 n I_0}{2\pi\beta^2 E_0 \gamma} (Z_r + iZ_i)$$

Complex Frequency shift required to sustain self-consistent modulation

$$I(t,\Theta) = I_0 + I_1 \underbrace{e^{\Delta\Omega_i t}}_{\text{growth or damping}} e^{i(n\Theta - (n\omega_0 + \Delta\Omega_r)t)}$$

$$\text{real frequency shift}$$

Instantaneous current with $\Delta\Omega = \Delta\Omega_r + i\Delta\Omega_i$

From
$$U_s = -I_1 e^{i(n\Theta - \Omega t)} Z$$
 and $Z_0 = 1/\epsilon_0 c = 377 \Omega$
$$Z_i = \frac{ng_0 Z_0}{2\beta\gamma^2}$$
 "space charge" impedance
$$Z_i = -n\omega_0 L$$
 inductive impedance

$\square Z_r \neq 0$	(more realistic)
$\Delta\Omega_{\rm i} \neq 0$	
always	one unstable
solution	1

	Z_{i}	$\gamma < \gamma_t (\eta > 0)$	$\gamma > \gamma_t (\eta < 0) (m < 0)$
> 0	(capacitive)	$\Delta\Omega_{\rm i} = 0$ STABLE	$\Delta\Omega_i \neq 0$ UNSTABLE
< 0	(inductive)	$\Delta\Omega_i \neq 0$ UNSTABLE	$\Delta\Omega_{\rm i} = 0$ STABLE

Stability Diagram

 \square Relates (complex) growth rate $\triangle\Omega$ to (complex) impedance Z

$$(\Delta\Omega)^2 = -i \xi (Z_r + iZ_i) = \xi (Z_i - iZ_r) = (\Delta\Omega_r + i\Delta\Omega_i)^2$$

 \square Plot contours $\triangle\Omega_i = const$ (= equal growth rate) into \mathbb{Z}_r , \mathbb{Z}_i plane. Equating real and imaginary

parts yields **parabolae** for $\Delta\Omega_i = const$

$$\Rightarrow$$
 Zr = $2\Delta\Omega_{i}\sqrt{Z_{i}/\xi + \Delta\Omega_{i}^{2}/\xi^{2}}$

Stability Diagram

For any $Z_r \neq 0$ the beam is subject to the negative mass instability and is unstable Is there a way out?

Landau Damping

In real machines the beam features a **frequency spread**, so individual particles **move with different speeds** around the ring → the **coherent motion becomes confused** and may **collapse faster** than the **rise time of** the **instability**

Landau Damping - Basic Idea

N particles (oscillators), each **resonating** at a frequency between Ω_1 and Ω_2 with a density $g(\Omega)$

$$\int_{\Omega_1}^{\Omega_2} g(\Omega) d\Omega = 1 \quad \text{normalisation}$$

$$X = \frac{1}{\Omega^2 - \omega^2} e^{i\omega t} = \frac{1}{(\Omega - \omega)(\Omega + \omega)} e^{i\omega t}$$

Single-particle response (incoherent) to an external excitation $e^{i\omega t}$

$$S = \frac{N}{2\Omega_0} \int_{\Omega_1}^{\Omega_2} \frac{i \frac{dg(\Omega)}{d\Omega}}{\Omega - \omega} d\Omega \cdot e^{i\omega t}$$

Overall coherent response obtained by integrating the single-particle responses of the n oscillators

Coherent response of oscillators to excitation outside their frequency range

Coherent response of oscillators to excitation inside their frequency range

The integral S has a **pole** at $\Omega = \omega$

Landau Damping and Stability Diagram

The trick to treat the **pole** in the integral: integrate "around" it in the complex plane:

$$S = i \frac{N}{2\Omega_0} \left[\int_{\Omega_1}^{\Omega_2} \frac{dg(\Omega)}{d\Omega} d\Omega - i\Pi \right] e^{i\omega t} = \frac{N}{2\Omega_0} \left[-\Pi + i \int_{PV} \frac{dg(\Omega)}{\Omega - \omega} d\Omega \right] e^{i\omega t}$$

$$\text{Residuum''} \qquad \text{Resistive'' term absorbs energy (in phase with excitation)} \qquad \text{Reactive term does not absorb energy}$$

Stability Diagram with Landau Damping

The form of the "bottle" depends on $g(\Omega)$; for most distributions, a circle can be inscribed, giving a handy approximation for the stability limit of un-bunched beams

$$\left| \frac{Z}{n} \right| \le F \frac{m_0 c^2 \beta^2 \gamma |\eta|}{e} \frac{(\Delta p/p)^2}{I_0} \quad \begin{array}{c} \text{KEIL-SCHNELL} \\ \text{CRITERION} \end{array}$$

Landau Damping only works if coherent frequency lies inside the frequency spread of the oscillators

Coasting Beam Longitudinal Instability: Example

Increase in $\Delta p/p$ due to coasting beam longitudinal instability in the CERN PS during debunching of protons.

Driving impedance: narrow-band cavity around 114 MHz.

Horizontal axis: Δf proportional to $\Delta p/p$ measured via "Schottky" scan on a spectrum analyser **Vertical axis:** time, circa 200 ms, moving downwards.

Impedance of a Resonator

Resonator equivalent to RLC circuit

Resonator equivalent to RLC CITC

$$\omega_{r} = \frac{1}{\sqrt{LC}} \text{ resonance frequency}$$

$$Q = R\sqrt{\frac{C}{L}} = \frac{R}{\omega_{r}L} \text{ quality factor}$$

$$\ddot{V} + \frac{\omega_r}{Q} \dot{V} + \omega_r^2 V = \omega_r \frac{R}{Q} \dot{I}$$

$$V(t) = V_0 e^{-\alpha t} \cos \left[\omega_r \sqrt{1 - 1/4Q^2} t + \varphi \right]$$

Differential equation of RLC circuit (I represents the beam)

Solution: damped oscillation with $\alpha = 1/\tau = \omega_r/2Q$

HOW TO COMPUTE IMPEDANCE?

- **□** Excite RLC circuit with $I = I_0 e^{iωt}$, any ω (-∞ < ω < ∞)
- \Box Look for solutions of the form $V(t) = V_0 e^{i\omega t}$
- ☐ Insert these expressions into the differential equation above:

$$-\omega^2 V_0 \, e^{i\omega t} + i \frac{\omega \omega_r}{Q} V_0 \, e^{i\omega t} + \omega_r^2 V_0 \, e^{i\omega t} = i \frac{\omega_r \omega R}{Q} \, I_0 \, e^{i\omega t}$$

$$\Rightarrow Z(\omega) = \frac{V_0}{I_0} = R \frac{1}{1 + iQ \frac{\omega^2 - \omega_r^2}{\omega \omega_r}}$$
Impedance of an RLC circuit - used for longitudinal resonators
$$V_0 \text{ is complex since in general phase with exciting current } I_0$$

Impedance of an RLC circuit – also

 V_0 is complex since in general not in phase with exciting current I_0

Impedance of a Resonator

$$Z(\omega) = Z_{r}(\omega) + iZ_{i}(\omega) = R \frac{1 - iQ \frac{\omega^{2} - \omega_{r}^{2}}{\omega \omega_{r}}}{1 + \left[Q \frac{\omega^{2} - \omega_{r}^{2}}{\omega \omega_{r}}\right]^{2}}$$

$$Z_{r}(\omega) = Z_{r}(-\omega)$$
 (even)
 $Z_{i}(\omega) = -Z_{i}(-\omega)$ (odd)

Longitudinal Impedance

$$Z(\omega) \approx R_s \frac{1 - i2Q \frac{\Delta \omega}{\omega_r}}{1 + \left(2Q \frac{\Delta \omega}{\omega_r}\right)^2}$$

Impedance of a narrow-band (high-Q) Cavity

with $\Delta\omega = n\omega_0 - \omega_r$, $R_S =$ shunt impedance The **excitation signal** in such a cavity **decays slowly**: the field induced by the beam is **memorized for many turns**

Single Bunch + Narrow-Band Cavity: "Robinson" Instability

"Dipole" mode or "Rigid Bunch" mode

The single bunch rotates in longitudinal phase plane with ω_s :

synchronous phase ϕ and energy also vary with ω_s

$\omega < \omega_{\rm r}$

Whenever $\Delta E > 0$:

- ω increases (below transition)
- sees larger real impedance R₊
- more energy taken from beam
- > STABILIZATION

Whenever $\Delta E > 0$:

- ω decreases (above transition)
- sees smaller real impedance R₊
- less energy taken from beam
- > INSTABILITY

 $\omega > \omega_r$ UNSTABLE STABLE

Karlheinz SCHINDL/CERN

CAS Zeuthen 9/2003: Instabilities

(i)

Longitudinal Instabilities with Many Bunches

- ☐ Fields induced in resonator remain long enough to influence following bunches
- \square Assume M = 4 bunches performing synchrotron oscillations

- ☐ Four possible phase shifts between four bunches
- □ M bunches, phase shift of Coupled-Bunch mode n: $2\pi \frac{n}{M}$, $0 \le n \le M 1 \Rightarrow M$ modes

Coupled-Bunch Mode Stability: Qualitative

M = 4 bunches, resonator tuned at ω_0

Four stationary buckets (no synchrotron oscillations)
Voltages induced by bunches 2 and 4 **cancel**Voltages induced by bunches 1 and 3 **cancel**

→ NO EFFECT

Voltages induced by bunches 2 and 4 cancel, but bunches 1 and 3 induce a net voltage Bunch 2 accelerated, bunch 4 decelerated Synchrotron oscillation amplitude increases

→ UNSTABLE

Voltages induced by bunches 2 and 4 cancel, but
bunches 1 and 3 induce a net voltage
Bunch 2 accelerated, 4 decelerated

Synchrotron oscillation amplitude decreases

STABLE

Longitudinal Microwave Instability

- Signature: bunch with **high-frequency** density modulation
- wave length << bunch length (frequencies 100 MHz...1 GHz)
- Fast growth rates even leptons concerned
- Generated by

BROAD-BAND IMPEDANCE

All elements of a synchrotron are "lumped" into one low-Q resonator yielding the impedance (p. 12)

$$Z(\omega) = R_s \frac{1 - iQ \frac{\omega^2 - \omega_r^2}{\omega \omega_r}}{1 + \left(Q \frac{\omega^2 - \omega_r^2}{\omega \omega_r}\right)^2} \qquad Q \approx 1$$

$$\omega_r \approx 1 \text{ GHz}$$

$$Z\left(\omega\right) \\ \text{NARROW-BAND} \\ \text{TORS} \\ \text{INDUCTIVE} \\ \text{Rs} \\ \text{Resistive} \\ \text{Rs} \\ \text{CAPACITIVE}$$

For small
$$\omega$$
, $Z(\omega) \approx i \frac{R_s \omega}{Q \omega_r} = i \frac{R_s}{Q} \frac{\omega}{\omega_0} \frac{\omega_0}{\omega_r} = i \frac{R_s}{Q} \frac{\omega_0 n}{\omega_r}$ and with (p. 10) $Q = \frac{R_s}{\omega_r L}$

$$\frac{\omega_0 \Pi}{\omega_r} \quad \text{and with (p. 10)} \quad Q = \frac{R_s}{\omega_r L}$$

$$\left|\frac{Z}{n}\right|_0 = L\omega_0$$

"Impedance" of a synchrotron in Ω

- •This **inductive impedance** is caused mainly by discontinuities in the beam pipe
- If value high, the machine is **prone to instabilities**
- Typically $20...50 \Omega$ for old machines
- < 1 Ω for modern synchrotrons

Microwave Instability – Stability Limit

- The **Broad-Band Impedance** with Q=1 has little memory
 - ➤ No coupling between consecutive bunches
 - ➤ Microwave instability is a single bunch effect
- leading to longitudinal bunch blow-up
- In lepton machines also called "turbulent bunch lenthening"

STABILITY LIMIT: Apply **Keil-Schnell criterion for unbunched beams** to **instantaneous current and momentum spread**

$$\left|\frac{Z}{n}\right| \leq F \frac{m_0 c^2 \beta^2 \gamma |\eta|}{e} \left[\frac{\left(\Delta p/p\right)^2}{I}\right]_{instant}$$

KEIL-SCHNELL-BOUSSARD CRITERION

protons: $F \sim 0.65$ leptons: $F \sim 8$

For a equal **bunch population** and **longitudinal emittance**, **short** bunches are **more stable** than **long** ones

Karlheinz SCHINDL/ CERN

CAS Zeuthen 9/2003: Instabilities

Longitudinal Spectrum – Single Particle and Bunch

Seen by a current monitor

$$\lambda(t) = \frac{e}{\beta c} \sum_{\ell = -\infty}^{+\infty} \delta(t - \ell T_0)$$

SINGLE PARTICLE

SINGLE BUNCH

Fourier Series

 $\sigma_{\omega} \sim 2\pi/\sigma_{b}$: the shorter the bunch, the wider the spectrum

Spectrum

$$\lambda(t) = \frac{e\omega_0}{2\pi} \sum_{n=-\infty}^{+\infty} e^{in\omega_0 t}$$

$$I_k(t) = I_0 + \sum_{n=1}^{\infty} I_n \cos(n\omega_0 t)$$
with

$$I_{n} = \frac{2}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} I_{k}(t) \cos(n\omega_{0}t) dt$$

Robinson Instability: Quantitative

A single bunch performing synchrotron oscillations around a synchronous phase or time

$$\begin{split} \tau_k &= \hat{\tau} \cos \omega_s t \quad \text{mod ulation of bunch passage time} \\ I_k(t) &= \sum_{k=-\infty}^{+\infty} I(t-kT_0-\tau_k) = I_0 + \sum_{p=1}^{\infty} I_p \cos(p\omega_0(t+\tau)) \end{split}$$

Assume $p\omega_0 \hat{\tau} \ll 1$ (small synchrotron oscillations)

$$I_k(t) \approx I_0 + \underbrace{\sum_{p=1}^{\infty} I_p \cos(p\omega_0 t)}_{\text{Main lines}} - \underbrace{\frac{\omega_0 \hat{\tau}}{2} \sum_{p=1}^{\infty} I_p p[\underbrace{\sin((p\omega_0 + \omega_s)t)}_{\text{upper side-bands}} + \underbrace{\sin((p\omega_0 - \omega_s)t)}_{\text{lower side-bands}}]$$

Spectrum of a single bunch performing small-amplitude synchrotron oscillations

Karlheinz SCHINDL/ CERN

CAS Zeuthen 9/2003: Instabilities

Coupled Bunch Modes, Dipole & Higher Order

Dipole (m=1) and higher-order (m=2,3,4) modes in a synchrotron with 5 bunches Two adjacent bunches shown. *Note phase shifts between adjacent bunches*

Longitudinal Instabilities - Cures

□ Robinson Instability, generated by main RF cavities: Tune resonance frequency ω_r such that bunch frequency $|\mathbf{h}\omega_0| < \omega_r$ for $\gamma < \gamma_r$

 $h\omega_0 > \omega_r$ for $\gamma > \gamma_t$

RF shield \

beam pipe

resonator

beam

- □ Cavities "Parasitic" Modes are damped by "Higher Order Mode Dampers" (HOM): the unwanted mode is picked up by an antenna and sent to a damping resistor dangerous
- ☐ Unwanted Resonators in beam pipe: RF shield protects the beam mimicking a smooth beam pipe
- ☐ Microwave Instabilities: Reduce Broad-Band Impedance by smooth changes in beam pipe cross section and shielding cavity-like objects. Large $\Delta p/p$ helpful but costly in RF voltage.
- □ Coupled-Bunch Mode Instabilities: Run synchrotrons with 1 ore 2 bunches (bunch-to-bunch phase shift of 0 or π are always longitudinally stable) (limited to small synchrotrons)

Longitudinal Instabilities – Feedback Systems

☐ Principle

The phase (or amplitude) deviation is measured in a synchronous detector and corrected in an accelerating gap which must cover the bandwidth

- ☐ In-phase (n=0) dipole (m=1) mode: normally tackled by the phase loop which locks the beam phase to the cavity RF voltage phase
- ☐ In-phase (n=0) quadrupole (m=2) mode: These bunch-shape oscillations are treated by feeding back the observed amplitude oscillation to the RF cavity
- □ Coupled-Bunch instabilities (dipole modes, m=1) are controlled by a feedback system which tackles (i) each bunch (out of M bunches) or (ii) each mode n (n = 0, 1, ..., M-1) individually. In both approaches the required bandwidth is $\sim \frac{1}{2} M \omega_0$

Transverse Beam Instabilities – Fields and Forces

To sustain the differential wall current I_w a longitudinal electric field E_z varying across the aperture is required

 $ightharpoonup \mathbf{E}_{\mathbf{z}} = \mathbf{E}_{\mathbf{0}}(\mathbf{y}/\mathbf{b}) \mathbf{e}^{\mathbf{i}\omega t}$ in the median plane $\mathbf{x} = 0$

From
$$\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$$
 one gets $\frac{\partial B_X}{\partial t} = -\frac{\partial E_Z}{\partial y} = -\frac{E_0}{b} e^{i\omega t}$, $B_X = \frac{i}{\omega} \frac{E_0}{b} e^{i\omega t}$

t=0, excitation by displaced beam

 $t = (1/4) (2\pi/\omega)$, deflection

Transverse Coupling Impedance

$$Z_{T}(\omega) = i \frac{\int [\vec{E} + \vec{v} \times \vec{B}]_{t} ds}{\beta I \delta}$$

 $= \frac{\text{Deflecting field (integrated around the ring)}}{\text{dipole moment of exciting current}}$

 $[\Omega/m]$

because of phase shift between dipole moment Iδ and deflecting field

Relation between Z_T and Z_T

(longitudinal impedance called Z so far), for a resistive round pipe:

The wall current I_{w} generates a voltage V around the ring:

$$V = 2\pi RE_0 \cong 4I_w Z_L \Rightarrow E_0 \cong 4\frac{I_w Z_L}{2\pi R}$$

$$I_w = -\frac{1}{2} \frac{\delta}{b} I \left(i.e.if \ \delta = b \ I_w = -\frac{1}{2} I \right)$$

$$B_{x} = \frac{i}{\omega} \frac{E_{0}}{b} e^{i\omega t} = -i \frac{2\delta}{\omega b^{2}} \frac{Z_{L}I}{2\pi R} e^{i\omega t}$$

Inserting B_x and putting E = 0 yields

Transverse Impedance Z_T vs. Longitudinal Impedance Z

	$Z_{\rm L}$	Z_{Γ}
Unit	Ω	Ω/m
Symmetry	$Re[Z_L(\omega)] = Re[Z_L(-\omega)]$	$Re[Z_T(\omega)] = -Re[Z_T(-\omega)]$
Real Part	even	odd
Symmetry Imaginary part	$Im[Z_L(\omega)] = -Im[Z_L(-\omega)]$ odd	$Im[Z_{T}(\omega)] = Im[Z_{T}(-\omega)]$ even
Typical values for a synchrotron	$\sim \Omega$	~MΩ/m

$$Z_{\rm T}(\omega) \cong \frac{2c}{b^2} \frac{Z_{\rm L}}{\omega}$$

 $Z_{T}(\omega) \cong \frac{2c}{b^{2}} \frac{Z_{L}}{\omega}$ Handy approximate relation between Z_{T} and Z_{L}

Why negative frequencies? To make calculations simpler

Transverse and Longitudinal Impedances

Resonator-type object Fields and Forces

Resonator-type object Impedance

Resistive Wall

R....machine radius

ρ....vacuum chamber resistivity

 δwall thickness

$$Re(Z_T) = \frac{2cR}{\omega b^3} \frac{\rho}{\delta} (low \omega)$$

Broad-Band (with Q=1)

Transverse Beam Signals – Time and Frequency

Single particle on central orbit - longitudinal signal

$$\lambda(t) = \frac{e}{2\pi R} \sum_{n=-\infty}^{+\infty} e^{in\omega_0 t}$$

Single particle, oscillating transversally

$$y = \hat{y}cos(\omega_{\beta}t + \phi)$$

$$\omega_{\beta} = Q\omega_{0} = (k + q)\omega_{0}$$
 fractional tune

Position monitor

Compute spectrum

Spectrum $\hat{d}(\omega)$

- constant amplitude
- lines at $(n+Q)\omega_0$, n any integer

Example:
$$Q = 2.25$$
 ($q = 0.25$)

Transverse Instabilities – Unbunched Beam

MODE: particles are arranged around the synchrotron with a strict correlation between transverse particle positions.

The mode shown is **n=4**. If one takes a snapshot at t=0 one has $y(t=0,\,\theta)=y_4e^{-4i\theta}$

A single particle always rotates with revolution frequency ω_0 but the pattern rotates with $\omega_n \neq \omega_0$; how to compute ω_n ?

- A particle is at azimuth θ_0 at t=0. Its position evolves as $y_{\theta_0}(t) = y_n e^{i(Q\omega_0 t n\theta_0)}$
- after time t its azimuth is $\theta = \theta_0 + \omega_0 t$, so $\theta_0 = \theta \omega_0 t$ and $y(\theta,t) = y_n e^{i[(Q+n)\omega_0 t n\theta]}$
- condition for $y(t,\theta) = const \text{ yields}$ $(Q+n) \omega_0 t n\theta = 0 \Rightarrow \theta(t) = (1 + Q/n) \omega_0 t \Rightarrow$

Rotation frequency of mode pattern

$$\omega_{n} = \dot{\theta} = \left(1 + \frac{Q}{n}\right)\omega_{0}$$

	n <q< th=""><th>-Q < n < 0</th><th>n > 0</th></q<>	-Q < n < 0	n > 0
	$0 < \omega_n < \omega_0$	$\omega_{\rm n} < 0$	$\omega_{\rm n} > \omega_{\rm 0}$
pattern	slower than	backwards	faster than
moves	particle	ouen wards	particle
wave	slow	backwards	fast

 $n < -Q \qquad -Q < n < 0 \qquad n > 0$ $1 \qquad 2 \qquad 1$ $1 \qquad 2 \qquad 1$ $2 \qquad 1$ $3 \qquad 2 \qquad 1$ $3 \qquad 2 \qquad 1$ $4 \qquad 2 \qquad 3$

Snapshots at t_0 (1), $t_0 + \Delta t$ (2), $t_0 + 2\Delta t$ (3)

Unbunched Beam – Transverse Growth Rate

Only one mode n (one single line) grows, so only Z_T around frequency $(Q + n)\omega_0$ relevant

• Assume $\textbf{e}(\vec{E}+\vec{v}\times\vec{B})_{\scriptscriptstyle T}$ constant around the ring for a given y

$$F = e(\vec{E} + \vec{v} \times \vec{B})_{T} = -i \frac{e\beta IZ_{T}}{2\pi R} y(\theta, t)$$

$$Z_{T} = i \frac{\int_{0}^{2\pi R} (\vec{E} + \vec{v} \times \vec{B})_{T} ds}{\beta y I}$$

$$F(\theta, t) = -i \frac{e\beta IZ_{T}}{2\pi R} y_{n} e^{i[(Q+n)\omega_{0}t - n\theta]}$$

- Force on a single particle on azimuth $\theta(t) = \theta_0 + \omega_0 t$
- This particle's betatron amplitude y(t) satisfies

$$\begin{split} F(t) &= F(\theta_0 + \omega_0 t, t) = -i \frac{e\beta IZ_T}{2\pi R} \underbrace{y_n e^{i[Q\omega_0 t - n\theta_0]}}_{y(t)} \\ \ddot{y} + Q^2 \omega_0^2 y &= \frac{Force}{m_0 \gamma} = -i \frac{e\beta IZ_T}{2\pi R m_0 \gamma} y \end{split}$$

$$\ddot{y} + \underbrace{(Q\omega_0 + \Delta\Omega)^2}_{\approx Q^2\omega_0^2 + 2\Delta\Omega\Omega\omega_0} y = 0 \implies \Delta\Omega = i \frac{e\beta Z_T I}{4Q\pi\omega_0 R\gamma m_0},$$

• With
$$\omega_0 R = \beta c$$
 and $\gamma m_0 = E/c^2$

$$\Delta\Omega = i \frac{cZ_{T}I}{4\pi QE/e}$$

Transverse growth rate, unbunched beam, Z_T constant around the ring

 Single particle oscillation changed to

$$y(t) = y_n e^{i[(Q\omega_0 + \Delta\Omega)t - n\theta_0]}$$

For unbunched beam, only slow wave unstable

Unstable if $Im(\Delta\Omega) < 0$

 $ightharpoonup \operatorname{Re} \left[\mathbf{Z}_{\mathrm{T}}((\mathbf{Q}+\mathbf{n})\omega_{0}) \right] \leq 0$

 \triangleright (Q+n) < 0 slow waves!

Transverse Instabilities – Bunched Beams

Bunch shape observed with current monitor

All particles perform synchrotron oscillations – their energy changes with frequency ω_s

ZERO CHROMATICITY

$$\xi = \frac{dQ}{Q} / \frac{dp}{p} = 0$$

All particles have same betatron tune Q - even with changing energies

RIGID BUNCH MOTION (m=0) [A. SESSLER ~1960]

All particles in the bunch start at t=0 with same betatron phase.
Although synchrotron motion sweeps them back and forth and changes their energy, they all oscillate in phase

transverse position $y(\tau)$ *current $I(\tau)$ = position monitor signal

Transverse Instabilities – Head-Tail Modes

Arrange initial betatron phases so as to have dipole moments up near the head of the bunch down near the tail

Mode pattern described by $e^{i\psi}$ in longitudinal phase plane

On a slower timescale (~ms): the pattern rotates with $\omega_{\rm s}$

Initial condition (as above)

ups and downs superimposed: signal = 0

ups and downs exchange places

Head-Tail Modes with Non-Zero Chromaticity

$\xi \neq 0$: Q varies along the synchrotron orbits

 χ_kbetatron phase slip after k machine turns χ betatron phase slip between head and tail T_0revolution time $\hat{\tau}$ half bunch length

assume

$$\xi = \frac{dQ/Q}{dp/p} > 0,$$

$$\gamma < \gamma_t \left[\eta = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2} < 0 \right]$$

How to calculate χ :

$$\Delta Q = \xi Q \frac{\Delta p}{p} , \quad \frac{\Delta p}{p} = -\frac{1}{\eta} \frac{\Delta f_0}{f_0} = \frac{1}{\eta} \frac{\Delta T_0}{T_0} , \quad \Delta Q = \frac{\xi}{\eta} Q \frac{\Delta T_0}{T_0}$$

per machine turn

Time delay τ_{l} of a particle relative to the head of the bunch changes per machine turn k:

$$\frac{d\tau_k}{dk} = \Delta T_0$$

Accumulated phase shift χ_k after k machine turns:

$$\chi_k = 2\pi \int_0^k \Delta Q_{per turn} dk = \frac{2\pi}{T_0} \frac{\xi}{\eta} Q \int_0^k \frac{d\tau_k}{dk} dk = \frac{\xi}{\eta} Q \omega_0 \tau_k$$

Total phase shift between head and tail

$$\chi = \frac{\xi}{\eta} Q\omega_0 \times 2\hat{\tau}$$

The pattern can be kept stationary if the particles' betatron phases are arranged as in the figure

Head-Tail Phase Shift Changes Bunch Spectrum

Example: Mode m=0

Head-tail mechanism discovered by C. Pellegrini, M. Sands

"Standard model"
F. Sacherer mid-70ies

end 60ies

The shorter the bunch length $\hat{\tau}$, the larger the width of the spectrum

The wiggly signal passes through a position monitor which sees

- \cdot during bunch passage time 2 $\hat{\tau}$
- a phase shift of χ radians
- the monitor (or an impedance)
 "sees" an additional frequency

$\omega_{\xi} = 0$

Chromaticity Frequency ω_{ϵ}

$$\omega_{\xi} = \frac{\xi}{\eta} Q \omega_0$$

	η	ىكى	ωξ
$\gamma < \gamma_t$	< 0	> 0	< 0
		< 0	> 0
$\gamma > \gamma_t$	> 0	> 0	> 0
		< 0	< 0

Transverse Instabilities – Many Bunches

Transverse positions of bunches arranged to form a pattern of n waves around the synchrotron

> Coupled-bunch mode n

With M bunches, bunch-tobunch betatron phase shift 2πn/M

- n=2 (waves), M=16 (bunches)
- bunch-to-bunch betatron phase shift $\pi/4$
- · Head-tail phase shift small
- · behaves like coasting beam

- n=2, M=8
- bunch-to-bunch betatron phase shift $\pi/2$
- Head-tail phase shift χ large
- · can only be sustained with a certain value $\chi \neq 0$

Spectrum for

- M=4 bunches
- m=0 nodes within the bunch
- q = 0.25
- coupled-bunch modes n=0,1,2,3

Bunched Beam – Transverse Growth Rates

Frequency shift, unbunched beam: Instability if $Im(\Delta\Omega) < 0 \rightarrow Re(Z_{\tau}) < 0$

$$\Delta\Omega = \frac{i}{4\pi Q} \frac{c}{E/e} I Z_T$$
 Z_T taken at $(n+Q)\omega_0$

Bunched beam, mode m

- Sum over lines of bunch spectrum $d_m(\omega)$
- · Calculate deflecting field $\sim Z_{\rm T}(\omega) d_{\rm m}(\omega)$ and the force
- · Put this force into singleparticle equation
- Take sum over $-\infty$

One bunch:

 $\omega_{\rm p} = ({\rm p} + {\rm Q})\omega_{\rm 0}$ M bunches, coupled-bunch mode n: $\omega_{_{D}} = (n + kM + Q)\omega_{_{0}}, \ -\infty < k < \infty$ a line only every $M\omega_{\alpha}$

STABILITY?

Unstable if $Im(\Delta\Omega) < 0$ $\rightarrow \Sigma_{\rm n} \text{Re}[Z_{\rm T}(\omega_{\rm n})] d_{\rm m}^2(\omega_{\rm n} - \omega_{\rm E}) < 0$

- Unstable if $Re[Z_T(\omega)] < 0$
- only with negative frequencies
- · only slow waves unstable

Bunched Beam Transverse Stability vs. Impedance

Narrow-Band Resonator

- only two spectral lines contribute to the sum
- · Fields stored long enough to act on subsequent bunches during several turns

$$\Sigma \operatorname{Re}[Z_T] d_0^2 < 0 \rightarrow \text{unstable}$$

Broad-Band Resonator

- extends to ~GHz
- · thus spectral lines very dense
- just envelopes I_0 , I_1 , I_2 shown
- Quality factor Q low → fields not stored long enough to influence subsequent bunches

 $\Sigma \operatorname{Re}[Z_T] d_0^2 < 0 \rightarrow \text{unstable}$

For any "normal" transverse impedance

$$\gamma < \gamma_t$$
: set $\xi < 0$ ($\omega_{\xi} > 0$) to stabilize beam $\gamma > \gamma_t$: set $\xi > 0$ ($\omega_{\xi} > 0$) to stabilize beam

Resistive Wall Transverse Instability

$$Re(Z_T) = \frac{2cR}{\omega b^3} \frac{\rho}{\delta} (low \omega)$$

ρ...resistivity of beam pipe

 δ ...wall thickness (low frequency) or skin depth (high frequencies)

- · not a "normal" transverse impedance
- dominant line at $Re(Z_T)$ most negative at very low frequency
- · dominant mode normally m=0 but cannot be stabilized by setting $\omega_{\text{E}}>0$
- setting Q above an integer (q < 0.5) puts dominant line near the origin but at $Re(Z_T) > 0$ thus stabilizing the beam

Further increasing ω_{ξ} (by varying ξ with sextupoles) may drive the hump of m=1, 2 etc. onto this dominant line, thus switching from one mode to the next.

For the resistive wall impedance, fractional tune q < 0.5 preferable (A.Sessler 60ies)

Horizontal Head-Tail Instabilities in CERN PS

A single bunch with ~10¹² protons and ~150 ns length on the 1.4 GeV injection plateau in the CERN PS (below transition energy)

Head-tail mode numbers m=4,...,9 are generated by changing horizontal chromaticity ξ_h from -0.5 (m=4) to -1.3 (m=10). The natural chromaticity, $\xi_h=-0.9$, yields m=6 (6 nodes). For all pictures, $\omega_{\xi}>0$, which normally stabilizes the beam, but not in this case.

→ The impedance responsible for this horizontal instability is the resistive wall impedance

►20 ns/div

Transverse Wake Fields

Instead of treating instability dynamics in the frequency domain as done so far, one can do it in the time domain by using "Wake Fields"

What is a Wake Field?

Point charge q_1 passes through a resonator with a transverse displacement δ . The induced Wake field W will act on the subsequent charge q_2 .

The Wake Field concept is very useful for impedances with short memory where the fields do not act on subsequent bunches but only on particles within the same bunch (single-bunch effects). Example: broad-band impedance (low-Q resonator)

Transverse Wake Fields – A Simple Model

Approximate bunch by just two superparticles "head" (1) and "tail" (2) with Ne/2 charges each

If head is displaced by $\delta,$ force on particle in tail is

Both head (y₁) and tail (y₂) oscillate with same betatron frequency ω_{β}

Excitation on right-hand side has same frequency

SLAC 50 GeV Electron Linac

 $f = e \frac{Ne}{2} W_1 \delta$ $y_1 = \delta cos \omega_{\beta} t$ $y_2 + \omega_{\beta}^2 y_2 = \frac{f}{m_0 \gamma} = \frac{Ne^2 W_1}{2m_0 \gamma} y_1$ $\Rightarrow y_2 = \delta \left[cos \omega_{\beta} t + \frac{Ne^2 W_1}{4\omega_{\beta} m_0 \gamma} t sin \omega_{\beta} t \right]$ $tail amplitude y_2 grows linearly with time$

Observation: Tail amplitude increasing along the Linac - caused by misalignments

Transverse Instabilities - Cures

- As for longitudinal impedances: damp unwanted HOM's, protect beam by RF shields
- For "normal" transverse impedances, operate with a slightly positive chromaticity frequency $\omega_{\xi} \rightarrow$ for $\gamma < \gamma_{t}$ set $\xi < 0$ (by sextupoles)

$$\rightarrow$$
 for $\gamma > \gamma_t$ set $\xi > 0$

- For the resistive wall impedance:
 - > operate machine with a betatron tune just above an integer
 - \triangleright use highly conductive vacuum pipe material to reduce Re(Z_T) and growth rate
- Landau damping also works in the transverse plane; a betatron frequency spread $\Delta\omega_{\beta}$ is generated by octupoles (betatron tune depends on oscillation amplitude)

TRANSVERSE FEEDBACK

- position error in PU→ angle error in deflector
- betatron phase from PU to deflector $\sim (2n+1)\pi/2$
- electronic delay = beam travel
 time from PU to deflector

Bandwidth: ~ a few 10 kHz to a few MHz if only resistive wall
 ~ up to half the bunch frequency with bunch-by-bunch feedback