INSTABILITIES

Introduction to Instabilities Transverse Instabilities
Longitudinal beam instabilities - basics Fields and forces
"Negative Mass" Instability - qualitative Transverse coupling impedances
- quantitative Spectrum of beam signals
Stability Diagram Instability of un-bunched beam
Landau Damping Bunched beam: Head-Tail instability
Longitudinal Stability Criterion - zero chromaticity
Impedance (resonator) - hon-zero chromaticity shifts beam
Bunched beam longitudinal instability: line spectrum
one bunch; many bunches Many bunches - long and short
Microwave instability - growth rate
More on Longitudinal Instabilities - stability vs. impedance
Line spectra: single particle, single bunch Resistive wall ms‘rqbdn’ry
Higher-order coupled-bunch modes Transverse wake fields
Cures Cures
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Longitudinal Beam Instabilities — Basic Mechanism

- - — VACUUM  wall current I, due to circulating bunch
_m_ l PIPE Vacuum pipe not smooth, I, sees an
IMPEDANCE (resistive, capacitive,
 AREREEE >~ BEAM inductive)
==l Impedance Z=Z7_+iZ,
o, _\_’/— — Induced voltage V~1 Z=-1,Z

| V may act back on the beam = INSTABILITIES INTENSITY DEPENDENT |

General Scheme to investigate instabilities

Step 1:  Start with a nominal particle distribution (i.e. longitudinal position, density,...)

Step 2:  Compute fields and induced wall currents with a small perturbation of this
nominal distribution, and determine forces acting back on the beam

Step 3:  Calculate change of distribution due to these forces:

———  INCREASED? INSTABILITY

If Initial Small Perturbation
——»  DECREASED? STABILITY
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“Negative Mass” Instability - Qualitative

$ : Un-bunched beam in a proton/ion ring
A~ B Line density A(s) [particles/m]
? F* 1s modulated around the synchrotron
o /s//ﬂjmgps 5 S WILL THE HUMPS INCREASE
| L , o N OR ERODE?
Line density modulation Zooming in one modulation

I f particles in B
The self-force F (proportional to — d\ /as)/' ncreases energy of particles in

Decreases energy of particles in A

Y <y IF AET coOT A and B move away from the
STABLE hump eroding the mountain It all
Y >v: IF AET a)oi A and B move towards the hump, depen('is
UNSTABLE enhancing the mountain on Y.
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Negative Mass Instability: Fields Created by Beam

APPLY STOKES LAW HERE

VACUUM PIPE For small perturbations of A(s)
\ Er(s)f gw - EW r(s+AS) __ A eA 1 B(I): “067\‘& _1 r>a
\ —> Beam ES | K r 27[?0 r 27 T
+} ¥ + +++ + r uoex[t I
; —5 = — r<a
By ./ A(s) A(s) \j E.= 2n & a e az
.o o .~ o D
STOKES’'LAW: PEd/ = = |Bdc = —aAsI Bodr
LINE SURFACE 0
A o ds o\ gt LOoh o
With =2 _ _ 22 22 _ g 2= and g,=1 + 2 In(b/a), one gets = 2 W
ot s at P ’ ©Amgy y© O

E,, = 0: perfectly conducting
smooth wall
egg | OA

4mgy y2 Os

E

E = —

S

Longitudinal “space charge” field

E # 0: Inductive wall Inductance per m

L di,

2R dt

W

L
ot  2mR

oA
Voltage per turn - Ug = efcRo oLg

efic

eBca
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Negative Mass Instability: Field Acting Back on Beam

A(s) has n humps and rotates with €2 near no,

A=2X,+ A0 T+ +1e®® instantaneous density and current

U =

[

1, gith-0y 7 (Q)

l l

voltage per turn  (small) AC component longitudinal impedance

Q= nw, + AQ

slightly perturbed frequency

U, perturbs the motion of
the pattern and leads to a
complex frequency shift
AQ = AQ HIAQ,

A SHORTCUT TO CALCULATE AQ

V, ...voltage per turn

f, ....revolution frequency
n....12 =12
E,...particle rest energy

Karlheinz SCHINDL/ CERN

equation of small-amplitude synchrotron oscillations in a

stationary bucket

2
enhVO(DO =0

o+

-

T2
COS
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Negative Mass Instability: Shortcut to Compute AQ

O Replace o by AQ

d Replace hV,, by beam-induced Voltage inZI,with Z=7_+iZ, complex impedance

(AQ) =(Q@-nog ) =

enmo nl
2 BZE Y

Complex Frequency shift required to
(Z,+17) : . :
sustain self-consistent modulation

I(t,0) =T + [

growth or
damping

AQ;t 1(n® (nw (+AQ)t)

})f modulation pattern  real frequency shift

Instantaneous current with
AQ = AQ +iAQ,

JZ.=0 ‘ QZ_ #0 (more realistic)
From U =127 and Z,= 1/g,c =377 Q AQ. =0
nggZ 1
7. = 20 20 “space charge” impedance always one unstable
2Py solution

Z.=-no,L inductive impedance

Z;

Y <v:(n>0)

Y>y (M <0)(m<0)

>0 (capacitive) | AQ; =0 STABLE

<0 (inductive) |AQ;# 0 UNSTABLE

AQ; =0 UNSTABLE
AQ; =0 STABLE
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Stability Diagram
U Relates (complex) growth rate AQ to (complex) impedance Z
(AQ)Y? =& (Z, +12)=E(LAZ,) = (AL, +1AL)?
[ Plot contours AQ; = const (= equal growth rate) into Z , Z; plane. Equating real and imaginary

parts yields parabolae for AQ), = const =71 = ZAQH/ Z;/&+ AQiz / &2
Zi

A

Stability Diagram
For any Z_+ 0 the beam 1s subject to the
| negative mass instability and is unstable

‘\ YA S — Is there a way out?
/S S (<)
\ Il . // Zr

AQiI=10 AQi=1 AQi=2 AQi=3

L

Landau Damping Inreal machines the beam features a
frequency spread, so individual

phase particles move with different speeds
Vi *\ _—— peel  around the ring - the coherent
NS N> t motion becomes confused and may
- collapse faster than the rise time of
Decoherence of two particles the instability
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Landau Damping - Basic Idea

9(®) N particles (oscillators), each resonating at a frequency
between O, and ), with a density g(Q2)
Q2
[g(Q)dQ =1  normalisation
Q Q,
Q1 2
1 iot 1 iot  Single-particle response (incoherent) to an
R=p2_2°¢ = ¢ ternal excitation efo*
0% _o (Q-0)Q+0) external excitation e
%K_J
~2Q
.dg(®) : : .
N 2! _ Overall coherent response obtained by integrating
S=——| —dQ dQ-e'®! the single-particle responses of the n oscillators
2Q) Q-
0Q,
s ! S Coherent response of

Cthelrflnt response oscillators to excitation
ity OLOScIlators to. inside their frequency
e excitation outside w7
. . Q i 15 S ¢ range
\ o @ their frequency \

range The integral S has a pole
! at Q=
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Landau Damping and Stability Diagram

f . . . .
‘ Im (Q) e The trick to treat the pole in the integral: integrate
‘ S < Re(Q) “around” it in the complex plane:
[, de(Q) 1 j dg(@) |
N Q, i0 ot N | do iot
SziQ |I dQ_iH|e””: IT+1i dQ|em)

2Q0] g Q-0 20,1~ v Q-0
@ fJ LT ;—‘%—‘j

o / “Residuum” “Resistive” term
Principal value

Reactive term does
absorbs energy not absorb energy
(in phase with excitation) (out of phase)

Stability Diagram with Landau Damping The form of the “bottle” depends on g(Q2); for

TREacTive most distributions, a circle can be inscribed,
bAL | giving a handy approximation for the stability
DAMPING |\ STABILITY LT limit of un-bunched beams
INSIDE .~ CONTOURS OF

N <"/ INCREASING GROWTH RATE 202 2
\ ¥ 2| pMo© B*¥In| (Ap/p) KEIL-SCHNELL
o RQ) n e L CRITERION

RESISTIVE

’ CIRCLE USED FOR "KEIL- SCHNELL"
CRITERION

///

Landau Damping only works if coherent frequency
— lies inside the frequency spread of the oscillators
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Coasting Beam Longitudinal Instability: Example

Open NARROW-BAND CAVITY Short-

Z ngh with one arm open on C114 in 554 with all arms closed on both C114 CerUlTed
Beam e: 17.09.97 Time: 09:18 Date: 17.09.97 Time: 09:00 Z LOW

UHSTabIe A A 9 750.0 Hz TRACE A: Chi Spectrun & B12.5 Hz 5.754 dB Beam

stable

beam
debunching

beam
debunched

Spon: 50 kHz

Af~Aplp ——» Af~Aplp———»
f=394.896 MHz Ip = 8.0 10"12 ppp

Increase in Ap/p due to coasting beam longitudinal instability in the CERN PS during de-
bunching of protons.

Driving impedance: narrow-band cavity around 114 MHz.

Horizontal axis: Af proportional to Ap/p measured via “Schottky” scan on a spectrum analyser
Vertical axis: time, circa 200 ms, moving downwards.
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Impedance of a Resonator

Resonator equivalent to RLC circuit

EZ

1
> Oy = resonance frequenc
- BEAM " JLC 1 Y Q) R — L

A
O

é
> C R
< =R,/— = —— quality factor
| Q 1/ L ol quality
Vi2ovy o V=0, 51 Differential equation of RLC circuit (I represents the beam)

Q
V(t) =V, e““cos[(or -1 /4Q% t + (p] Solution: damped oscillation with o = 1/1 = ©,/2Q

HOW TO COMPUTE IMPEDANCE?

O Excite RLC circuit with I =1, €%, any ® (o0 < @ < o)

O Look for solutions of the form V(t) =V, el

O Insert these expressions into the differential equation above:
t .0,0R

—0%V, eimt+immr\/o e+ w2Vye' @ =i 0 Iy e
vV : Impedance of an RLC circuit — also
= Z(w)= I—O =R 5 5 used for longitudinal resonators
0 1+iQ - — Oy V, is complex since in general not in
0O phase with exciting current I,
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Impedance of a Resonator

-2
1-iQ———+ Z(0)=7Z(-0) (even)
: ala)
Z(®) = Z(0) +iZi(0)=R L Z{(®) = — Z,(-») (0dd)
e’ -of ]
L 0O, J Longitudinal Impedance
4Z ()
-0, or
1-i2Q Ao Impedance of a narrow-band (high-Q) Cavity
Z(®) ~R o with Ao = nw,—m,, Rq = shunt impedance
TS A® 2 The excitation signal in such a cavity decays slowly: the
1+ 2Q— field induced by the beam is memorized for many turns
(’OI'
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4

s AE (;)s/ 1 PHASE PLANE

Single Bunch + Narrow-Band Cavity: “Robinson” Instability

LONGITUDINAL

\@J ¢ (ort)
SEEN ON
Charge A SCOPE
density L9 (SYNCHRONOUS

N \ DETECTOR)

0 ¢ (ort)

“Dipole” mode or
“Rigid Bunch” mode

The single bunch rotates in
longitudinal phase plane
with o
synchronous phase ¢ and

energy also vary with o,

Karlheinz SCHINDL/ CERN

Bunch sees resonator at ® .= o,

Zr (o) Zr (o)
STABLE R+ STABLE
RO
R-
O o @ O o, ®
I
Beam frequency  Resonant frequency
0<O,
Whenever AE>0: Whenever AE>0:

* ® increases (below transition)
* sees larger real impedance R,
* more energy taken from beam

» STABILIZATION

* ® decreases (above transition)
* sees smaller real impedance R,
* less energy taken from beam

» INSTABILITY

0>

UNSTABLE

r

STABLE

CAS Zeuthen 9/2003: Instabilities
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Longitudinal Instabilities with Many Bunches

O Fields induced in resonator remain long enough to influence following bunches
0 Assume M = 4 bunches performing synchrotron oscillations

All bunches in phase
moden = ()
(r)

Phase shift between

Q consecutive bunches
T -
Lon=1

g D)

Coupled-Bunch f
Modes n

T n=2

!
O g

2

QQQ

Q
a0
O

O Four possible phase shifts between four bunches

n
O M bunches, phase shift of Coupled-Bunch mode n: 2Tfﬁ ,0sn<M-1= M modes
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Coupled-Bunch Mode Stability: Qualitative

M = 4 bunches, resonator tuned at o,

To=2n/0,
Vinduced
R N 2
1 - 4
AE
4.(1) e Y ° °
1 4
(y > vt, bunches move clockwise in phase plane)
Vind
| ¢ To >
3 1
AE A =7/2
LONONC N0
@) ‘ o
(v>7)
Vind.
rrrrrrrr - 1
1 5 1
AE Ad = 3n/2
LONONONO
Karlheinz SCHINDL/ CERN

Four stationary buckets (no synchrotron oscillations)
Voltages induced by bunches 2 and 4 cancel
Voltages induced by bunches 1 and 3 cancel

= NO EFFECT

Voltages induced by bunches 2 and 4 cancel, but
bunches 1 and 3 induce a net voltage

Bunch 2 accelerated, bunch 4 decelerated
Synchrotron oscillation amplitude increases
= UNSTABLE

Voltages induced by bunches 2 and 4 cancel, but

bunches 1 and 3 induce a net voltage »
Bunch 2 accelerated, 4 decelerated ~ ~°me @S 1

Synchrotron oscillation amplitude decreases
= STABLE

CAS Zeuthen 9/2003: Instabilities
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Longitudinal Microwave Instability

* Signature: bunch with high-frequency density modulation

bunch length

A Z(o)

NARROW-BAND
TORS

INDUCTIVE

() * Generated by

T -
" O g i5 GHz 2n
CAPACITIVE
: . 0 O
For small o, Z(@) o s® B n3
Q(Dr Q 0)0 (01' Q OJr

Z

n

= Lo,
0

Karlheinz SCHINDL/ CERN

» wave length << bunch length (frequencies 100 MHz...1 GHz)
* Fast growth rates — even leptons concerned

BROAD-BAND IMPEDANCE

All elements of a synchrotron are
“lumped” into one low-Q resonator
yielding the impedance (p. 12)

2 2
l—iQm -—OF 0~1
_ 0O ¢
(@) =Rs 2_42Y  ©,~1GHz
1+(Qm —oarj r
0O
R
and with (p. 10) Q =—
o L

r

*This inductive impedance is caused mainly by

"Impedance” of a
synchrotron in Q

discontinuities in the beam pipe
« I[f value high, the machine is prone to instabilities

* Typically 20...50 Q for old machines
« <1 Q for modern synchrotrons

CAS Zeuthen 9/2003: Instabilities
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Microwave Instability — Stability Limit

* The Broad-Band Impedance with Q=1 has little memory

» No coupling between consecutive bunches

» Microwave instability is a single bunch effect

» leading to longitudinal bunch blow-up

* In lepton machines also called “turbulent bunch lenthening”

STABILITY LIMIT: Apply Keil-Schnell criterion for unbunched beams to

instantaneous current and momentum spread
KEIL-SCHNELL-BOUSSARD CRITERION

2n2 2
7| mye* Byl (Ap/p)
— <F
Instant
Same longit.
{ / e \ 1
"
\\, ,// o
Tinst. finst
2\ Same # particles
/ / per bunch
o -0
short bunch
more stable

protons: F ~ 0.65 leptons: F ~ 8

For a equal bunch population and
longitudinal emittance, short
bunches are more stable than long
ones
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Longitudinal Spectrum — Single Particle and Bunch

Seen by a current monitor Spectrum
A () To 2 (o) s
‘ | | ‘ | |+>‘ | | ‘ SINGLE PARTICLE 00=_~
> t > o
oo Fourier Series . .
€ &6V 400 1N®
M) =" > 6(t—€TO) > At) = 0 S e 0
Be r==c0 2T n=—o0
} k(o)
(1) SINGLE BUNCH zgggtr?uyma
N e N W
®0
A A -
-To 0 To " Fourier Series 0
+00 _
Ik(t): S I(t—kto) > Ik(t) IO +n: Incos(noaot)
k=—00 with
G~ 2m/G,: the shorter the L2 Ty . .
bunch, the wider the spectrum n-— K—TI " i (Deos(noytdt
0
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Robinson Instability: Quantitative

Ik (t)
- - ?jr‘?gnct’” a A single bunch performing
/) // \ I monitor synchrotron oscillations
i A I | around a synchronous phase
N N ) N or time
k-1 k k+1 k+2  turns
To
Tk~ =1Tcos®gt  mod ulation of bunch passage time Assume pw, T <<
+o0 0 (small synchrotron
I () = X Wt=kTo—1K)=Ig+ X I,cos(pwg(t+ 1)) oscillations)
k=—0 p=1
(D o0
[ (D) ~=]Iy+ Z L, cos(pwgt) ——2 > 1 [sm((pooo +cos)t) +sm((p000 —mg)t)]
? y p=1 upper lower
Main lines side—bands side—bands
A
SPECTRALLINES  \1niny LINES
NARROW-BAND Spectrum of a single bunch
RESONATOR : .
performing small-amplitude
ﬂl synchrotron oscillations
- PO
5 6 7 P
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Coupled Bunch Modes, Dipole & Higher Order

Dipole mode  Quadrupole Sextupole Octupole

Mountain-range
display during one
Smssynchr'ofron
" oscillation period
(0.5 ms)

aj

Signals
superimposed

Mode pattern

- - -
-7 et
L4 ~
’ e d .
r L)
T : . .
%
] i 1
c) S8

: ’I
£,

| - E 2 inlongitudinal
1§ = - f b
\ \ phase plane

\\‘-_‘ ’f’ \‘\

m=1 i mo= 2 ma 3 m o= 4
Dipole mode Quadrupole mode _  Sextupole mode ) ~ Dctupole mode

Dipole (m=1) and higher-order (m=2,3,4) modes in a synchrotron with 5 bunches
Two adjacent bunches shown.
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Longitudinal Instabilities - Cures

[ Robinson Instability, generated by main RF cavities:
Tune resonance frequency o, such that bunch frequency

ho, <o, for y <y,
ho, > o, for y>1y,

[ Cavities "Parasitic” Modes are damped by "Higher Order Mode Dampers”
(HOM): the unwanted mode is picked up by an antenna and sent to a damping

resistor.

0 Unwanted Resonators in beam pipe: RF shield
protects the beam mimicking a smooth beam pipe

dangerous
resonator

beam

O Microwave Instabilities: Reduce Broad-Band Soam e

Impedance by smooth changes in beam pipe cross
section and shielding cavity-like objects. Large Ap/p
helpful but costly in RF voltage.

O Coupled-Bunch Mode Instabilities: Run synchrotrons with 1 ore 2 bunches
(bunch-to-bunch phase shift of O or = are always longitudinally stable) (limited

to small synchrotrons)
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Longitudinal Instabilities — Feedback Systems

d Principle
The phase (or amplitude) deviation is measured in a synchronous detector and
corrected in an accelerating gap which must cover the bandwidth

[ In-phase (n=0) dipole (m=1) mode: normally tackled by the phase loop which
locks the beam phase to the cavity RF voltage phase

[ In-phase (n=0) quadrupole (m=2) mode: These bunch-shape oscillations are
treated by feeding back the observed amplitude oscillation to the RF cavity

[ Coupled-Bunch instabilities (dipole modes, m=1) are controlled by a feedback
system which tackles (i) each bunch (out of M bunches) or (ii) each mode n
(n=0,1, .., M-1) individually. In both approaches the required bandwidth is
~ 1Mo

2 0
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Transverse Beam Instabilities — Fields and Forces

LOOKING DOWN

Zi 4 ON VACUUM
g CHAMBER
INDUCED )
| = CURRENT To sustain the
T ® differential wall current

T fa I a longitudinal electric
- > y @ X w g
AR l Eo O field E, varying across

DIFFERENTIAL! b "l DIFFERENTIAL  theaperture is required
: : « P CURRENT _ ot ;
8..displacement of beam in CUTVRVENT g w > E,= Ey(y/b) ¢'** in the
y oscillating with ei®! . |0 median plane x =0
/B - - B, OE, E,. Eq
From — =—-V XE  one gets X= " Z=— Oela)t, szi—oelwt
ot ot oy b b
_ Phase-shifted with respect
pipe Pipe, same place to exciting beam oscillation
L N
$
B S
» BEAM
<
oscillating > Ez EAM
iot —=
e
t=0, excitation by displaced beam t=(1/4) 2n/w), deflection
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Transverse Coupling Impedance

$[E+ v xB], ds Deflecting field (integrated around the rin
Zr() =i L luds| _ Deflectinglield Gntegrateds 2 [/m]
BId dipole moment of exciting current
because of phase shift between dipole moment 16 and deflecting field
Relation between Z.. and Z;
(longitudinal impedance called Z so Transverse Impedance Z vs.
far), for a resistive round pipe: LongiTudinal Impedance ZL
The wall current I, generates a voltage
V around the ring: 7y Zr
V = 21RE, = 41,7, = E, = 42221 o Q @/m
[ I P Symmetry Re[Zy()] = Re[Zu(-0)] | Re[Zr(®)] =-Re[Zr(-w)]
18 1 Real Part even odd
I, =—-——I (z’.e.if& =b 1, = ——Ij
2 2 Symmetry Im{Zy(@)] =ImZ ()] | Tm{Z()] = Tm{Z(-o)]
i E, . 26 Z,1 . Imaginary part odd even
Bx — __Oeza)t — 7 5 L elwt
® b wb” 27R Typical values ~Q ~MO/m
Inserting B, and putting E = 0 yields for a synchrotron
5 Handy approximate Why negative frequencies?
Z1(o) ;—EZ—L relation between To make calculations simpler
b~ ® | 7 and Z,
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Transverse and Longitudinal Impedances

Resonator-type object
Fields and Forces

Resonator-type object
Impedance

Resistive Wall

R....machine radius

p....vacuum chamber resistivity
J....wall thickness

2cRp
Re(Z1)=—7= (low ®
(Z1)==575 (low o)

Broad-Band (with Q=1)

Karlheinz SCHINDL/ CERN

==

y

EZ

NYG YW

40) n

EZ

I

AZL A Z1
| I /U
Re (Z1)
R HIGHEST
AT SMALL ®
Re(Z, )=—F
b o 2

independent of ®

A 71
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Transverse Beam Signals — Time and Frequency

Single particle on central

orbit - longitudinal signal 2nR

Single particle, oscillating
transversally

y = ycos(ozt + ¢)

o, =Qo, =(k+qo, y (1)

fractional tune
Spectrum fl(oo)

* constant amplitude

* lines at (n+Q)w,, n any integer

Example: Q = 2.25

M= —— 3 ¢

n=-o

in(D Ot

Spectrum

A (o)

_ 2n
To

Compute spectrum

Position monitor

)

(q=0.25)

. n e +(x) . t
signal for ¢~0.1  d(1) = Jcos(Quot+¢)-—— X e
R =
_ li[ei(Qwot+¢>+e—i<Qwot+¢) T oot
22nR .
Tq ey
i d(t) = cos[(n+ Q)w ot +
THl,,, dw=5g Xeosl(n+Quot+d]
A\a(m)
SEEN BY SPECTRUM
ANALYSER
[ 1
1-q 2-q 3-qg 4-q
I A O A T
5 -4, 3 2 -1 .0 1 2
el Tl ’ 4 A
P n<-Q ziﬁﬁgdzn}o ‘ n>0 -
< T »
slow backwards | fast wave
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Transverse Instabilities — Unbunched Beam

MODE PATTERN

MODE: particles are arranged around the synchrotron
with a strict correlation between transverse particle
positions.

The mode shown is n=4. If one takes a snapshot at t=0 one has
y(t=0, 6) =y e

~n=ahumps A single particle always rotates with revolution frequency o, but

UNPERTURBED the pattern rotates with o, # ®,; how to compute @ ?

Rotation frequency

» A particle is at azimuth 0, at t=0. Its position evolves as t) = y_el(Quot-n0p)
P ‘ P Yool) =¥ of mode pattern

« after time t its azimuth is 6 = 6, + o t, s0 6, =0 - ot and y(6,t) =y, ell(Qmootnd]

» condition for y(t,0) = const yields  (Q+n) wt—nb=0 = 6(t) =(1 + Q/n) o,t > o, -0 :(14_(_2)0)0

n
n<-Q | Q<n<0} n>0 n<-Q -Q<n<0 n>0
0<m,<m 0, <0 o, > O p o
pattern | slower than | . 1wards | faster than
moves particle particle
wave slow backwards fast

Snapshots at t, (1), t, + At (2), t, + 2At (3)
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Unbunched Beam — Transverse Growth Rate

Only one mode n (one single line) grows, so only Z; around frequency (Q + n)o, relevant

2R — -
» B = - .eBlZ E +vxB)..ds
*+ Assume e(E+vxB); F=eE+VxB)r =—l%y(6,t) ZTzij" ( BVI )t
constant around the ring for BIZ . y
i —nb
a giveny F(0,t) = _1%ynel[(Q+n)“)0t n0]

V4 ' _
* Force on asingle particleon  F(t)= F(0y + @ ogt,t) = — eg RT IleI[Qoaot nfo ]
Tc —

azimuth 6(t) =0, + ot v
(D=5 _ Force_ eBIZ y(1)

* This particle’s betatron y+Q'
amplitude y(t) satisfies m,Yy 271Rm(>7

7.1
§+(Qo, +AQy=0 =AQ=i— DLl
~Q’w} +§AQQw0 4Q)w)0 RY Mo
« With oR=pc and ymF/c | AQY — i cZrl g'r'ansver'se growth rate, unbunched
47’CQE/€ eam, Z; constant around the ring
Unstable if Im(AQ) <0

« Single particle oscillation y() =y, eil(Qug + AQ)t—n8,]

changed to > Re [Z((Q+tn)oy)] <0

» (Q+n) < 0 slow waves!

For unbunched beam, only slow wave unstable
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Transverse Instabilities — Bunched Beams

Bunch shape observed
with current monitor

All particles perform
synchrotron
oscillations - their
energy changes with
frequency o,

ZERO CHROMATICITY

=92 /2
Q/ p

All particles have same
betatron tune Q - even with
changing energies

RIGID BUNCH MOTION (m=0) [A. SESSLER ~1960]

0
1

2

y(7) turn I(z) * y(r)

0 q=0.1

3
4
5

|

transverse position y(t)*current I(t) = position monitor signal

Karlheinz SCHINDL/ CERN

All particles in the bunch start at
1=0 with same betatron phase.
Although synchrotron motion
sweeps them back and forth and
changes their energy, they all
oscillate in phase
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Transverse Instabilities — Head-Tail Modes

transverse AE y(v)

dipole
mome y Head-Tail Mode

q~0.1

turn Monitor signal 1 Node

1

A4 A —

'& J i m=1
Y

Arrange initial betatron phases so as to have

dipole moments up near the head of the bunch

down near the tail

Mode pattern described by e in longitudinal
phase plane

On a slower timescale (~ms): the pattern rotates with o

Initial condition ups and downs ups and downs
(as above) superimposed: exchange places
signal = 0

SRS

—
S

R
S

Karlheinz SCHINDL/ CERN CAS Zeuthen 9/2003: Instabilities

Head-Tail Mode m=2

AE =0 (@) t= (&)

AE
* y
A
N
A

Monitor signal 2 Nodes

- 2 nodes
- pattern described by e?v
* pattern rotating with 20,
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Head-Tail Modes with Non-Zero Chromaticity

App Synchrotron <t:¢0: Q varies Glong the assume
synchrotron orbits
4a0/0

/ t Xk ---betatron phase slip after k machine turns 5= dp/p >0,
%..... betatron phase slip between head and tail 1 1
j T,.....revolution time y<r|n=—; e <0
\\\ T .....half bunch length
How to calculate y: AQ=8Q—, —=-——"""=— , |[AQ]==Q——
£ p’ p mfy nT n - Ty
Time delay 1, of a particle relative to the head dry = AT,
of the bunch changes per machine turn k: dk
. K 2 kd
Accumulated phase shift y, %k =27 AQ per turn dk = Tn & QJ dik dk = & Qo)()rk
after k machine turns: 0 20N o

‘00

Total phase shift ¢ The pattern can be kept stationary if
between head and tail |x=—=Qo, %21 the particles’ betatron phases are
arranged as in the figure
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Head-Tail Phase Shift Changes Bunch Spectrum
Example: Mode m=0

=0 (2=0)

rigid bunch
motion

N

>
A

T

d(t)

d(w) envelope

Io(nam%)

~nt/ T

The shorter the
bunch length T , the
larger the width of
the spectrum

Karlheinz SCHINDL/ CERN

Chromaticity S Qo
Frequency o, ‘

E£0 (y=0)

d(r)

d(w) envelope
Jo[ (Noow:) 7]

0

The wiggly signal passes through
a position monitor which sees

» during bunch passage time 2 1
- a phase shift of y radians

* the monitor (or an impedance)
"sees" an additional frequency

o, ==
S

CAS Zeuthen 9/2003: Instabilities

Head-tail mechanism
discovered by
C. Pellegrini, M. Sands
end 60ies

"Standard model”
F.Sacherer mid-70ies

n g O

Y<7v:| <0 >0 <0
<0 >0

Y=Y | >0 >0 >0
<0 <0
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Transverse Instabilities — Many Bunches

short bunches

Transverse positions of 1 ve y,@\ long bu/n;hes
bunches arranged to form a £ \\ /‘
pattern of n waves around ! .8
the synchrotron ./ \
> Coupled-bunch mode n
With M bunches, bunch-to- s >R
bunch b " cn=2, M=8
,‘:-'}‘i,hz etatron phase + n=2 (waves), M=16 (bunches) =2, M=8
ST emn * bunch-to-bunch betatron * bunch-to-bunch betatron
phase shift ©/4 phase shift n/2
- Head-tail phase shift small ~ * Head-Tail phase shift y large
- behaves like coasting beam * €an only be sustained witha
~ ‘ certain value y#0
d (o) closed orbit
| signal
2 3 0
g ] ‘ 5 Spectrum for
0 ‘ 3 * M=4 bunches
33, | X, » m=0 nodes within the bunch
’ 2 “ Tt | 3 2 d q = 025
0 I l | | **** ? 21 I | « coupled-bunch modes n=0,1,2,3
! o ® ® ° ° o ° S e ® 0]
Ao B A A e o

Karlheinz SCHINDL/ CERN

CAS Zeuthen 9/2003: Instabilities
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Bunched Beam — Transverse Growth Rates

Frequency shift, unbunched beam: i
Instability if Im(AQ)< 0> Re (Z;)<O0

Bunched beam, mode m

+ Sum over lines of bunch
spectrum d, (o)
* Calculate deflecting field

AQ

C

T 47QE/e

[ZT ZT taken at (n+ Q)m

R
AQ !

¢ 1Zp27(0p)dn (0, -0;)

" 1+ml4nQE/eB S pdm(@p —0;)

Vo

Impedance summed over all

higher modes bunching factor  spectral lines
~7 d nd the force g g p
. Puﬁ’ (1(.’;\) i Sn%(((:)r? C(; into Si£o| - more difficult bunch length
particle equation 9 to drive bucket length
* Take sum over -oco <p <o
One bunch: o, =(p+ Q),

M bunches, coupled-bunch mode n: o, = (n+kM + Q)ay, -0 <k <o

STABILITY?

Unstable if Im(AQ)<0
> 2 Re[Z(w,)] d, X (w0, — @) <0

Karlheinz SCHINDL/ CERN

I

as d (o,-®,)>0

a line only every Mo,

* Unstable if Re[Z(®)] <0
- only with negative frequencies
* only slow waves unstable
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Bunched Beam Transverse Stability vs. Impedance

Narrow-Band Resonator Reminder: Re[Z(®)] = - Re[Z(-v)]
- only two spectral lines Sse%’:rcl:‘m

contribute to the sum do
- Fields stored long enough — T

to act on subsequent 1 [

bunches during several turns \|

¥ Re[Z;] d2 >0 - stable ¥ Re[Z;] dj> <0 = unstable
Broad-Band Resonator SN N
+ extends to ~GHz o/ \ " 77777777777777777 /
- thus spectral lines very dense \/1 (AN
* just envelopes I, I;, I, shown B O
* Quality factor Q low > fields /o N A z_ .
not stored long enough to ! /
influence subsequent bunches S

¥ Re[Z] dy>>0 > stable X Re[Z;] d,2 <0 > unstable

For any “normal" Y <y set § <0 (o, >0)to stabilize beam
transverse impedance Y>7: set &> 0 (o > 0) to stabilize beam
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Resistive Wall Transverse Instability

2cRp
Re(Z1)=—7== (loww
(z1)==57 (lowo)

dominant Iin\
2 1

Re (27)

,,,,,,,,,,,,,,,,,,,,,,,,,, R 2
p...resistivity of beam pipe T }l \\\\\\ } WLI L . ‘ J T
5...wall thickness (low frequency) o o1 - @
or skin depth (high frequencies) AN 7] o

- not a "normal” transverse impedance

- dominant line at Re(Z;) most negative

at very low frequency

- dominant mode normally m=0 but cannot be
stabilized by setting o, >0

- setting Q above an integer (q < 0.5)

puts dominant line near the origin but at ‘
Re(Z+) > O thus stabilizing the beam

Further increasing o (by varying & with sextupoles)

may drive the hump of m=1, 2 etc. onto this dominant

line, thus switching from one mode to the next.

Karlheinz SCHINDL/ CERN CAS Zeuthen 9/2003: Instabilities

For the resistive wall
impedance, fractional
tune q < 0.5 preferable
(A.Sessler 60ies)
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Horizontal Head-Tail Instabilities in CERN PS

] ——
HEEIFY’T'I.

Cues E. Miral/ CERN
: A K

' 4 \:‘l‘: i |
e I.I-Iﬂ.l i

;§==-=====
P

| | safe. | |

A njAﬂm

Karlheinz SCHINDL/ CERN

CAS Zeuthen 9/2003: Instabilities

A single bunch with ~10'? protons
and ~150 ns length on the 1.4 GeV
injection plateau in the CERN PS
(below transition energy)

Head-tail mode numbers m=4,...,9
are generated by changing
horizontal chromaticity &, from
-0.5 (m=4) to -1.3 (m=10). The
natural chromaticity, §,=-0.9,
yields m=6 (6 nodes). For all

pictures, o, > 0, which normally
s‘rabuhzes the beam, but not in this
case.

- The impedance responsible for
this horizontal instability is the
resistive wall impedance

>20 ns/div
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Transverse Wake Fields

Instead of treating instability dynamics in the frequency domain as done so far,
one can do it in the time domain by using "Wake Fields"

What is a Wake Field?
Point charge q; passes through a resonator with a transverse displacement .
The induced Wake field W will act on the subsequent charge qg..

E/ Resonator
_— ator — RLC-circuit (p. 11)
< s — A S a " W =W, e*sin St
! ®$” : with

ey @=0JeQ)
4 (Er o S=(1-Q%4)12

t=0 -

- )

The Wake Field concept is very useful for impedances with short memory where
the fields do not act on subsequent bunches but only on particles within the same
bunch (single-bunch effects). Example: broad-band impedance (low-Q resonator)
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Transverse Wake Fields — A Simple Model

Tail ‘ Head ] ) )
Approximate bunch by just two superparticles
“head” (1) and "tail” (2) with Ne/2 charges each
N7e N7e Model by A. Chao
Ne
If head is displaced by 0, force on particle in f= 67W15
tail is

Y, = 0COS® 4t

. 2 f I\Iez“/v1
Yo H Oy, = = Y
myy  2m,y
2
1

Both head (y,) and tail (y,) oscillate with
same betatron frequency wg

Excitation on right-hand side has same =y, = 9| cosw,t+ tsinwgt
frequency dopm,y
_ tail amplitude y, grows
SLAC 50 GeV Electron Linac linearly with time
"Bad" y2 oscillating ] .
injeactioniﬂ —. / tail = Observation: Tail
alignment o Pt *~  amplitude increasing
| T | e ~ opt along the Linac - caused
‘\\ '/ . .
— by misalighments
0 % n 3n 27
2
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Transverse Instabilities - Cures

* As for longitudinal impedances: damp unwanted HOM's, protect beam by RF shields
» For "normal” transverse impedances, operate with a slightly positive
chromaticity frequency o, > for y<vy, set £ <0 (by sextupoles) &
2> for y>vy,set >0 wé:ﬁ
* For the resistive wall impedance:
> operate machine with a betatron tune just above an integer
> use highly conductive vacuum pipe material o reduce Re(Zt) and growth rate
* Landau damping also works in the transverse plane; a betatron frequency spread
Awg is generated by octupoles (betatron tune depends on oscillation amplitude)

Qo,

ition
- TRANSVERSE FEEDBACK Deflector monitor (PU)
- position error in PU — > —

- angle error in deflector (not for leptons)

- betatron phase from PU to

deflector ~(2n+1)n/2 % b = e
- electronic delay = beam travel FILTER .
time from PU to deflector ol . O

amplifiers

f, may vary during
acceleration
determines band width

- Bandwidth: ~ a few 10 kHz to a few MHz if only resistive wall
~ up to half the bunch frequency with bunch-by-bunch feedback
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