

Albin F. Wrulich

PARTICULAR FEATURES OF HIGH PERFORMANCE STORAGE RING LIGHT SOURCES

HIGH PERFORMANCE LIGHT SOURCE

FEATURES

LIGHT

MAGNET STRUCTURE

At the beginning:

SOME LIGHT SOURCE FUNDAMENTALS

SB / IPEP / LPAP - Laboratory for Particle Accelerator Physics

1898 Liénard:

(P4

$$\underline{\mathbf{P}} = \frac{2}{3} \frac{\mathbf{e}^2 \,\gamma^6}{4\pi \,\varepsilon_{\mathrm{o}} \,c} \left[\,\dot{\overline{\beta}}^2 - \left(\vec{\beta} \,x \,\dot{\overline{\beta}} \right)^2 \right]$$

LONGITUDINAL: Radiation field cannot separate itself from the Coulomb field

1898 Liénard:

$$\underline{\mathbf{P}} = \frac{2}{3} \frac{\mathbf{e}^2 \gamma^6}{4\pi \varepsilon_0 c} \left[\dot{\vec{\beta}}^2 - \left(\vec{\beta} \times \dot{\vec{\beta}} \right)^2 \right]$$

LONGITUDINAL: Radiation field cannot separate itself from the Coulomb field

a

TRANSVERSE:

Radiation field quickly separates itself from the Coulomb field

THERE ARE 3 TYPES OF DEVICES PROVIDING LIGHT FROM A STORAGE RING

SYNCHROTRON RADIATION FROM A BENDING MAGNET

1949 - On the classical radiation of accelerated electrons / J.S. Schwinger

EXAMPLE: UNDULATOR RADIATION

P. Elleaume, ESRF

WHAT IS REQUIRED FROM A HIGH PERFORMANCE LIGHT SOURCE ?

More precisely FIGURE OF MERIT

$$S \rightarrow \sum_{x} \sum_{y} \quad \Omega \rightarrow \sum_{x'} \sum_{y'} \quad B = \frac{F}{(2\pi)^{2} \sum_{x} \sum_{x'} \sum_{y} \sum_{y'}}$$

$$\Sigma^{2} = \sigma_{e}^{2} + \sigma_{\gamma}^{2}$$

$$\sigma_{\gamma}^{'} = \sqrt{\frac{\lambda}{L}} \quad \sigma_{\gamma} = \frac{\sqrt{\lambda L}}{4\pi} \quad \Rightarrow \text{ photon beam sizes (undulator)}$$

$$\Sigma_{x} \Sigma_{x'} \approx \sigma_{x} \sigma_{x}^{'} \sim \varepsilon_{x} \quad \Rightarrow \text{ far away from diffraction limit}$$

Why is high brilliance (large number of photons on the sample) needed ?

EXAMPLE:

Siccinat-Dehydrogenase

N. Ban, S. Iwata, U. Baumnan et al.

... to get some flux into sample acceptance phase space

PERFORMANCE OF 3th GENERATION LIGHT SOURCES

COHERENCE

 \rightarrow the property that enables a wave to produce visible diffraction and interference effects"

When do we get diffraction patterns ?

- Pointlike monochromatic source
 → always
- Pointlike source with $\Delta\lambda$ bandwith $\rightarrow \Delta\lambda/\lambda < 1 \text{ or } L_c > \lambda$

$$L_{\rm c} = \frac{\lambda}{\Delta \lambda / \lambda}$$

COHERENT LENGTH

$$\lambda_{1}$$

$$\lambda_{2}$$

$$L_{c}$$

$$\Delta \lambda = \lambda_{2} - \lambda_{1}$$

$$L_{c} = \frac{\lambda}{\Delta \lambda / \lambda}$$
180 ° out of phase

When do we get diffraction patterns ?

• Extended monochromatic source $\rightarrow d \theta = 2\lambda$ (full lateral coherence)

$$\left(\frac{2\lambda}{d\theta}\right)^2$$

Increasing the coherence with a pinhole \rightarrow

NO SOURCE GEOMETRY BEATS THE DIFFRACTION LIMIT !

More precisely

 $(d\theta)^2 \rightarrow \Sigma_x \Sigma_x, \Sigma_y \Sigma_y$

What counts is the coherent flux:

$$\varepsilon \leq \frac{\lambda}{4\pi}$$

→ diffraction limited beam
 (full transverse coherence)

COHERENCE is needed for

EXAMPLES:

- o PHASE CONTRAST IMAGING
- o SPECKLE INTERFEROMETRY
- o HOLOGRAPHY

EYE OF A FLY

MATERIAL SCIENCE BEAMLINE: Marco Stampanoni, Rafael Abela

CONVENTIONAL RADIOLOGY

COHERENCE BASED RADIOLOGY

FED

Using the partial coherence of an X-ray beam

POLARISATION OF THE LIGHT

LINEAR

CIRCULAR

POLARISATION is needed for

EXAMPLES:

- o ORIENTATION OF MOLECULES
- o MAGNETIC CIRCULAR DICHROISM

PEEM INVESTIGATION OF NANOPATTERNED MAGNETOSTRICTIVE SYSTEMS

Magnetic ripple in as-grown cobalt-Terfenol sandwich film on prepatterned Si substrate.

XMCD images of magnetic domains following demagnetisation

TUNABILITY

(the right energy for the experiment)

EXAMPLES:

- o **DIFFRACTION**
- o TOMOGRAPHY (absorption edge)
- o SURFACE PHYSICS
- o Ecc.

ABSORPTION TOMOGRAPHY MATERIAL SCIENCE BEAMLINE

Bone sample damage

Sample before load.

Sample after 5% static compression and 2.5 % dynamic deformation, 1000 cycles

EMPA

Institute for Biomedical Engineering

Philipp Thurner, EMPA and IBT, Marco Stampanoni, SLS 360 microns

uni | eth | zürich

Institute for Biomedical Engineering

SLS Swiss Light Source

PHASE CONTRAST TOMOGRAPHY

MATERIAL SCIENCE BEAMLINE

3-dimensional reconstruction of the vesicular distribution in mouse brains"

Size ~ 1 mm³ Resolution ~ 1 μm

PHOTO ELECTRON EMISSION

STABILITY

Intensity: change in background conditions and thermal load on beamline optics and machine components (\rightarrow position stability!)

Position: dilution of the emittance (reduced brilliance), intensity fluctuations

Energy: shift of the radiation harmonics from an undulator (intensity fluctuations); broadning of the lines

WHAT IS REQUIRED FROM A HIGH PERFORMANCE LIGHT SOURCE ?

SUMMARY

- High Brilliance
- **Coherence**
- Polarisation
- Tunability
- Stability

LIGHT SOURCE REQUIREMENTS → ACCELERATOR FEATURES

- **High Brilliance** \rightarrow A. Streun
 - Coherence
- Polarisation
- Tunability
- Stability

■ HIGH BRILLIANCE requires →

- HIGH CURRENT

- LOW EMITTANCE
$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}} \cdot \left\langle \frac{H}{\rho} \right\rangle$$

$$H = D_x^2 \gamma_x + 2D_x D'_x \alpha_x + D'_x^2 \beta_x$$

- UNDULATORS INSTALLED IN LATTICE STRAIGHTS

→ ACHROMAT STRUCTURES, TYPICALLY:

DBA / Double Bend Achromat

$$K = \frac{1}{4\sqrt{15}} \approx 6,5.10^{-2}$$

TBA / Triple Bend Achromat

$$K = \frac{7}{36\sqrt{15}} \approx 5.10^{-2}$$

Steep rise in brightness/brilliance

(units: photons/mm²/s/mrad², 0.1% bandwidth)

-----INSERT------

FUTURE LIGHT SOURCES

- SMALL BANDWIDTH
- AVERAGE BRILLIANCE (10³⁰ - 10³³)
 SHORT PULSES (1 ps – 50 fs)
- UNBEATABLE PEAK AND AVERAGE BRILLIANCE (10³⁰ - 10³³)
- SASE FREE ELECTRON LASERS

SB / IPEP / LPAP - Laboratory for Particle Accelerator Physics

INCOHERENT EMISSION

COHERENT EMISSION

REQUIRES AN EXTREMELY SMALL ELECTRON BEAM !

TESLA X - FEL at DESY

Ribosome

MPG

USERS DREAM WILL THEN BECOME REALITY \rightarrow

Single shot imaging of single biomolecular complexes

NEEDS MANY PHOTONS ON THE SAMPLE !

LYSOZYME MOLEKUEL

Light induced structural changes during photocycle

and time resolved studies of structural processes during chemical and bilogical reactions

NEEDS VERY SHORT PULSES !

-----END INSERT------

LIGHT SOURCE REQUIREMENTS → ACCELERATOR FEATURES

- High Brilliance
- \rightarrow A. Streun

- Coherence
- Polarisation
- Tunability
- Stability

LATERAL COHERENCE

- is increasing with brilliance

LONGITUDINAL COHERENCE

- needs light emitted in a small bandwidth

UNDULATOR:

N ... number of magnet poles

→ use long undulators to increase the longitudinal coherence (suggested for some RECIRCULATOR projects)

LIGHT SOURCE REQUIREMENTS → ACCELERATOR FEATURES

- High Brilliance
 - Coherence
- Polarisation
- Tunability
- Stability

 \rightarrow A. Streun

- \rightarrow related to brilliance
- \rightarrow ID talk

ELECTROMAGNETIC UE212 (8-800 eV)

APPLE II TYPE UE56 (90 eV-3 keV)

LIGHT SOURCE REQUIREMENTS → ACCELERATOR FEATURES

- High Brilliance
 - Coherence
- Polarisation
- Tunability
- Stability

 \rightarrow A. Streun

- \rightarrow related to brilliance
- \rightarrow ID Vortrag

FOR ATOMIC RESOLUTION \rightarrow X-RAYS ARE NEEDED

THERE IS AN INCREASING NEED FOR HIGHER PHOTON ENERGIES !

Medium energy machines can only get there by:

- o SMALL PERIOD (LOW GAP) UNDULATORS
- **o** THE USE OF HIGHER HARMONICS

SB / IPEP / LPAP - Laboratory for Particle Accelerator Physics

IN VACUUM UNDULATOR K^2 U-24 (Spring-8 / SLS) 0 λ man G. Ingold T. Schmidt

THIS OPERATION MODE CREATES A SERIES OF ADVERSE EFFECTS THAT MUST BE CURED:

- o SMALL GAPS
 - → enhanced beam gas scattering (and also Touschek scattering!)
 [higher harmonic cavity, sophisticated vacuum system]
- o HIGHER HARMONICS
 - → Are destroyed if the energy spread is blown up needs therefore perfect cure of multi-bunch instabilities [mode shifting, temperature tuning, feedback
 - systems, higher harmonic cavity]

SC HIGHER HARMONIC CAVITY

3HC COLLABORATION

- CEA (Saclay)
- CERN
- Sincrotrone Trieste
- PSI

Top up with 300 mA and s.c. cavity

LIGHT SOURCE REQUIREMENTS → ACCELERATOR FEATURES

- High Brilliance
- Coherence
- Polarisation
- Tunability
- Stability

 \rightarrow A. Streun

- \rightarrow related to brilliance
- \rightarrow ID Vortrag

SB / IPEP / LPAP - Laboratory for Particle Accelerator Physics

POSITION STABILITY / SLS: 100 s 30 nm

- 20 days 1 year
 - 0.5 µm 1-2 µm

INTENSITY STABILITY

814

x position [um]

TOP UP REQUIRES A PROPER INJECTION CHAIN

- reliable
- low power consumption
- small injected beam size

SLS-BOOSTER

 ϵ = 9 nm (2.4 GeV) P_{mag} = 200 kW

What is the smallest possible spot size ?

Minimum spot size (FWHM): Δx_{min} =0.64 W_c ,

$$W_{c} = \frac{\lambda}{2\theta_{c}} = \frac{1}{2} \cdot \sqrt{\frac{\pi}{r_{0}n_{e}}}$$

...this limit on spot size appears to hold also for other X-ray focusing devices.

SiO₂: $\Delta x_{min} = 13 \text{ nm}$ Au: $\Delta x_{min} = 5 \text{ nm}$

ENERGY STABILITY ~ 10⁻⁵

CORRECTING THE AVERAGE HORIZONTAL ORBIT BY ADJUSTING THE RF FREQUENCY AND THUS ADJUSTING THE ELECTRON ENERGY

HIGH INTENSITY STABILITY OF MONOCHROMATOR OUTPUT

$$\lambda = \frac{\lambda_0}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

DAY / NIGHT TEMPERATURE VARIATIONS

CIRCUMFERENCE OF THE SLS RING CHANGES WITH OUTSIDE TEMPERATURE

RF FREQUENCY IS ADJUSTED TO COMPENSATE FOR THESE CHANGES

SUMMARY (1)

FEATURES OF A HIGH PERFORMANCE LIGHT SOURCE

HIGH BRILLIANCE

- \rightarrow high beam current
- \rightarrow low emittance lattice
- \rightarrow use of undulators

HIGH COHERENCE

- \rightarrow high brilliance (lateral coherence)
- \rightarrow narrow bandwith (temporal coherence)
 - long undulators
 - waiting for next light source generation

SUMMARY (2)

FEATURES OF A HIGH PERFORMANCE LIGHT SOURCE

■ THE PROPER PHOTON ENERGY (TUNABILITY)

- \rightarrow low gap undulators
 - top-up injection
 - proper injection chain
 - bunch lengthening cavity
- \rightarrow use of higher harmonics
 - energy spread stability
 - multi-bunch feedback sysetms
 - bunch lengthening cavity

SUMMARY(3)

FEATURES OF A HIGH PERFORMANCE LIGHT SOURCE

HIGH STABILITY INTENSITY

 \rightarrow top-up injection

- proper injection chain

ENERGY

→ RF frequency correction POSITION

 \rightarrow top-up injection

- \rightarrow fast BPM system
- \rightarrow orbit FB system

 \rightarrow proper foundation, magnets support system, etc...

X-PEEM studies of Temperature induced Spin Reorientation Transition in Fe/Gd multilayers

Domain pattern during a spin reorientation transition from in-plane to out-of-plane magnetization.

Protonation state of hydantoin head

Inhibitor HD04 in active site of Aldose Reductase

Trying to understand possible ways of treating Diabetes Mellitus

- Podjarny et al IGBMC-CNRS
- PX team SLS

When do we get diffraction patterns ?

- Pointlike monochromatic source
 → always
- Pointlike source with $\Delta\lambda$ bandwith $\rightarrow \Delta\lambda/\lambda < 1 \text{ or } L_c > \lambda$
- Extended monochromatic source \rightarrow S Ω = 2 λ (full lateral coherence)

PROTEIN STRUCTURE

Diffraction pattern

Part of a Ribosome

Typical crystal size: $50 \ \mu m$ by $50 \ \mu m$ High resolution requires low divergence (e.g. 0.2 x 0.2 mrad)

NEEDS HIGH BRILLIANCE TO GET SOME FLUX INTO THE SAMPLE ACCEPTANCE PHASE SPACE !

N. Barn et. al.

UNDULATOR BASED SOURCES

Brightness
$$B = \frac{N_{ph}}{\Delta t} \cdot \frac{1}{\Delta S \cdot \Delta \Omega} \cdot \frac{1}{\Delta \lambda/\lambda}$$
Flux $N_{ph} \propto N_u$ (periods)The line width $\frac{\Delta \lambda}{\lambda} \sim \frac{1}{N_u}$ if $\frac{1}{N_u} > 2\pi \cdot \frac{\sigma_E}{E}$

If energy spread is small enough

λ

UNDULATOR LINEWIDTH

Undulator of infinite length

$$N_u = \infty \quad \Rightarrow \quad \frac{\Delta \lambda}{\lambda} = 0$$

Finite length undulator

- radiation pulse has as many periods as the undulator
- the line width is

Due to the electron energy spread

X-BPM

Daily drifts

- hor. 2.3 microns
- vert. 1.7 microns
- Position fluctuations are in agreement with the electron BPM data

DAY-NIGHT TEMPERATURE FLUCTUATIONS

Circumference of the SLS ring changes with outside temperature

RF frequency is adjusted to compensate for these changes

REQUIRES AN EXTREMELY SMALL ELECTRON BEAM !

Other uses of coherence

X-Ray ABSORPTION

X-rays excite from core state to unoccupied state Near edge absorption related to angular momentum projected

X-Ray ABSORPTION

Structural Information via X-Ray Absorption (EXAFS)

- Local structure
- Disordered media
- Biological systems

