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Transverse Dynamics – E. Wilson –
CERN – 16th September 2003
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The lattice
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Solution of Hill

� Differentiate

substituting

� Necessary condition for solution to be true

so

� Differentiate again

and add to both sides
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Solution of Hill (conc)

� The condition that these three coefficients
sum to zero is a differential equation for 
the envelope 
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Meaning of Twiss parameters

� ��is either :
» Emittance of a beam anywhere in the ring
» Courant and Snyder invariant for one particle 

anywhere in the ring

� (s)2
� 2�(s)y ��y ��(s) ��y 2

� �
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Liouville’s Theorem

� “The area of a contour which encloses all the beam in 
phase space is conserved”

� This area = ���is the “emittance”
� It is the same all round the ring

� NOT TRUE:
during acceleration
in an electron machine where synchrotron emission damps
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Closed orbit
Zero betatron
amplitude

Closed orbit of an ideal machine

� In general particles executing betatron 
oscillations have a finite amplitude

� One particle will have zero amplitude and 
follows an orbit which closes on itself

� In an ideal machine this passes down the axis 

��x 

x
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Dispersion- reminder

� Low momentum particle is bent more
� It should spiral inwards but:
� There is a displaced (inwards) closed orbit
� Closer to axis in the D’s
� Extra (outward) force balances extra bends

� D(s) is the “dispersion function”

 
x � D(s)

�p
p

Fig. cas 1.7-7.1C
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Dispersion  – from the “sine and 
cosine” trajectories

� The combination of displacement, divergence and 
dispersion gives:

� Expressed as a matrix

� It can be shown that:

� Fulfils the particular solution of Hill’s eqn. when 
forced :
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From “three by three” matrices

� Adding momentum defect to horizontal divergence 
and displacement vector–

� Compute the ring as a product of small matrices and 
then use:

� To find the dispersion vector at the starting point
� Repeat for other points in the ring
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Making an orbit bump grow

� As we slowly raise the current in a dipole:
� The zero-amplitude betatron particle follows a 

distorted orbit
� The distorted orbit is CLOSED
� It is still obeying Hill’s Equation
� Except at the kink (dipole) it follows a betatron 

oscillation.
� Other particles with finite amplitudes oscillate about 

this new closed orbit

DIPOLE
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FNAL MEASUREMENT

� Historic measurement from FNAL main ring
� Each bar is the position at a quadrupole
� +/- 100 is width of vacuum chamber
� Note mixture of 19th and 20th harmonic
� The Q value was 19.25
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Overlapping beam bumps

� Each colour shows a triad bump centred on a 
beam position measurement.

� A computer calculates the superposition of 
the currents in the dipoles and corrects the 
whole orbit simultaneously
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Gradient errors
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Resonance condition nQ � p ,

pmQQ VH ���
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Multipole field expansion (polar)

 � (r ,�)Scalar potential obeys Laplace
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Example of an octupole whose potential
oscillates like sin 4��around the circle
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Taylor series expansion
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Field in polar coordinates:
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Taylor series of multipoles

Fig. cas 1.2c
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Multipole field shapes

 �
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� The Q is determined by the lattice quadrupoles whose 
strength is:

� Differentiating:
� Remember from gradient error analysis

� Giving by substitution

Q’  is the chromaticity
� “Natural” chromaticity

�Q � Q ��  
�p
p

Chromaticity- reminder
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N.B. Old books say
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Correction of Chromaticity

� Parabolic field of a 6 pole is really a gradient which 
rises linearly with x

� If x is the product of momentum error and dispersion

� The effect of all this extra focusing cancels 
chromaticity

� Because gradient is opposite in v plane we must have 
two sets of opposite polarity at F and D quads where 
betas are different
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� Imagine a blue particle colliding with a beam of cross 
section area - A

� Probability of collision is

� For N particles in both beams

� Suppose they meet f times per second at the revolution 
frequency

� Event rate

Luminosity

�

A
� N

�

A
� N2

f rev �
�c

2�R

frev N2

A
��

LUMINOSITY

Make small

Make big

�1030  to 1034  cm-2 s-1� �

e.g.  10�25
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