Transverse Dynamics - E. Wilson CERN - 16 ${ }^{\text {th }}$ September 2003

- The lattice calculated
- Solution of Hill
- Solution of Hill (conc)
- Meaning of Twiss parameters
- Liouville's Theorem
- Closed orbit of an ideal machine
- Dispersion - from the "sine and cosine" trajectories
- From "three by three" matrices
- Making an orbit bump grow
- Measuring the orbit
- Overlapping beam bumps
- Gradient errors
- Resonance condition
- Multipole field expansion
- Taylor series expansion
- Multipole field shapes
- Correction of Chromaticity
- Luminosity

The lattice

Zeuten 2 - E. Wilson - 9/3/03-Slide 2

Solution of Hill

- Differentiate $\quad y=\sqrt{\beta(s) \varepsilon} \cos \left(\phi(s)+\phi_{o}\right)$

$$
\text { substituting } \longrightarrow w=\sqrt{\beta}, \quad \phi=\phi(s)+\phi_{o}
$$

$y^{\prime}=\varepsilon^{1 / 2}\left\{w^{\prime}(s) \cos \phi-\frac{d \phi}{d s} w(s) \sin \phi\right\}$

- Necessary condition for solution to be true $\frac{d \phi}{d s}=\frac{1}{\beta(s)}=\frac{1}{w^{2}(s)}$

So

$$
y^{\prime}=\varepsilon^{1 / 2}\left\{w^{\prime}(s) \cos \phi-\frac{1}{w(s)} \sin \phi\right\}
$$

- Differentiate again

Solution of Hill (conc)

- The condition that these three coefficients
sum to zero is a differential equation for the envelope

$$
\begin{gathered}
w^{\prime \prime}(s)+k w(s)-\frac{1}{w^{3}(s)}=0 \\
\text { alternatively } \\
\frac{1}{2} \beta \beta^{\prime \prime}-\frac{1}{4} \beta^{\prime 2}+k \beta^{2}=1
\end{gathered}
$$

[^0]
Meaning of Twiss parameters

- ε is either :
» Emittance of a beam anywhere in the ring
» Courant and Snyder invariant for one particle anywhere in the ring

$$
\gamma(s)^{2}+2 \alpha(s) y y^{\prime}+\beta(s) y^{\prime 2}=\varepsilon
$$

Liouville's Theorem

" "The area of a contour which encloses all the beam in phase space is conserved"

- This area $=\pi \varepsilon$ is the "emittance"
- It is the same all round the ring

- NOT TRUE:
during acceleration
in an electron machine where synchrotron emission damps

Closed orbit of an ideal machine

- In general particles executing betatron oscillations have a finite amplitude
- One particle will have zero amplitude and follows an orbit which closes on itself
- In an ideal machine this passes down the axis

Dispersion- reminder

- Low momentum particle is bent more
- It should spiral inwards but:
- There is a displaced (inwards) closed orbit
- Closer to axis in the D's
- Extra (outward) force balances extra bends

- $\mathbf{D}(\mathbf{s})$ is the "dispersion function"

$$
x=D(s) \frac{\Delta p}{p}
$$

Dispersion - from the "sine and cosine" trajectories

- The combination of displacement, divergence and dispersion gives:

$$
\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}
$$

- Expressed as a matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s_{0}}
$$

- It can be shown that:

$$
D(s)=S(s) \int_{s_{0}}^{s} \frac{1}{\rho(t)} C(t) d t-C(s) \int_{s_{0}}^{s} \frac{1}{\rho(t)} S(t) d t
$$

- Fulfils the particular solution of Hill's eqn. when forced :

$$
D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho(s)}
$$

From "three by three" matrices

- Adding momentum defect to horizontal divergence and displacement vector-
$\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)_{2}=\left(\begin{array}{ccc}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)_{1}$
- Compute the ring as a product of small matrices and then use:

$$
\begin{gathered}
D(s)=\left(\frac{m_{12} m_{13}}{1-m_{11}}\right) D^{\prime}(s) \\
D^{\prime}(s)=\frac{m_{13} m_{21}+\left(1-m_{11}\right) m_{23}}{\left(1-m_{11}\right)\left(1-m_{22}\right)-m_{21} m_{12}}
\end{gathered}
$$

- To find the dispersion vector at the starting point
- Repeat for other points in the ring

- As we slowly raise the current in a dipole:
- The zero-amplitude betatron particle follows a distorted orbit
- The distorted orbit is CLOSED
- It is still obeying Hill's Equation
- Except at the kink (dipole) it follows a betatron oscillation.
- Other particles with finite amplitudes oscillate about this new closed orbit

FSNAL MEASUREMENT

- Historic measurement from FNAL main ring
- Each bar is the position at a quadrupole
- +/- 100 is width of vacuum chamber
- Note mixture of 19th and 20th harmonic
- The Q value was 19.25

Overlapping beam bumps

- Each colour shows a triad bump centred on a beam position measurement.
- A computer calculates the superposition of the currents in the dipoles and corrects the whole orbit simultaneously

Gradient errors

Multipole field expansion (polar)

Scalar potential $\phi(\mathrm{r}, \theta)$ obeys Laplace

$$
\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=0 \quad \text { or } \quad \frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \frac{\partial \phi}{\partial \mathrm{r}}\right)=0
$$

whose solution is $\quad \phi=\sum_{\mathrm{n}=1}^{\infty} \phi_{\mathrm{n}} \mathrm{r}^{\mathrm{n}} \sin \mathrm{n} \theta$
Example of an octupole whose potential oscillates like $\sin 4 \theta$ around the circle

Taylor series expansion

$$
\phi=\sum_{\mathrm{n}=1}^{\infty} \phi_{\mathrm{n}} \mathrm{r}^{\mathrm{n}} \sin \mathrm{n} \theta
$$

Field in polar coordinates:

$$
\begin{gathered}
\mathrm{B}_{\mathrm{r}}=-\frac{\partial \phi}{\partial}, \quad \mathrm{B}_{\theta}=\frac{1}{\mathrm{r}} \frac{\partial \phi}{\partial \theta} \\
\mathrm{~B}_{\mathrm{r}}=\phi_{\mathrm{n}} \mathrm{nr}^{\mathrm{n}-1} \sin \mathrm{n} \theta, \quad \mathrm{~B}_{\theta}=\phi_{\mathrm{n}} \mathrm{nr}^{\mathrm{n}-1} \cos \mathrm{n} \theta
\end{gathered}
$$

To get vertical field

$$
\begin{aligned}
\mathrm{B}_{\mathrm{z}} & =\mathrm{B}_{\mathrm{r}} \sin \theta+\mathrm{B}_{\theta} \cos \theta \\
& =-\phi_{\mathrm{n}} \mathrm{nr}^{\mathrm{n}-1}[\cos \theta \cos \mathrm{n} \theta+\sin \theta \sin \mathrm{n} \theta] \\
& =\phi_{\mathrm{n}} \mathrm{nr}^{\mathrm{n}-1} \cos (\mathrm{n}-1) \theta=\phi_{\mathrm{n}} \mathrm{nx}^{\mathrm{n}-1} \quad(\text { when } \mathrm{y}=0)
\end{aligned}
$$

Taylor series of multipoles

$$
\begin{aligned}
\mathrm{B}_{\mathrm{z}}= & \phi_{\mathrm{o}}+\phi_{2} \cdot 2 \mathrm{x}+\phi_{3} \cdot 3 \mathrm{x}^{2}+\phi_{4} \cdot 4 \mathrm{x}^{3}+\ldots \ldots \\
= & \mathrm{B}_{\mathrm{o}}+\frac{1}{1!} \frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{x}}+\frac{1}{2!} \frac{\partial^{2} \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{x}^{2}}+\frac{1}{3!} \frac{\partial^{3} \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{x}^{3}}+\ldots . . \\
& \text { Dip. Quad Sext Octupole }
\end{aligned}
$$

Multipole field shapes

Chromaticity- reminder

- The \mathbf{Q} is determined by the lattice quadrupoles whose strength is:

$$
k=\frac{1}{(B \rho)} \frac{d B_{z}}{d x} \propto \propto \frac{1}{p}
$$

- Differentiating:
- Remember from gradient error analysis

$$
\frac{\Delta k}{k}=-\frac{\Delta p}{p} .
$$

- Giving by substitution

$$
\begin{aligned}
& \Delta Q=\frac{1}{4 \pi} \int \beta(s) \delta k(s) d s . \\
& \mathbf{Q}^{\prime} \text { is the chromaticity }
\end{aligned}
$$

- "Natural" chromaticity

$$
\begin{gathered}
\left.\Delta Q=\frac{1}{4 \pi} \int \beta(s) \Delta k(s) d s=-\frac{-1}{4 \pi} \int \beta(s) k(s) d s\right] \frac{\Delta p}{p} . \\
\Delta Q=Q \frac{\Delta p}{p} \\
Q^{\prime}=-\frac{1}{4 \pi} \oint \beta(s) k(s) d s \approx-1.3 Q
\end{gathered}
$$

N.B. Old books say $\xi=\frac{p}{Q} \frac{d Q}{d p}=\frac{Q^{\prime}}{Q}$

Correction of Chromaticity

- Parabolic field of a $\mathbf{6}$ pole is really a gradient which rises linearly with x
- If x is the product of momentum error and dispersion
- The effect of all this extra focusing cancels chromaticity

$$
\Delta k=\frac{B^{\prime \prime} D}{(B \rho)} \frac{\Delta p}{p} .
$$

- Because gradient is opposite in y plane we must have two sets of opposite polarity at F and D quads where betas are different

$$
\Delta Q=\left[\frac{1}{4 \pi} \int \frac{B^{\prime \prime}(s) \beta(s) D(s) d s}{(B \rho)}\right] \frac{d p}{p} .
$$

[^1]
Luminosity

- Imagine a blue particle colliding with a beam of cross section area - A
- Probability of collision is
$\frac{\sigma}{A} \cdot N$
- For \mathbf{N} particles in both beams

$$
\frac{\sigma}{A} \cdot N^{2}
$$

- Suppose they meet f times per second at the revolution frequency
- Event rate $\quad f_{r e v}=\frac{\beta c}{2 \pi R}$

Zeuten 2 - E. Wilson - 9/3/03 - Slide 21

Summary

- The lattice calculated
- Solution of Hill
- Solution of Hill (conc)
- Meaning of Twiss parameters
- Liouville's Theorem
- Closed orbit of an ideal machine
- Dispersion - from the "sine and cosine" trajectories
- From "three by three" matrices
- Making an orbit bump grow
- Measuring the orbit
- Overlapping beam bumps
- Gradient errors
- Resonance condition
- Multipole field expansion
- Taylor series expansion
- Multipole field shapes
- Correction of Chromaticity
- Luminosity

[^0]: Zeuten 2 - E. Wilson - 9/3/03-Slide 4

[^1]: Zeuten 2 - E. Wilson - 9/3/03 - Slide 20

