Nonlinearities in light sources

or: How to correct the chromaticity without destroying the dynamic aperture in a high brightness light source lattice

Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland

Contents:

- The source of chromaticity
- Chromaticity correction with sextupoles
- Breakdown of dynamic acceptance: investigation of sextupole effects
- First order optimization of the sextupole pattern
- Particular light source problem
- Second order optimization: octupole terms

Nonlinearities \rightarrow CHAOS \rightarrow separatrix for bounded motion (= dynamic acceptance)

Light source problems:

- Transverse acceptance **bad** [i.e. separatrix < beam pipe] \rightarrow **no injection**
- Lattice energy acceptance (= energy dependant transverse acceptance) bad [i.e. < RF energy acceptance] → low beam lifetime

Methods for nonlinear optimization

Iterate

 \Longrightarrow

analytical

- 1^{st} & 2^{nd} order perturbation theory \rightarrow maps, resonance drive terms, tune shifts with amplitude ...
- \oplus quick calculation
- interactive optimization (semi-analytic minimization)
- no prediction of performance (perturbation!)
 - \rightarrow "the art of weighting..."
 - \implies **Design**

numerical

Particle tracking

- \rightarrow Poincaré plots, dynamic aperture scans, particle spectra...
- \ominus slow calculation
- ⊖ difficult to use in minimizer (fractal parameter space!)
- \oplus valid prediction of performance
 - \rightarrow complete & correct model

Quadrupole:

Test lattice: ESRF with original optics for dispersion free straights

(Gradient error $\Delta b_2 ds$) × (one turn matrix \mathcal{M}) = (new one turn matrix $\tilde{\mathcal{M}}$)^a

Gradient error due to chromatic aberration: $\pm \Delta b_2 = \mp b_2 \delta$ (hor./vert.)

 $\begin{pmatrix} 1 & 0 \\ \pm b_2 \delta \, ds & 1 \end{pmatrix} \times \begin{pmatrix} \cos 2\pi Q & \beta \sin 2\pi Q \\ -\frac{\sin 2\pi Q}{\beta} & \cos 2\pi Q \end{pmatrix} = \begin{pmatrix} \cos 2\pi \tilde{Q} & \beta \sin 2\pi \tilde{Q} \\ -\frac{\sin 2\pi \tilde{Q}}{\beta} & \cos 2\pi \tilde{Q} \end{pmatrix}$ $\frac{1}{2} \operatorname{Tr}(\tilde{\mathcal{M}}) = \cos 2\pi \tilde{Q} = \cos 2\pi (Q + \Delta Q) = \cos 2\pi Q \pm \frac{1}{2} b_2 \delta \beta \sin 2\pi Q \, ds$ $\Delta Q \ll 1 \longrightarrow \Delta Q = \mp \frac{1}{4\pi} b_2 \delta \beta \, ds \qquad \xi = \frac{\Delta Q}{\delta} = \mp \frac{1}{4\pi} \oint_C b_2(s) \beta(s) \, ds$ Light source: Low emittance: $\epsilon \downarrow \rightarrow \int b_2 \uparrow \rightarrow \xi_x \uparrow \qquad (\xi_x \approx -50 \dots -100)$ \Longrightarrow Head tail instability^b

 \implies Low energy acceptance

^aE. D. Courant amd H. S. Snyder, The alternate gradient synchrotron, Ann. Phys. 3 ^bA.W.Chao, Coherent instabilities of a relativistic bunched beam, AIP Conf. Proc. 105 (1982) 353

Quadrupole: $b_2 = \frac{1}{(B \rho)} \frac{d B_y}{d x}$	Sextupole: $b_3 = \frac{1}{2} \frac{1}{(B \rho)} \frac{d^2 B_y}{d x^2}$
$\Delta x' = -b_2 L x$	$\Delta x' = -b_3 L(x^2 - y^2)$
$\Delta y' = b_2 L y$	$\Delta y' = 2b_3 Lxy$

Chromatic aberrations: $b_n(\delta) = b_n/(1+\delta) \approx b_n(1-\delta)$ Sextupoles in dispersive regions: $x \to D\delta + x \quad y \to y$ Kicks on a particle (keep up to second order in products of x, y, δ):

Quadrupole: $\Delta x' = -b_2 Lx + [b_2 L] \delta x$ $\Delta y' = +b_2 Ly - [b_2 L] \delta y$ Sextupole: $\Delta x' = -[2b_3 LD] \delta x - b_3 L(x^2 - y^2) - b_3 LD^2 \delta^2$ $\Delta y' = +[2b_3 LD] \delta y + 2b_3 L xy$

Chromaticity correction for $(2b_3LD \stackrel{!}{=} b_2L)$: nonlinear kicks...

$$\xi_{x/y} = \pm \frac{1}{4\pi} \oint_C \left[2b_3(s)D(s) - b_2(s) \right] \beta_{x/y}(s) \, ds$$

= $\frac{1}{4\pi} \left(\pm \sum_{\text{sext}} 2(b_3L)_n \, \beta_{(x/y)n} \, D_n \mp \sum_{\text{quad}} (b_2L)_n \, \beta_{(x/y)n} \right) \stackrel{!}{=} 0 \, \left[+\Delta \xi_{x/y} \right]$

Linear system: 2 *families* of sextupoles SF, SD

$$\frac{1}{2\pi} \left(\begin{array}{cc} +\sum_{n\in\mathrm{SF}}\beta_{xn}D_n & +\sum_{n\in\mathrm{SD}}\beta_{xn}D_n \\ -\sum_{n\in\mathrm{SF}}\beta_{yn}D_n & -\sum_{n\in\mathrm{SD}}\beta_{yn}D_n \end{array} \right)_{2\times 2} \times \left(\begin{array}{c} (b_3L)_{\mathrm{SF}} \\ (b_3L)_{\mathrm{SD}} \end{array} \right)_{1\times 2} \\
= \frac{1}{4\pi} \left(\begin{array}{c} +\sum_{\mathrm{Quad}}(b_2L)\beta_{xn} \\ -\sum_{\mathrm{Quad}}(b_2L)\beta_{yn} \end{array} \right)_{1\times 2} \left[+ \frac{\Delta\xi_x}{\Delta\xi_y} \right] \Longrightarrow \quad (b_3L)_{\mathrm{SF}}, \ (b_3L)_{\mathrm{SD}} \end{array}$$

Decoupling:

$$\rightarrow$$
 SF locations: $D \uparrow$, $\beta_x \uparrow$, $\beta_y \downarrow \longrightarrow$ SD locations: $D \uparrow$, $\beta_x \downarrow$, $\beta_y \uparrow$

The Hamiltonian

Hamiltonian equations of motion (local):

 $\begin{aligned} x'(s) &= \frac{\partial H}{\partial p_x} = \frac{p_x}{1+\delta} \qquad p'_x(s) = -\frac{\partial H}{\partial x} = b_1\delta - (b_1^2 + b_2)x + b_2y - b_3(x^2 - y^2) \\ &\to \text{e.g. kick from quad. (length L):} \qquad \Delta x' = \int_Q x'' \, ds = \int_Q \frac{p'_x}{1+\delta} \, ds = -\frac{b_2}{1+\delta} \, L \, x \end{aligned}$

Goal: Global Quad. & Sextupole contribution: $\int_{\text{cell}} [H_2(s) + H_3(s)] ds$ \rightarrow independent of δ : chromaticity corrected

 \rightarrow linear and uncoupled ($\sim x^2, y^2$): cancellation of nonlinear kicks

Insert betatron oscillations (global, linear, flat lattice):

$$x(s) = \sqrt{2J_x \beta_x(s)} \cos \phi(s) + D(s) \delta \qquad y(s) = \sqrt{2J_x \beta_x(s)} \cos \phi(s)$$

$$\implies \int_{\text{cell}} [H_2(s) + H_3(s)] \, ds = \sum h_{jklmp} \text{ with}$$

$$h_{jklmp} \propto \sum_n^{N_{\text{sext}}} (b_3 L)_n \beta_{xn}^{\frac{j+k}{2}} \beta_{yn}^{\frac{l+m}{2}} D_n^p e^{i\{(j-k)\phi_{xn} + (l-m)\phi_{yn}\}}$$

$$- \left[\sum_n^{N_{\text{quad}}} (b_2 L)_n \beta_{xn}^{\frac{j+k}{2}} \beta_{yn}^{\frac{l+m}{2}} e^{i\{(j-k)\phi_{xn} + (l-m)\phi_{yn}\}}\right]_{p \neq 0}$$

$$h = \sum_{n}^{N_{\text{sext}}} V_n e^{i\Phi_n} \ [+\dots \text{quads for } p \neq 0\dots]$$

Sextupole_n \leftrightarrow complex vector: Length $V_n = V_n (b_3, L, \beta_x, \beta_y, D)$ Angle $\Phi_n = \Phi_n (\phi_x + \phi_y)$

- $\Phi_n = 0 \ \forall \ n \rightarrow$ tune shifts
- $\Phi_n \neq 0 \quad \rightarrow \quad \text{resonances}$

First order sextupole [+quadrupole] Hamiltonian

 \bullet 2 phase independant terms \rightarrow chromaticities:

 $\begin{aligned} h_{11001} &= +J_x \delta \left[\sum_{n}^{N_{sext}} (2b_3 L)_n \beta_{xn} D_n - \sum_{n}^{N_{quad}} (b_2 L)_n \beta_{xn} \right] &\to \xi_x \\ h_{00111} &= -J_y \delta \left[\sum_{n}^{N_{sext}} (2b_3 L)_n \beta_{yn} D_n - \sum_{n}^{N_{quad}} (b_2 L)_n \beta_{yn} \right] &\to \xi_y \end{aligned}$

• 7 phase dependant terms \rightarrow resonances: $h^N := h$ for N cells, $N \rightarrow \infty \implies$

$$|h_{jklmp}^{\infty}| = \frac{|h_{jklmp}|}{2\sin \pi [a_x Q_x^{\text{cell}} + a_y Q_y^{\text{cell}}]}$$

$$h_{21000} = h_{12000}^* \longrightarrow \mathbf{Q}_x$$

$$h_{30000} = h_{03000}^* \longrightarrow 3 Q_x$$

$$h_{10110} = h_{01110}^* \longrightarrow \mathbf{Q}_x$$

$$h_{10200} = h_{01020}^* \longrightarrow Q_x + 2 Q_y$$

$$h_{10020} = h_{01200}^* \longrightarrow Q_x - 2 Q_y$$

$$h_{20001} = h_{02001}^* \longrightarrow 2 Q_x$$

$$h_{00201} = h_{00021}^* \longrightarrow 2 Q_y$$

$$a_x = (j-k) \quad a_y = (l-m)$$

2 Sextupole families (ESRF standard cell)

6 Sextupole families (4 *harmonic* families in straight sections)

Suppression of sextupolar resonances

2 sextupole families

6 sextupole families

Tracking of test particle ($x_o = y_o = 4 \text{ mm}, x'_o = y'_o = 0, \delta = 0$) and FFT:

No solution for $\{(b_3L)_m\} \implies$ suppression by $\Delta \phi_x^{\text{straight}}$

[†] J.Bengtsson et al., Increasing the energy acceptance of synchrotron light storage rings, NIM A 404 (1998) 237

Second order sextupole [+first order octupole] Hamiltonian

 $\sum_{n} \sum_{m} (b_3 L)_n (b_3 L)_m \times (\beta_n, \phi_n \beta_m, \phi_m \ldots) + \left[\sum_{q} (b_4 L)_q \times (\beta_q, \phi_q \ldots) \right]$

- 3 phase independant terms \rightarrow amplitude dependant tune shifts: $\frac{\partial Q_x}{\partial J_x} \quad \frac{\partial Q_x}{\partial J_y} = \frac{\partial Q_y}{\partial J_x} \quad \frac{\partial Q_y}{\partial J_y}$
- ullet 2 phase independant off-momentum terms ightarrow second order chromaticities:

 $\xi_{x/y}^{(2)} = \frac{\partial^2 Q_{x/y}}{\partial \delta^2}$

- 8 phase dependant terms

 → octupolar resonances:
 - $\begin{array}{ll} h_{40000} \to 4Q_x & h_{31000} \to 2Q_x \\ h_{00400} \to 4Q_y & h_{20110} \to 2Q_x \\ h_{20200} \to 2Q_x + 2Q_y & h_{00310} \to 2Q_y \\ h_{20020} \to 2Q_x 2Q_y & h_{01110} \to 2Q_y \end{array}$

Summary

Sextupole pattern optimization strategy

- decouple chromatic sextupoles
 - \rightarrow careful placement of SD, SF families
- exploit symmetry and periodicity
 - \rightarrow back to *linear* lattice design and machine layout
- install "harmonic" sextupoles
 - $\rightarrow \approx 4 \dots 8$ additional families [in straight sections]
- minimize all $1^{\rm st}$ order and some 2^{nd} order terms
 - \rightarrow sextupolar resonances, tune shifts with amplitude and 2^{nd} order chromaticities
- check by tracking
 - \rightarrow dynamic aperture scans also include misalignments and multipolar errors
- iterate...