Lattices for Light Sources

Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland

Contents:

- **Global requirements**: size, brightness, stability
- Lattice building blocks: magnets and other devices
- **Emittance**: lattice cells, minimum emittance, vertical emittance
- **Other lattice parameters**: damping, tune, chromaticity etc.
- Acceptances: lifetime and injection; physical, dynamic and energy acceptance
- Lattice errors: misalignments, multipolar errors

Global requirements

- **Number and length of straight sections** → minimum size
- Available area \rightarrow maximum size
- Synchrotron radiation properties

radiation spectrum, insertion device types \rightarrow beam energy brightness \rightarrow emittance, coupling, energy spread

• Stability requirements

current stability \rightarrow beam lifetime \rightarrow acceptances orbit stability \rightarrow mechanical tolerances, correction schemes

- Flexibility and future upgrade potential
- Budget

Lattice Design Interfaces

Magnet Design: Technological limits, coil space, multipolar errors

Vacuum: Impedance, pressure, physical apertures, space

Radiofrequency: Energy acceptance, bunchlength, space

Diagnostics: Beam position monitors, space

Alignment: Orbit distortions and correction

Mechanical engineering: Girders, vibrations

Design engineering: Assembly, feasibility

 \implies Beam current \longrightarrow Vacuum, Radiofrequency

 \implies Space requirements \longrightarrow Magnet, Vacuum, RF, Diagnostics, Engineering

Space requirements

A lattice section....

(top)as seen by the lattice designer(bottom) as seen by the design engineer(right) and how it looks in reality

	Lattice components			
	Parameters	Purpose		
Bending magnet	$b_1 \stackrel{!}{=} \rho^{-1}, \phi, b_2, \zeta_{\text{in,out}} \dots$	form a ring		
Quadrupole	b_2, L	focussing		
Sextupole	b_3, L	chromaticity correction		
RF cavity	$\lambda_{ m rf}, V_{ m rf}$	acceleration, long. focussing		
Septum magnet	position & width	injection		
Kicker magnet	$\int b_1(t) dl$	injection		
Correctors	$\int b_1 dl, \int a_1 dl$	orbit correction		
BPM	passiv	orbit measurement		
Skew Quadrupole	$\int a_2 dl$	coupling correction		
Undulator	λ_u, N_u, B_u, g	\rightarrow synchrotron light		

Iron dominated dipole magnet

$$\oint Hds = \int \int jda \implies$$
 Coil cross section A

$$A = \frac{B}{2j_c} \left(\frac{S_{\text{iron}}}{\mu_o \mu_r} + \frac{g}{\mu_o} \right) \xrightarrow{\mu_r \gg 1} A \approx \frac{Bg}{2j_c \mu_o}$$

Magnet poletip fields and apertures

	coil width	poletip field	aperture
	$\frac{L_{\rm tot} - L_{\rm eff}}{2}$ [mm]	$B_{ m pt}$ [T]	R [mm]
Bending magnets:	65 150	1.5	2035 (= <i>g</i> /2)
Quadrupoles:	40 70	0.75	3043
Sextupoles:	40 80	0.6	3050

(data from various light sources)

Magnet power $\propto R^n$

 $\implies \text{Apertures:} \quad \text{As small as possible} \\ \text{As large as necessary} \rightarrow \text{acceptance}$

Lattice Design Code

Model: complete set of elements, correct methods for tracking and concatenation, well documented approximations

Elementary functions: beta functions and dispersions, periodic solutions, closed orbit finder, energy variations, tracking, matching

Toolbox: Fourier transforms of particle data (\rightarrow resonance analysis), minimizaton routines (\rightarrow dynamic aperture optimization, coupling suppression), linear algebra package (\rightarrow orbit correction)

User convenience: editor functions, graphical user interface, editable text files

Extended functions: RF dimensioning, geometry plots, lifetime calculations, injection design, alignment errors, multipolar errors, ground vibrations

Connectivity: database access, control system access (\rightarrow real machine)

Natural horizontal emittance

Flat lattice:

$$\epsilon_{xo}[\operatorname{nm}\operatorname{rad}] = \underbrace{\frac{55\,\hbar c}{32\sqrt{3}\,m_e c^2}}_{3.83\cdot 10^{-13}\,\mathrm{m}} \gamma^2 \frac{I_5}{J_x I_2} = 1470\,(E[\operatorname{GeV}])^2 \frac{\langle \mathcal{H}/\rho^3 \rangle}{J_x \langle 1/\rho^2 \rangle}$$

Lattice invariant (or "dispersion's emittance"):

$$\mathcal{H}(s) = \gamma_x(s)D(s)^2 + 2\alpha_x(s)D(s)D'(s) + \beta_x(s)D'(s)^2$$

Horizontal damping partition $J_x \approx 1$ $\langle ... \rangle$ lattice average $\langle ... \rangle_{mag}$ magnets average Simplification for isomagnetic lattice:

$$\epsilon_{xo}[\text{nm·rad}] = 1470 \, (E[\text{GeV}])^2 \frac{\langle \mathcal{H} \rangle_{\text{mag}}}{\rho J_x}$$

Minimum Emittance

 $d\langle \mathcal{H}(\alpha_{xc}, \beta_{xc}, D_c, D'_c) \rangle_{\text{mag}} = 0 \implies \text{Minimum emittance:}$ $(E[\text{GeV}])^2 \quad \Phi^3 F$

$$\epsilon_{xo}[\text{nm·rad}] = 1470 \frac{(E[\text{Gev}])^2}{J_x} \frac{\Phi^{\circ} F}{12\sqrt{15}}$$

 Φ [rad] magnet deflection angle ($\Phi/2\ll 1)$

Minimum emittance 2

6-

DISP

Deviations from minimum:

$$b = \frac{\beta_{xc}}{\beta_{xc,\min}} \qquad F = \frac{\epsilon_{xo}}{\epsilon_{xo,\min}}$$
$$d = \frac{D_c}{D_{c,\min}}$$

Relative emittance *F*:

$$\frac{5}{4}(d-1)^2 + (b-F)^2 = F^2$$

Phase advance in cell:

$$\Psi = 2 \arctan\left(\frac{6}{\sqrt{15}}\frac{b}{(d-3)}\right)$$

$$F = 1 \implies \Psi = 284.5^{\circ}$$

135% F=5 F=4 4 F=3 180° F=2 2 **▼**-F=1 n -2 225° 284° -4 0 2 8 10 4 6 BETA(rel.)

Minimum emittance cell

10° gradient free sector bend, b=d=1, E = 3 GeV $\implies F = 1$: Theoretical minimum emittance (Ex)= 1.5 nm·rad Tune advance (Qx)=0.7902 \iff Ideal phase advance $\Psi = 284.5^{\circ}$. Lattices for Light Sources

Damping times

$$\tau_i = 6.67 \text{ ms} \quad \frac{C \text{ [m] } E \text{ [GeV]}}{J_i U \text{ [keV]}} \qquad J_x = 1 - \mathcal{D} \quad J_y = 1 \quad J_s = 2 + \mathcal{D}$$

$$\mathcal{D} = \frac{1}{2\pi} \int_{\text{mag}} D(s) \left[b_1(s)^2 + 2b_2(s) \right] \, ds$$

Energy loss per turn: U [keV] = 26.5 $(E[GeV])^3 B[T]$

Stability requirement: -2 < D < 1

Separate function bends: $\mathcal{D} \ll 1$ in light sources.

Combined function bending magnets: Adjust gradients! Option: Vertical focusing in bending magnet: $b_2 < 0 \rightarrow J_x \rightarrow 2$: half emittance!

Energy spread and Beam size

r.m.s. natural energy spread:

$$\sigma_e = 6.64 \cdot 10^{-4} \cdot \sqrt{\frac{B[T] E[GeV]}{J_s}} \qquad J_s \approx 2$$

Beam size and effective emittance:

$$\sigma_x(s) = \sqrt{\epsilon_x \,\beta_x(s) + (\sigma_e \, D(s))^2} \qquad \sigma_y(s) = \sqrt{\epsilon_y \,\beta_y(s)}$$
$$\epsilon_{x,\text{eff}}(s) = \sqrt{\epsilon_{xo}^2 + \epsilon_{xo} \mathcal{H}(s)\sigma_e^2}$$

Vertical emittance

Ideal flat Lattice: $\mathcal{H}_y \equiv 0 \longrightarrow \epsilon_y = 0$

Real Lattice: Errors as sources of vertical emittance ϵ_y

Vertical dipoles (a_1) :	Skew quadrupoles (a_2) :				
Dipole rolls	Quadrupole rolls	roll $= s$ -rotation			
Quadrupole heaves	Sextupole heaves	heave = Δy displacement			
Vertical dispersion (D_y)	Linear coupling (κ)				
\rightarrow orbit correction	\rightarrow skew quadrupoles	for suppression			
Emittance ratio $g = \frac{\epsilon_y}{\epsilon_x} \rightarrow \epsilon_x = \frac{1}{1+g} \epsilon_{xo} \epsilon_y = \frac{g}{1+g} \epsilon_{xo}$					
Coupling corrected lattices: $g \approx 10^{-3}$					
BUT: Diffraction limitation \rightarrow Brightness $\sim 1/g$ only for hard X-rays Touschek lifetime \sim (bunch volume) $\sim \sqrt{g}$					

Circumference and periodicity

Circumference C

- Area \rightarrow minimize
- Optics \rightarrow relax
- Spaces \rightarrow reserve
- RF harmonic number $\rightarrow C = h\lambda_{rf}$ $\rightarrow h = h_1 \cdot h_2 \cdot h_3 \dots$

Ritsumeikan PSRC = 98 cmLEPC = 27 km

Periodicity $N_{\rm per}$

Advantages of large periodicity:

- simplicity: design & operation
- stability: resonances
- cost efficiency: few types

DORIS:
$$N_{\text{per}} = 1$$

APS: $N_{\text{per}} = 40$

Working point

Betatron resonances:

$$aQ_x + bQ_y = p$$

Tune constraints:

- NO integer
- NO half integer
- NO sum resonance
- NO sextupole resonances
- Multiturn injection:

• and more...

order: n = |a| + |b|systematic: N_{per}/p = integer regular: b even, skew: b odd $(a, b, k, n, N_{per}, p \text{ integers})$

 $Q_{x;y} = k \rightarrow \text{dipolar errors}$ $Q_{x;y} = (2k+1)/2 \rightarrow \text{gradient errors}$ $Q_x + Q_y = p \rightarrow \text{coupling}$ $Q_x = p, 3Q_x = p, Q_x \pm 2Q_y = p$ $\rightarrow \text{dynamic acceptance}$ $|\text{frac}(Q)| \ge 0.2 \rightarrow \text{septum}$

Lattice parameters

Working point: Example

Acceptance: 6D volume of stable particles \rightarrow decoupling: horizontal, vertical and longitudinal 2D-acceptances

Physical acceptance Linear lattice \rightarrow vacuum chamber \rightarrow "known"

Dynamic acceptance Nonlinear lattice \rightarrow separatrix \rightarrow "unknown"

Longitudinal acceptance

- RF energy acceptance (bucket height)
- Lattice energy acceptance = δ -dependent horizontal acceptance

Dynamic aperture = *local* projection of dynamic acceptance acceptance $[mm \cdot mrad] \leftrightarrow aperture [mm]$

Design criterion: Dynamic acceptance > physical acceptance

$Acceptance \rightarrow Lifetime$

Single particle processes

→ exponential decay
 Interaction with residual gas nuclei:
 elastic scattering & bremsstrahlung

Two particle processes (= space charge effects)
→ hyperbolic decay
Touschek effect (= intrabeam scattering)
(Colliders: beam beam bremsstrahlung)

$$T_{\rm el} \sim \gamma^2 \frac{A_y}{P} \qquad T_{\rm bs} \sim \frac{\delta_{\rm acc}^{\sim 0.2}}{P} \qquad T_{\rm t} \sim \frac{\gamma^3 \sigma_s}{I_{\rm sb}} \epsilon_{xo} \sqrt{g} \,\langle \left[\delta_{\rm acc}(s)\right]^{2...3} \beta(s) \ldots \rangle_c$$

 A_y = vertical acceptance, P = pressure, σ_s = bunch length, I_{sb} = bunch current δ_{acc} = energy acceptance, ϵ_{xo} = natural emittance, g = emittance ratio

Physical acceptance

Linear lattice (quads and bends only): "infinite" dynamic acceptance Particle at acceptance limit A_x :

$$x(s) = \sqrt{A_x \cdot \beta_x(s)} \cos(\phi(s)) + D(s) \cdot \delta$$

Particle loss: $|x(s)| \ge a_x(s)$ somewhere.

Acceptance

$$A_x = \min\left(\frac{(a_x(s) - |D(s) \cdot \delta|)^2}{\beta_x(s)}\right)$$

$$A_y = \min\left(\frac{a_x(s)^2}{\beta_x(s)}\right)$$

 A_x invariant of betatron motion. \rightarrow Projection:

$$x_{\max}(s) = \pm \sqrt{A_x \cdot \beta_x(s)} + D(s) \cdot \delta$$

$$y_{\max}(s) = \pm \sqrt{A_y \cdot \beta_y(s)}$$

Dynamic acceptance

Separatrix for "stable" motion (no physical limitations)

stable \rightarrow test particle not lost in tracking

- \rightarrow sufficient number of turns: (~1 damping time, ~10 synchrotron oscillations)
- \rightarrow machine model for tracking: correct & complete & realistic

Available aperture =

dynamic aperture with physical limitations

- \rightarrow Dynamic aperture should
- be wider than beampipe
- have little distortions

- \implies careful balancing of sextupoles
- \implies set tolerances for magnets and IDs alignment and multipolar errors

Energy acceptance

Horizontal acceptance $A_x = 0$ for $|\delta| > \min(a_x(s)/|D(s)|)$ BUT:

Scattering processes \rightarrow energy change of core particles: $\vec{X} = (\approx 0, \approx 0, \approx 0, \approx 0, \delta, 0)$

Betatron oscillation around dispersive orbit with amplitude A_x

$$A_x = \gamma_{xo} (D_o \delta)^2 + 2\alpha_{xo} (D_o \delta) (D'_o \delta) + \beta_{xo} (D'_o \delta)^2 = \mathcal{H}_o \delta^2$$

 $\beta_{xo} := \beta_x(s_o)$ etc., $s_o =$ location of scattering event!

Maximum value of betatron oscillation:

$$x(s) = \sqrt{A_x \beta_x(s)} + |D(s)\delta| = \left(\sqrt{\mathcal{H}_o \beta_x(s)} + |D(s)|\right) \cdot |\delta|$$

Local energy acceptance:

$$\delta_{\rm acc}(s_o) = \pm \min\left(\frac{a_x(s)}{\sqrt{\mathcal{H}_o\beta_x(s)} + |D(s)|}\right)$$

Energy acceptance for different lattice locations $(a_x(s) = a_x)$:

In dispersionfree section:

 $\mathcal{H}_o = 0 \qquad \longrightarrow \quad \delta_{\rm acc} = \pm a_x / D_{\rm max}$

At location of maximum dispersion:

 $\mathcal{H}_o = \gamma_o D_{\max}^2 \rightarrow \delta_{\mathrm{acc}} = \pm a_x / (2D_{\max})$

Local energy acceptance and Touschek lifetime

Lattice Imperfections

- Magnet misalignments
 - Closed Orbit distortion and correction \rightarrow BPMs and correctors
 - Correlated misalignments: magnet girders and dynamic alignment concepts
 - Ground waves and vibrations: orbit feedback
 - Beam rotation and coupling control
- Multipolar errors (Magnets and Undulators): Dynamic acceptance
- Gradient errors: Beta-beat \rightarrow quadrupole current control
- \implies Stability requirements (photon beam on sample) < 1 μ m

Trends in lattice design

• reduce magnet gap

Mini-gap undulators define acceptance anyway Example: 5 mm gap × 2 m length, $\beta_{y,\max} \approx 25$ m dipole chamber wall ≈ 3 mm \rightarrow dipole gap 25 mm (instead of > 40 mm).

• relax on flexibility

progress in computing, engineering and manufacturing \rightarrow calculated optics *will* become reality!

- exploit $J_x \to 2$ $\epsilon \to \frac{1}{2}\epsilon, \sigma_e \to \sqrt{2}\sigma_e \to D = 0$ in straights, vertical focussing in bends.
- try octupoles

 1^{st} order attack of 2^{nd} order sextupole terms