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Pill Box Cavity

Simplest practical model of accelerating cavity: hollow cylinder

Neglect beam pipes, then field pattern inside resonator and all cavity parameters can be calculated

analytically

Field pattern: for particle acceleration we need longitudinal electric field on the axis

⇒ choose TM (transverse magnetic) eigenmode of cavity

Electric and magnetic field in a pillbox cavity for the accelerating mode TM010

Use cylindrical coordinates (r, θ, z), search for eigenmode with cylindrical symmetry (independence of θ)

and with longitudinal electric and azimuthal magnetic field

Wave equation for electric field
∂2Ez

∂r2
+

1

r

∂Ez

∂r
=

1

c2

∂2Ez

∂t2
(1)
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For harmonic time dependence Ez(r) cos(ωt)

∂2Ez

∂u2
+

1

u

∂Ez

∂u
+ Ez(u) = 0 with u =

ω r

c
(2)

Bessel equation of zero order, solution J0(u)

Ez(r) = E0J0

(
ωr

c

)
(3)

For perfectly conducting cylinder of radius Rc: Ez(Rc) = 0 ⇒ J0(ωRc/c) = 0

First zero of J0(u) is at u = 2.405. This defines the frequency of the lowest eigenmode

fundamental mode or accelerating mode

f0 =
2.405c

2πRc

, ω0 =
2.405c

Rc

(4)

In cylindrical cavity: frequency independent of length Lc
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Magnetic field is computed from
∂Ez

∂r
= µ0

∂Hθ

∂t

Fields in the fundamental TM010 mode

Ez(r, t) = E0J0(
ω0r

c
) cos(ω0t) ,

Hθ(r, t) = −
E0

µ0c
J1(

ω0r

c
) sin(ω0t) . (5)

Electric and magnetic fields are 90◦ out of phase. Magnetic field vanishes on the axis, maximum value

close to cavity wall

red curve: Ez 

blue curve: Bθ  
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Stored energy
Integrate energy density (ε0/2)E2 (at time t = 0) over volume of cavity

U =
ε0

2
2πLcE

2
0

∫ Rc

0

J
2
0(

ω0r

c
)rdr

=
ε0

2
2πLcE

2
0

(
c

ω0

)2 ∫ a

0

J
2
0(u)udu (6)

where a = 2.405 is the first zero of J0. Using∫ a

0
J2

0(u)udu = 0.5(aJ1(a))2

U =
ε0

2
E

2
0(J1(2.405))

2
πR

2
cLc (7)

Power dissipation
Consider first copper cavity:

• rf electric field vanishes at cavity wall, hence no losses

• magnetic field penetrates into wall with exponential attenuation, induces currents within skin depth

δ =

√
2

µ0ωσ
(8)
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Here σ is the conductivity of the metal

Copper at room temperature and 1 GHz δ = 2µm

The current density in the skin depth is

j =
Hθ

δ

Dissipated power per unit area

dPdiss

dA
=

1

2σδ
H

2
θ =

1

2
RsurfH

2
θ (9)
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Important parameter of rf cavities: surface resistance

Rsurf =
1

σδ
(10)

The power per unit area has to be integrated over the inner surface of cavity

Integration is straightforward for the cylindrical mantle where Hθ = const. To compute power dissipation in the circular

end plates evaluate
∫ a
0 (J1(u))2udu = a2(J1(a))2/2 with a = 2.405

Total power dissipation in cavity walls

Pdiss = Rsurf ·
E2

0

2 µ2
0 c2

(J1(2.405))
2
2πRc Lc (1 + Rc/Lc) (11)

Quality Factor Q0

Very important parameter of a resonating cavity

The quality factor is defined as the number of cycles needed to dissipate the stored energy (except for

factor of 2π)

alternative definition: resonance frequency f0 divided by half width ∆f of resonance curve

Q0 = 2π ·
U f0

Pdiss

=
f0

∆f
(12)
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Using (7) and (11) we get:

Q0 =
G

Rsurf

with G =
2.405 µ0 c

2(1 + Rc/Lc)
(13)

geometry constant G depends only on cavity shape but not on the material, typical value is G = 300 Ω.

Accelerating field, peak electric and magnetic fields
A relativistic particle needs a time c/Lc to travel through the cavity. During this time the longitudinal

electric field changes

The accelerating field Eacc is the average field seen by particle

Eacc =
1

Lc

∫ Lc/2

−Lc/2

E0 cos(ω0z/c)dz , Vacc = Eacc Lc . (14)

Choosing a cell length of one half the rf wavelength, Lc = c/(2f0), we get Eacc = 0.64 E0 for a pill

box cavity

Peak electric field Epeak at the cavity end plate, here Epeak = E0

Peak magnetic field Bpeak is near cylindrical wall

For a pillbox cavity

Epeak/Eacc = 1.57 , Bpeak/Eacc = 2.7 mT/(MV/m) . (15)

Pillbox cavity with beam pipes: peak fields increase by 20− 30%
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Shunt Impedance
Represent the cavity by a parallel LCR circuit, parallel Ohmic resistor is called shunt impedance

Relation between peak voltage in equivalent circuit and accelerating field in cavity:

V0 = Vacc = EaccLc

Dissipated power in LCR circuit

Pdiss =
V 2

0

2Rshunt

Identify this with the dissipated power in the cavity, eq. (11)

Then the shunt impedance of the pillbox cavity is1

Rshunt =
2L2

cµ
2
0c

2

π3(J1(2.405))2Rc(Rc + Lc)
·

1

Rsurf

The ratio of shunt impedance to quality factor is an important cavity parameter

(R/Q) ≡
Rshunt

Q0

=
4Lcµ0c

π3(J1(2.405))22.405Rc

(16)

(R/Q) is independent of the material, depends only on the shape

Typical value for 1-cell cavity (R/Q) = 100 Ω
1Rshunt is often defined by

Pdiss =
V 2
0

Rshunt
then (R/Q) is a factor of 2 larger

10



Superconductivity Basics

Short introduction into:

• Type I and type II superconductors

• Hard and soft superconductors

• Superconductors in microwave fields
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Superconductors in microwave fields

Copper cavity: surface resistance is given by

Rsurf =
1

δσ
(17)

In case of superconductor: skin depth δ must be replaced with London penetration depth

λL ≈ 50 nm � δ ≈ 2000 nm

Big question: what is the conductivity σ? If we take σ → ∞ we get Rsurf = 0. That would be

nice but is wrong!

According to the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity the supercurrent is carried

by Cooper pairs

Response of a superconductor to an ac field described by Two-Fluid Model :

• Cooper pairs are superfluid

• Unpaired electrons are normal fluid, yield conductivity σn

Study response of two fluids to a periodic electric field

normal current obeys Ohm’s law (and dissipates power)

Jn = σn E0 exp(−iωt) (18)
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Cooper pairs are accelerated mc v̇c = −2e E0 exp(−iωt)

Supercurrent density

Js = i
nc 2 e2

meω
E0 exp(−iωt) (19)

Supercurrent is 90◦ out of phase with electric field, hence no power dissipation

Write for total current density J = Jn + Js = σE0 exp(−iωt)

with a complex conductivity:

σ = σn + iσs with σs =
2 nce

2

me ω
=

1

µ0λ2
L ω

(20)

Surface resistance: real part of the complex surface impedance

Rsurf = Re

(
1

λL(σn + iσs)

)
=

1

λL

·
σn

σ2
n + σ2

s

(21)

Important observation: σ2
n � σ2

s at microwave frequencies hence disregard σ2
n in the denominator

⇒ Rsurf = σn/(λLσ2
s)

Surprising result: The microwave surface resistance is proportional to the normal-state conductivity

Conductivity of normal metal given by classic Drude expression

σn = nne
2
`/(mevF

• nn density of single (unpaired) electrons
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• ` mean free path of single electrons

• vF the Fermi velocity

Unpaired electrons are created by thermal breakup of Cooper pairs

Energy gap Eg = 2∆ between the superconducting (BCS) ground state and the free electron states

By analogy with the conductivity of an intrinsic (undoped) semiconductor we get

nn ∝ exp(−Eg/(2kBT ))

and hence

σn ∝ ` exp(−∆/(kBT )) . (22)

Using 1/σs = µ0λ
2
Lω and ∆ = 1.76kBTc we finally obtain for the BCS surface resistance

RBCS ∝ λ
3
L ω

2
` exp(−1.76 Tc/T ) (23)

This formula displays two important aspects of microwave superconductivity

- the surface resistance depends exponentially on temperature

- it is proportional to the square of the rf frequency

For niobium: small correction needed, replace λL by Λ = λL

√
1 + ξ/`
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Surface resistance of a 9-cell TESLA cavity plotted as a function of Tc/T . The residual resistance of

3 nΩ corresponds to a quality factor Q0 = 1011

Residual resistance
Residual resistance caused by impurities, frozen-in magnetic flux or lattice distortions

Rsurf = RBCS + Rres (24)
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Rres is temperature independent, amounts to a few nΩ for a clean niobium surface

Heat conduction in niobium and heat transfer to liquid helium
Heat produced at inner cavity surface must be guided through cavity wall to liquid helium bath

Thermal conductivity of Nb drops strongly at T → 0

Very pure Nb with large residual resistivity ratio RRR needed

RRR = R(300K)/R(10K)

1 10
1
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λ
[W

/m
K

]

T [K]

Measured heat conductivity in niobium with RRR = 270 resp. 500 as a function of temperature
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Low frequency cavities (350-500 MHz): small BCS surface resistance at 4.2 K, effective cooling by normal

liquid helium

Due to f2 dependence of BCS resistance: at higher frequency, cooling with superfluid helium at 1.8 - 2

K is better

Note: Kapitza resistance at superfluid helium-niobium interface leads to temperature jump

Maximum Field in SC Cavities
Magnetic field of microwave must stay below the critical magnetic field of superconductor

Situation is clear for a type I superconductor such as lead:

at T = 2 K one has Bc = 80 mT → Eacc ≤ 20 MV/m

For type II superconductors the situation is not that clear. Magnetic flux moving in and out of the sc

produces heat. Flux pinning is undesirable since the magnetic hysteresis again leads to heat generation in

a microwave field.

Consequence: a hard superconductor like NbTi or Nb3Sn is not well suited for rf cavities, at the large Bc2

of 10 - 20 Tesla the heat generation would be untolerable.

What about niobium? This superconductor is of type II, but close to the boundary of type I. The

critical fields at 2 Kelvin are approximately

• Bc1 ≈ 160 mT

• Btherm
c ≈ 200 mT

• Bc2 ≈ 350 mT
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Very safe limit: B < Bc1 ⇒ Eacc ≤ 40 MV/m : no magnetic flux enters the sc

Experimental observation Eacc > 40 MV/m has been achieved repeatedly, the best value was 45 MV/m

Question: how far above Bc1 can one go?

Hint
The following pages contain further interesting material on sc cavities which, however, is beyond the scope

of a 1-hour lecture at CAS
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