
Free Electron Lasers

Peter Schmüser
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Big advantage of FEL: the wavelength is tunable by changing the electron energy.
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An optical cavity is no longer possible for wavelengths below 100 nm.
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Principle of a Self Amplified Spontaneous Emission (SASE) Free Electron Laser
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Undulator Radiation

Electron motion in undulator
Schematic view of electron motion in an undulator magnet

Call W = Ekin +mec
2 the total relativistic energy of the electron.

Lorentz factor, normalized velocity: γ = W/(mec
2) , β =

√
1− 1/γ2

The average velocity in z direction is less than βc owing to the sinodoidal trajectory
(proof in FEL Course)

v̄z ≡ β̄ c =
(

1− 1
2γ2

(1 +K2/2)
)
c with K =

eB0λu

2πmec

K is called the undulator parameter
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Synchrotron radiation is emitted inside a cone with opening angle 1/γ (see lecture by
Rivkin)
Undulator: K ≤ 1, the electron trajectory is inside the radiation cone. Therefore, the
photons emitted by a given electron at various positions along the undulator interfere with
each other. This has the important consequence that the radiation is monochromatic,
in contrast to synchrotron radiation in bending magnets.
Note: different electrons radiate independently and do not interfere.2. Physical Processes in a Free Electron Laser

B
1/γ

e–A B

Figure 2.1.: Emission of radiation in an undulator.

In the TTF undulator, the deviation from the straight orbit is only 10µm. Syn-
chrotron radiation is emitted by relativistic electrons in a cone with opening angle
1/γ. In an undulator, the the maximum angle of the particle velocity with respect to
the undulator axis α = arctan(vx/vz) is always smaller than the opening angle of the
radiation, therefore the radiation field may add coherently. In a wiggler, αmax > 1/γ,
and a broad radiation cone with lower intensity on the axis is emitted. The condition
for an undulator can be rewritten for vz ≈ c:

1

γ
> arctan

vxmax

vz
≈ vxmax

vz
≈ Kc

γc

=⇒ K < 1 (2.10)

Consider two photons emitted by a single electron at the points A and B, which
are one half undulator period apart (figure 2.1):

AB =
λu
2

(2.11)

If the phase of the radiation wave advances by π between A and B, the electromag-
netic field of the radiation adds coherently2. The light moves on a straight line AB
that is slightly shorter than the sinusoidal electron trajectory ÃB:

λ

2c
=
ÃB

v
− AB

c
(2.12)

2 Photons radiated by different electrons will however usually be incoherent.

22
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Lorentz transformation to moving coordinate system
Consider a coordinate system (x∗, y∗, z∗) moving with the average velocity v̄z = β̄c
of the electron. The undulator period appears shortened due to the relativistic length
contraction

λ∗u = λu/γ

In the moving system the electron carries out a harmonic oscillation in x direction with
the frequency

ω∗ = γ c 2π/λu

(Superimposed is a small longitudinal oscillation, which will be ignored here, it leads to
higher harmonics in the radiation).
In the moving system the electron emits dipole radiation with a frequency ω∗ = γ ωu

(with ωu = c 2π/λu) and a wavelength λ∗ = λu/γ

Remember: λu is the undulator period, i.e. the distance between two equal poles.
Take typical values: λu = 25 mm, γ = 1000 ⇒ λ∗ = 25 µm.
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Transformation of radiation into laboratory system

We are interested in the wavelength of the light emitted in forward direction. The
Lorentz transformation of the photon energy (this can also be considered as the relativistic
Doppler shift) reads

~ω∗ = γ~ω`

After a little algebra we get for the wavelength of the undulator light (see FEL Course)

λ` =
λu

2γ2
(1 +K2/2)
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Properties of undulator radiation
An electron passing an undulator with Nu periods produces a wavetrain with Nu

oscillations.

Finite wave train 
(here with 10 periods) 
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Spectral intensity for a wave train 
 with Nu = 100 periods

The time duration of the wave train is T = Nuλ`/c. Due to the finite duration the
radiation is not monochromatic but contains a frequency spectrum which is obtained by
Fourier transformation (see FEL Course).
The spectral intensity is

I(ω) ∝
(

sin ξ
ξ

)2

with ξ =
∆ω T

2
= πNu

ω − ω`

ω`

It has a maximum at ω = ω` and a width proportional to 1/Nu.
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Finite wave train 
(here with 10 periods) 
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Spectral intensity for a wave train 
 with Nu = 100 periods

In the figure, the normalized intensity is plotted as a function of ω/ω`. The total radiation
power (integrated over frequency) is the same as in a bending magnet (see Rivkin):

Prad =
2α~c2γ4

3ρ2

Main differences to synchrotron radiation in bending magnets: (a) undulator radiation
is confined to a narrow spectral line, (b) the radiation is well collimated. Note, however,
that different electrons radiate indepedently both in bending magnets and in undulators,
hence the intensity depends linearly on the number N of electrons per bunch:

PN = N · P1
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Low-Gain FEL

Energy transfer from electron to light wave
Consider“seeding”by an external light source with wavelength λ`

The light wave is co-propagating with the relativistic electron beam. It is described by a
plane electromagnetic wave

Ex(z, t) = E0 cos(k`z − ω`t) with k` = ω`/c
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Question: can there be a continuous energy transfer from electron beam to light wave?
The electron energy W = γmec

2 changes in time dt by

dW = ~v · ~F = −evx(t)Ex(t)dt

The average electron speed in z direction is v̄z = c
(
1− 1

2γ2 (1 +K2/2)
)
< c

To determine the condition for resonant energy transfer we compute the electron and
light travel times for a half period of the undulator:

tel = λu/(2v̄z), tlight = λu/(2c)
Continuous energy transfer happens if ω`(tel − tlight) = π
(Remark: also 3π, 5π . . . are possible, leading to higher harmonics of the radiation)

z

vxvx

vxvx
Ex

Ex

electron trajectoryelectron trajectory

light wave
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From this condition we compute the light wavelength (see FEL Course)

λ` =
λu

2γ2

(
1 +

K2

2

)

This wavelength is identical with the undulator radition wavelength (in forward direction).

The quantitative treatment of the energy transfer from the electron to the light wave
is presented in the FEL Course. Here I quote the results. Introducing so so-called
ponderomotive phase:

ψ ≡ (k` + ku)z − ω`t

one can show that the time-variation of the electron γ factor and of the phase are

dγ

dt
= − eE0K

2mecγ2
r

sinψ
dψ

dt
= 2kuc

γ − γr

γr

where the“resonant”gamma-factor is defined by the condition

λ` =
λu

2γ2
r

(
1 +

K2

2

)
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Note: if the electron energy is equal to Er = γrmec
2 then the undulator radiation

produced by the electron beam has exactly the wavelength of the seed laser. In an FEL,
however, one has to run the e-beam at a slightly higher energy E = γmec

2 > Er in
order to amplify the light wave.
The combination of the two first order equations yields the“Pendulum Equation”of the
low-gain FEL

ψ̈ + Ω2 sinψ = 0 with Ω2 =
eE0Kku

meγ2
r
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Phase space representation
The two equations

dγ

dt
= − eE0K

2mecγ2
r

sinψ
dψ

dt
= 2kuc

γ − γr

γr

can be used to plot the trajectories in the (ψ, γ) phase space. There is a close analogy
with the motion of a mathematical pendulum. At small amplitude we get a harmonic
oscillation. With increasing angular momentum the motion becomes unharmonic. At
very large angular momentum one gets a rotation (unbounded motion).

�� ��–π 0 � π
ψ�

ψ�

0

ψ
�

Rotation

ψ�

Oscillation

∼ 
(γ

 −
 γ

r)
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The mathematical treatment of the energy transfer between electron and light wave is
quite involved, see the FEL Course. The essential results is that the FEL-gain is given
by

G(ξ) = −π e
2K2N3

uλ
2
u ne

4ε0mec2γ3
r

· d
dξ

(
sin2 ξ

ξ2

)
with ξ = πNu

ω − ω`

ω`

Madey Theorem
The FEL gain curve is obtained by taking the negative derivative of the line-shape curve
of undulator radiation.
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I( )ξ
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High-Gain FEL

The essential feature of the high-gain FEL is that a large number of electrons radiate
coherently. In that case, the intensity of the radiation field grows quadratically with the
number of particles: IN = N2 I1.
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Big problem: the particle bunches are much longer than the FEL wavelength, it appears
impossible to produce intense electron bunches with a length � λ`.
The way out of this dilemma is given by the process of microbunching:
Electrons which lose energy to the light wave travel a longer path in the undulator,
electrons which gain energy from the light wave travel a shorter path. The result is a
modulation of the longitudinal velocity. This velocity modulation leads eventually to a
concentration of the electrons in slices which are much shorter than λ` .
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The particles within a micro-bunch radiate coherently. The resulting strong radiation
field enhances the micro-bunching even further.
Result: “collective instability”, exponential growth of radiation power
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The ultimate power is P ∝ N2
c where Nc is the number of particles in a coherence

region
typical value Nc ≈ 106 ⇒ PFEL = 106Pundulator

Coherent action is what counts:
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An approximate analytic description of the high-gain FEL requires the self-consistent
solution of the coupled pendulum equations and the inhomogeneous wave equation for
the electromagnetic field of the light wave.

In the 1D-FEL theory the dependencies on the transverse coordinates x, y are
disregarded.
The wave equation for the radiation field Ex reads

∂2Ex

∂z2
− 1
c2
∂2Ex

∂t2
= µ0

∂jx
∂t

where the current density ~j is generated by the electron bunch moving on its cosine-like
trajectory.
In addition, one has to consider the longitudinal space charge field Ez which is generated
by the gradually evolving periodic charge density modulation. After a lot of tedious
mathematical steps and several simplifying assumptions one arrives at a third-order
differential equation for the “slowly varying amplitude” of the electric field of the light
wave:

d3Ẽx

dz3
− 4ikuη

d2Ẽx

dz2
− 4k2

uη
2dẼx

dz
− iΓ3Ẽx(z) = 0
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Here we have introduced the gain parameter Γ and the relative energy deviation η

Γ =
(
µ0K

2e2kune

4γ3me

)1
3

η =
γ − γr

γr

and assumed that the electron beam has negligible energy spread.

This third-order differential equation can be solved analytically. For the case γ = γr one
obtains

Ẽx(z) = A1 exp (−iΓz) +A2 exp

(
i+

√
3

2
Γz

)
+A3 exp

(
i−

√
3

2
Γz

)

The second term exhibits exponential growth as a function of the position z in the

undulator. The electric field grows exponentially as exp(
√

3
2 Γz), the power grows as

exp(
√

3Γz).

The gain parameter Γ is related to two parameters which are in widespread use: the
Pierce parameter and the power gain length

ρpierce =
λuΓ
4π

Lg =
1√
3 Γ
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The above calculations, which have been sketched only very briefly, indicate that there
is an onset of an“instability”, leading to a progressing microbunching and an exponential
increase in radiation power along the undulator. A quantitave treatment requires
elaborate numerical simulations.
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Simulation of microbunching
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Experimental observation of microbunching at the 60 µm FEL Firefly, Stanford
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Exponential growth of radiation power and progressing microbunching in a long undulator
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First lasing at the TESLA Test Facility (TTF) Free Electron Laser
Bjorn Wiik Price 2000 for Evgeni Saldin, Evgeni Schneidmiller, Mikhail Yurkov
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The FEL as a wavelength tunable laser:

λ =
λu

2γ2
(1 +K2/2)

– Typeset by FoilTEX – 30



2-9 July 2003 J. Rossbach: CERN acc.school, Brunnen: Linac FELs 31

SASE FELs:
State of the art

TTF-FEL
DESY

80-120 nm

TTF-FEL
DESY

80-120 nm

LEUTL
APS/ANL
385 nm

LEUTL
APS/ANL
385 nm

September 2000September 2000

VISA
ATF/BNL
840 nm

VISA
ATF/BNL
840 nm

March 2001 September 2001

All observations agree with
theor. expectations/
computer models
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3.7. Life Sciences V-157

Figure 3.7.5.: Coulomb explosion of a T4 lysozyme molecule (H: white; C: grey; N: blue; O: red;
S: yellow) induced by the radiation damage caused by a 3× 10 12 photon per (0.1 µm)2 pulse of
12.4 keV energy. The FWHM of the pulse was 50 fs. The molecule is shown at the beginning, in
the middle and after the pulse. Even after half of the pulse has passed, the distortions are small.
After the pulse the Coulomb explosion is under way [ 7]. The distortion of the molecule during the
time of the pulse is considerably smaller for lower flux densities during the pulse (see also Fig.
3.7.4).

the reproducibility of the individual samples (e.g. virus particle), the number of exposures,
and the statistical accuracy achieved during the numerical alignment procedure.

The result of such measurements will be the continuous distribution of the scattering am-
plitude in reciprocal space. Opposite to a crystalline scattering pattern information becomes
available continuously in reciprocal space and not only in the direction of the Bragg reflec-
tions. This so-called molecular transform is the Fourier transform of the object’s electron
density. It is considerably oversampled compared to what is measured in a crystal when only
Bragg spot are measured. This is demonstrated in Fig. 3.7.7 showing the pattern of scatter-
ing intensities for a molecule versus a crystal. In the case of the molecular transform, the
phase problem can be circumvented, since methods exist already to retrieve the scattering
density (electron density) in real space from an oversampled transform [14]–[16]. Present-
day estimates indicate that a non-translationally periodic object with a mass comparable to a
single BTV capsid scatters sufficiently to allow for numerical alignment needed for repetitive
measurements. To demonstrate this in Fig. 3.7.8 the correlation between different images is
given, as obtained by simulations.

In order to investigate a protein, one could attach it to the surface of some core molecule
of known structure serving as a scaffold, e.g. an icosahedral virus capsid. The molecule
might bind tightly and adapt the symmetry of the scaffold molecule. In this case, the struc-
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