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Und ulator Radiation
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Big advantage of FEL: the wavelength is tunable by changing the electron energy.
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An optical cavity is no longer possible for wavelengths below 100 nm.
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Principle of a Self Amplified Spontaneous Emission (SASE) Free Electron Laser

laser

Cs;Te cathode

experiment

beamdump

Freie-Elektronen Laser am Linearbeschleuniger (schematisch)
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Undulator Radiation

Electron motion in undulator
Schematic view of electron motion in an undulator magnet
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Call W = Eu;,, + mecc? the total relativistic energy of the electron.

Lorentz factor, normalized velocity: v = W/(m.c?), B =+/1—1/7?

The average velocity in z direction is less than (3¢ owing to the sinodoidal trajectory
(proof in FEL Course)
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K is called the undulator parameter
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Synchrotron radiation is emitted inside a cone with opening angle 1/~ (see lecture by
Rivkin)

Undulator: K < 1, the electron trajectory is inside the radiation cone. Therefore, the
photons emitted by a given electron at various positions along the undulator interfere with
each other. This has the important consequence that the radiation is monochromatic,
in contrast to synchrotron radiation in bending magnets.

Note: different electrons radiate independently and do not interfere.
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Lorentz transformation to moving coordinate system
Consider a coordinate system (z*,y*, z*) moving with the average velocity 7, = fc
of the electron. The undulator period appears shortened due to the relativistic length
contraction
)‘Z — )\u/’y

In the moving system the electron carries out a harmonic oscillation in x direction with
the frequency

wr=ye2m /Ay
(Superimposed is a small longitudinal oscillation, which will be ignored here, it leads to
higher harmonics in the radiation).
In the moving system the electron emits dipole radiation with a frequency w* = vy w,,
(with w, = ¢27/\,) and a wavelength \* = X\, /v

Remember: A, is the undulator period, i.e. the distance between two equal poles.
Take typical values: A\, = 25 mm, v = 1000 = AT =25 um.
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Transformation of radiation into laboratory system

We are interested in the wavelength of the light emitted in forward direction. The

Lorentz transformation of the photon energy (this can also be considered as the relativistic
Doppler shift) reads

hw™ = vhwy
After a little algebra we get for the wavelength of the undulator light (see FEL Course)

A
N\ = —2 (1 4+ K?/2
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Properties of undulator radiation

An electron passing an undulator with N, periods produces a wavetrain with N,
oscillations.

w‘w‘ Finite wave train
1 O O B (here with 10 periods)

The time duration of the wave train is T' = Ny\y/c. Due to the finite duration the
radiation is not monochromatic but contains a frequency spectrum which is obtained by
Fourier transformation (see FEL Course).

The spectral intensity is

sin & W — Wy

AwT
il =7 Ny
2 Wy

1) x ) with £ =

It has a maximum at w = wy and a width proportional to 1/N,,.
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Spectral intensity for a wave train
with N, = 100 periods
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In the figure, the normalized intensity is plotted as a function of w/wy. The total radiation
power (integrated over frequency) is the same as in a bending magnet (see Rivkin):

2achc?~4

Pra —
d 3;02

Main differences to synchrotron radiation in bending magnets: (a) undulator radiation
is confined to a narrow spectral line, (b) the radiation is well collimated. Note, however,
that different electrons radiate indepedently both in bending magnets and in undulators,
hence the intensity depends linearly on the number N of electrons per bunch:

Pny=N-F
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Low-Gain FEL

Energy transfer from electron to light wave
Consider “seeding” by an external light source with wavelength A\,

f 4 E’ mirror
N = -
9

GapI

electron beam
@ 5

o)

mirror

The light wave is co-propagating with the relativistic electron beam. It is described by a
plane electromagnetic wave

E.(z,t) = Egcos(kez — wet) with ky = wy/c
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Question: can there be a continuous energy transfer from electron beam to light wave?
The electron energy W = ym.c? changes in time dt by

AW = T+ F = —ev,(t) Ey(t)dt

The average electron speed in z direction is U, = ¢ ( — 2%2 (14 K2/2)) <c

To determine the condition for resonant energy transfer we compute the electron and
light travel times for a half period of the undulator:

lel = )\u/(zaz)a tlight — )\u/(2c)

Continuous energy transfer happens if wy(te; — tiignt) =7
(Remark: also 37, 57 ... are possible, leading to higher harmonics of the radiation)

Vv electron trajectory

light wave

— Typeset by Foil TEX - 15



From this condition we compute the light wavelength (see FEL Course)

This wavelength is identical with the undulator radition wavelength (in forward direction).

The quantitative treatment of the energy transfer from the electron to the light wave
is presented in the FEL Course. Here | quote the results. Introducing so so-called
ponderomotive phase:
Y= (ke + ky)z — woet
one can show that the time-variation of the electron ~ factor and of the phase are
dy  ebgK di)

. Y = Vr
— = 2k,
sin o c -

dt ~— 2mecy?

where the “resonant” gamma-factor is defined by the condition

Au K2
=2 (14 =
‘ 2%?(+2)
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Note: if the electron energy is equal to E, = ~,m.c? then the undulator radiation
produced by the electron beam has exactly the wavelength of the seed laser. In an FEL,
however, one has to run the e-beam at a slightly higher energy £ = ym.c® > E, in

order to amplify the light wave.
The combination of the two first order equations yields the “Pendulum Equation” of the

low-gain FEL

eEoKk‘u

me;

V4 D2sing =0 | with Q2 =

— Typeset by Foil TEX - 17



Phase space representation
The two equations

d EoK d — Yy
o —e—osinw i = 2kuc7 i
dt 2mecy? dt Vr

can be used to plot the trajectories in the (), ) phase space. There is a close analogy
with the motion of a mathematical pendulum. At small amplitude we get a harmonic
oscillation. With increasing angular momentum the motion becomes unharmonic. At
very large angular momentum one gets a rotation (unbounded motion).

/’ Rotation
N
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Oscillation
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The mathematical treatment of the energy transfer between electron and light wave is

quite involved, see the FEL Course. The essential results is that the FEL-gain is given
by

G(¢§) =
Madey Theorem

The FEL gain curve is obtained by taking the negative derivative of the line-shape curve
of undulator radiation.

o e’ K2N3)\2 n, - d sin” & with €= 1N, W — Wy
degmec?y? dg \ &2 Wy

spectral line of undulator gain of FEL
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High-Gain FEL

The essential feature of the high-gain FEL is that a large number of electrons radiate
coherently. In that case, the intensity of the radiation field grows quadratically with the

number of particles: Iy = N2 1.
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Big problem: the particle bunches are much longer than the FEL wavelength, it appears
impossible to produce intense electron bunches with a length << \,.

The way out of this dilemma is given by the process of microbunching:

Electrons which lose energy to the light wave travel a longer path in the undulator,
electrons which gain energy from the light wave travel a shorter path. The result is a
modulation of the longitudinal velocity. This velocity modulation leads eventually to a
concentration of the electrons in slices which are much shorter than A\, .

b)

The particles within a micro-bunch radiate coherently. The resulting strong radiation
field enhances the micro-bunching even further.
Result: “collective instability”, exponential growth of radiation power
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The ultimate power is P o N? where N, is the number of particles in a coherence
region
typical value N, ~ 10° = Prgr = 10°P,hdulator

Coherent action is what counts:

-~

o g
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An approximate analytic description of the high-gain FEL requires the self-consistent
solution of the coupled pendulum equations and the inhomogeneous wave equation for
the electromagnetic field of the light wave.

In the 1D-FEL theory the dependencies on the transverse coordinates x,y are
disregarded.
The wave equation for the radiation field E,. reads

0°E, 10°%E, 07

022 c2 Ot? :MOW

where the current density ; is generated by the electron bunch moving on its cosine-like
trajectory.

In addition, one has to consider the longitudinal space charge field E, which is generated
by the gradually evolving periodic charge density modulation. After a lot of tedious
mathematical steps and several simplifying assumptions one arrives at a third-order
differential equation for the “slowly varying amplitude” of the electric field of the light
wave:

~

dFE.,
dz

BE, d’E.,

T~ dikun—— —4k2P—= —iT3E,(2) =0
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Here we have introduced the gain parameter I and the relative energy deviation n

1
I — MOK262kune s n T
dry3me

and assumed that the electron beam has negligible energy spread.

This third-order differential equation can be solved analytically. For the case v = ~,. one
obtains

Ea;(z) = Ajexp (—il'z) + Az exp (Z +2\/§Fz> + Asexp (Z 2\/§Fz>

The second term exhibits exponential growth as a function of the position z in the
undulator. The electric field grows exponentially as exp(éfz), the power grows as

exp(v/3Tz2).
The gain parameter I is related to two parameters which are in widespread use: the
Pierce parameter and the power gain length

AT
ppzerce - 47'(' g \/gr
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The above calculations, which have been sketched only very briefly, indicate that there
is an onset of an “instability”, leading to a progressing microbunching and an exponential

increase in radiation power along the undulator. A quantitave treatment requires
elaborate numerical simulations.
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Simulation of microbunching
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Exponential growth of radiation power and progressing microbunching in a long undulator
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First lasing at the TESLA Test Facility (TTF) Free Electron Laser
Bjorn Wiik Price 2000 for Evgeni Saldin, Evgeni Schneidmiller, Mikhail Yurkov
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The FEL as a wavelength tunable laser:
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SASE FELs: | :
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t=-50fs  t=Ofs t=50fs

Figure 3.7.5.: Coulomb explosion of a T4 lysozyme molecule (H: white; C: grey; N: blue; O: red;
S yellow) induced by the radiation damage caused by a 3 x 10 12 photon per (0.1 zm)? pulse of
12.4keV energy. The FWHM of the pulse was 50fs. The molecule is shown at the beginning, in
the middle and after the pulse. Even after half of the pulse has passed, the distortionsare small.
After the pulsethe Coulomb explosionisunder way [ 7]. The distortion of the molecule during the
time of the pulse is considerably smaller for lower flux densities during the pulse (see also Fig.

3.7.4).
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