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Why RF linacs ?

Goal of an accelerator : Accelerate a wanted beam within the lower cost
wanted : particle, energy, emittance, intensity, time structure
cost : construction, operation

Main competitors : RF linacs, Synchrotrons, Cyclotrons...

Advantages : High current, high duty-cycle, low synchrotron radiation losses.
Drawbacks : High room & cavities consumption, no synchrotron radiation 
damping

RF linacs : Particles accelerated on a linear path with RF cavities.

Main use of linacs : Low energy injectors, high intensity protons beam, 
high energy lepton colliders.

Linacs main applications

Synchrotron injectors : High intensity, high duty-cycle

Neutron sources : High Power. Material study, transmutation, nuclear fuel 
production, irradiation tools, exotic nucleus production

Protons

High energy collider : No synchrotron losses

Medical/Industrial irradiation : Low energy

High-quality e- beam for FEL : Strong focusing

Electrons

Neutron sources : Material study

Heavy ions
Nuclear physics research : High intensity, high duty-cycle

Implantation : Semi-conductors

Driver for inertial-confinement fusion
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RF resonant cavity

Goal : Give kinetic energy to the beam

Basic principle

- The wanted (accelerating) mode is excited at 
the good frequency and position from a RF 
power supply through a power coupler,

RF power supply

Wave guide

Power coupler

Cavity

- Conductor enclosing a close volume,
- Maxwell equations + Boundary conditions
allow possible electromagnetic field En/Bn
configurations each oscillating with a given 
frequency fn : a resonnant mode. The field is 
a weighted  superposition of these modes.

- The phase of the electric field is adjusted to 
accelerate the beam.

Elements of mode calculation
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Ex : Drift Tube Linac (DTL) tank
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Field time variation
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Which is a damped harmonic oscillator in a forced regime

With :

The last equation can be modelled by :
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RFeS � is the RF source

� �tIkn � is the beam loading
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RF definitions and properties

Cavity voltage V0 : � �� �� dzzEV z
ˆ

0

Shunt impedance R :
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Dissipated power Pd : Mean power dissipated in conductor over one RF period

Cavity length : L

Transit time factor T (calculated latter) : TqVW ��� 0max

�Wmax : Maximum energy that can be gained by a particle in the cavity

Effective shunt impedance :
dP

WRT
2

2
max2 �

�

Per cavity

2
02

1 VRPd ��

L

RF definitions and properties

Effective shunt impedance per unit length :

Cavity mean electric field E0 : � �� ���� dzzE
LL

VE z
ˆ10

0

Shunt impedance per unit length Z :
L
R

P
EZ

d
�

��
�

2

2
0

Dissipated power per unit length Pd’ over one RF period

TqEW ���� 0max
Maximum energy that can be gained per unit 
length by a particle with charge q in the cavity:

Per unit length

dP
WZT

�

��
�

2

2
max2

2
02

1 EZPd ���



6

Example of use of effective shunt impedance ZT2

The effective shunt impedance of the structures has been chosen to set the 
transition energy between sections for TRISPAL project (C. Bourra, Thomson).

375 MeV85 MeV45 MeV19 MeV 234 MeV

Designing a cavity consists in :

� Rejecting the unwanted modes frequencies far from the RF frequency,
� Calculating the tuning system,
� Increasing the Q0 of the accelerating mode,
� Calculating the energy deposition geometry to define the cooling system (~20W/cm2 max), 
the temperature increase and the associated frequency shift,
� Matching the coupler to the accelerating mode,
� Damping the High Order Modes (HOM) considered as dangerous (having a frequency 
close to a multiple of the RF frequency), mainly excited by the beam itself and responsible of 
power losses or beam dynamics perturbations,
� Increasing the beam aperture to reduce beam losses,
� Reducing the peak electric field to reduce electron field emission,
� Reducing the peak magnetic field to avoid quenches (th. Nb max at 2K : 200 mT),
� Adjusting the cavity geometry to reduce the multipactor probabilities,
� Calculating and minimising the cavity deformation and the associated frequency shift 
through the actions of electromagnetic forces pressure (Lorentz forces),
� Introducing RF peak-up necessary for the field phase and amplitude control,
� Transmitting all these data to the guy calculating the low level RF control,
� ...

� Fitting the accelerating mode frequency with the RF frequency,
� Maximise the shunt impedance of the cavity
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Various types of cavity : Tank

DTL (medium energy ~5-100 MeV)

RFQ (low energy ~50 keV-7 MeV)

Various types of cavity : Coupled cavity

CCDTL (medium energy ~5-100 MeV)

CCL (high energy ~80 MeV-2 GeV)
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Various types of cavity : Superconducting

Elliptical (high energy ~100MeV- 2 GeV)

Spoke (medium energy ~20-100 MeV)

One word on travelling wave cavity

These cavities are essentially used for acceleration of ultra-relativistic particles
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The transit time factor and the particle phase
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Transit-time factor : 0 � T � 1

Example 1 : The transit time factor in a one-cell cavity

Field in the cavity with time

Field amplitude

Field seen by a non 
synchronous particle

Energy gain
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� ��TqVW ��� 0

Fast particle : T � 1
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Example 1 : The transit time factor in a one-cell cavity

Field in the cavity with time

Field amplitude

Field seen by a non 
synchronous particle

Energy gain
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Medium fast particle : T � 0.85

Example 1 : The transit time factor in a one-cell cavity

Field in the cavity with time

Field amplitude

Field seen by a non 
synchronous particle

Energy gain
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Slow particle : T � 0.3
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The synchronous particle - Linac design

�si �si+1�si-1

DiDi-1

�i �i+1�i-1

�si-1

Cavity number i-1 i i+1

Synchronous phase

Particle velocity

RF phase

Distances

�si

The linac is designed with a hypothetical synchronous particle. Its phase in a 
cavity is called here the synchronous phase :

• The absolute phase �i and the velocity �i-1 of this particle being known at the entrance of 
cavity i, its RF phase �i is calculated to get the wanted synchronous phase �si,
• the new velocity �i of the particle can be calculated from,

� if the phase difference between cavities i and i+1 is given, the distance Di between 
them is adjusted to get the wanted synchronous phase �si+1 in cavity i+1.
� if the distance Di between cavities i and i+1 is set, the RF phase �i of cavity i+1 is 
calculated to get the wanted synchronous phase �si+1 in it.
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� Linac with coupled cavities (DTL)

Field in cavities
Particle synchronous with the field Its energy gain
Particle not synchronous with the field Its energy gain

Gaps have the same phase. Distances between them are adjusted for synchronism.
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� Linac with independently phased cavities (SCL)

Field in cavities

Particle synchronous with the field Its energy gain

Particle not synchronous with the field Its energy gain

The distance between the cavities is given. Cavities are phased to accelerate a 
given particle.

Choice of the synchronous phase
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General equations of motion
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�wc is the particle velocity along w direction
� is the particle reduced energy,
q and m its charge and rest mass.
x and y are transverse directions,
s is the abscissa along longitudinal direction z,
x’ and y’ are called the particle slopes.
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These equation are non linear, coupled and damped.
Each element (cavity, quadrupole …) contributes to the force.
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The phase advance of the particle in a lattice is then : � � � �sSs ��� ���
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In the highest simplification level, the external force along direction w (x, y or �) 
can be considered periodic, linear, uncoupled and undamped over one period :
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In the (w, w’) phase-space, the particle is moving on an ellipse of equation :
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Particle motion in a FODO Lattice

Particle trajectory

Particle

Particle ellipse maximum size

Particle ellipse

Phase-space trajectory Phase-space periodic looks
Foc. Quad. middle Foc. Drift. middle

Defoc. Drift. middleDefoc. Quad. middle

RMS dimensions and Beam Twiss parameters

The rms dimensions of the beam are defined statistically as followed :

� �2~ www ��rms size :

rms slope : � �2~ www �����
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RMS matched beam

50% mismatched beam

The beam is matched when :

wmw �� �

wmw �� �

wmw �� �

Phase-space trajectory Phase-space periodic looks

Matched beam
Bigger input beam
Smaller input beam
Phase-space scanned by 
the mismatched beams

Summary

• Linacs are competitive for low energy, high current, high duty cycle beams or 
very high energy light-particles (e+-e-) colliders.

• Acceleration is generally done with RF resonant cavities, confinement with 
quadrupoles (except at very low energy).

• Cavities are pieces of metal (Cu or Nb) whose shape is optimised to accelerate 
the particles at the RF frequency with the higher efficiency (ZT2 as high as 
possible) and the lower cost. The choice of the accelerating electric field E is a 
compromise between the linac length reduction (� E�) and the power dissipation 
(� E�) .

• RF phases in cavities are adjusted with respect to a synchronous particle to 
accelerate the beam and keep it bunched (synchronous phase choice).

• Forces are linearised to calculate the beam matching to the structure.


