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 Emittance History (LHC-Design)  
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  Emittance  Definition 
 
Betatron equation (linear!): 0(s)(s)(s) xKx =+″  
 
Solution for particle "i" 
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The  motion of each particle describes a circle in (x, px ) space!  The Courant&Snyder 

invariant ("single particle emittance") is: 

βσππ
β

πε /22
i

2
xA2

xip2
ix1

i =�
�

�
�
�

� =+≡
 

 
emittance blow up                                      CAS'2003,  Zeuthen,  Sept. 2003                                     D.  Möhl Slide 3 

 

 Single Particle (x x’)-Phase-Space Trajectory 

  

  Area of ellipse:  γπβπ 2/
max

2
max x/x =  : ‘single particle emittance’ 

 (also called : Courant&Snyder –invariant )          
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 Single Particle Trajectory in Normalized Phase-Space 

  

 

 

 

 

 
 

 
 
 

 

  Area of circle: ‘single particle emittance’
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 Many Particle Trajectories and Projected Density 
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 Two common beam emittance  definitions 
 

  

Definition  referring to the a fixed fraction of particles:  
 The beam emittance  (ε% )  is the area of the circle in ( x, px ) space that contains  
 the motion of  a given  fraction  (F) of the particles. Usually one refers to 
 F = 39% or 86% or 95% of the beam.    
   
  

 Definition referring to the standard deviation of the projected distribution: 
 Let  σx be the standard deviation of the particle density projected on the x-axis  
 ( i.e. the "rms beam size" as measured e.g. on a profile detector ). Then 
 the emittance (εkσ) is defined as the area in ( x, px ) space  with radius kσx .  
 Usually one choses k=1 or 2 or 2.5.  
    

ε% is ( sometimes ) called: “geometrical emittance” 

εkσ =(kσ)2/β  is (sometimes) called   “ ‘k’-rms emittance “ 

--- Beam emittance = “ average” of  εi  over all beam particles--- 
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 εkσ =  π ( kσx )2 / β 
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Emittance  definition, cont. 
 

Usually one can assume stationary conditions (distribution is time independend i.e. uniformly distributed 
with resp. to betatron phase: ψ = 0 to 2π ) 
  
The fraction of  particles within a given element of phase space with  area dx dpx is 
 xx dxdp)p,x(ndF =  .  Switching to polar coordinates rdrd),r(ndF:),pxr( 2

x
22 ψψψ =+=  

 
The fraction of particles that have their motion contained in a circlea of radius "a" (emittance ε =π a2/β)  is                      
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Gaussian distribution 
 
 
Suppose that the distribution in transverse coordinate (x) is Gaussian (independend of 
time) 
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The distribution in px is also Gaussian (with the same standard deviation) and the density 
in x, px space is the product 

 
2
x

2

2
x

2
x

2

2
x

2
x

2

r

2
x

2
px

2
x

x
2
p

x
x er)r(n,e

2
1)p,x(n,e

2
1)p(n σσσ

σπσσπ

−+−−
===  

  
 



 
emittance blow up                                      CAS'2003,  Zeuthen,  Sept. 2003                                     D.  Möhl Slide 10 

 

 Gaussian distribution, cont. 
 

 
 Then the fraction of particles that have their motion contained in a circle 
 of radius "a" (emittance ε =π a2/ β )  is     
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k=a/σx εkσ FGauss   Funif 

*) 
1 π ( 1 σx)2/ β 39.3 %  50% 
2 π ( 2 σx)2/ β 86.4 %  100% 
2.5 π ( 2.5 σx)2/ β 95.6 % (100 %) 

 *)  uniform density in (x, px ) space 
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Gaussian distribution, cont., cont.   
 
 

Average  and  root mean square of (the single particle) emittances 
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Betatron amplitude distribution:                                 
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Nonlinearity of betatron oscillation causes a dependence of  betatron frequency on amplitude ---> 
particles go around in phase space at (slightly) different speed. Over sufficiently long time ( ∆ωt >> 1)  
a mismatched beam 'smears  out' and the larger phase space becomes filled out 
 

Filamentation =  Randomisation of betatron phases (in a mismatched beam) 
---> emittance dilution (apparent blow up) 

 
 
 
 
 
 
 
 
 
 
 

Filamentation 
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Simulation of filamentation 
 

 
  

injection                              after some time                     after long time
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Injection error 
 

Assume the beam is injected with displacemant ∆x and angular error   ∆x'  into an otherwise matched  
phase space  (Fig.) 

∆r2 = ∆x2 + ∆px
2 

   

The radius enclosing the motion of the given fraction of particles is  
 
 r% --> r% +  ∆r = r%  +{ ∆x2 + (β∆x'  + α ∆x )2 }1/2 

 

The emittance  containing the given fraction of particles ( after filamentation) is 

 
ε% --> ε% ( 1 +  ∆r / r0)2 
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Injection error, increase of ε% ,cont 

 
 

ε% --> ε% ( 1 +  ∆r / r0)2 
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  Injection error, increase of ε%,  special cases 
 
 

 Position or angular error  only: 
 
 ∆x  only:   (∆r =   ∆x (1+ α2  ) 1/2 :::        ε% --> ε% { 1 + ∆x (1+ α2  ) 1/2/ r%o}2 
 
 ∆x'  only:   (∆r =   ∆x' β  )             :::     ε% --> ε% { 1 + ∆x ' β / r%o}2 
 
  
  For  small   ∆r << r%o  : 
 
 ε% -->   ε% ( 1 + 2 ∆r / r%o)     =    ε% [ 1 + 2 { ∆x2 + (β∆x'  + α ∆x )2 }1/2/ r%o ] 
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  Injection error, increase of rms-emittance 
 
Assume (again)  the beam is injected with an error { ∆x , ∆px }  

  
By (simple) geometrical arguments one finds  that after filamentation the beam has the new   
 σx

2 = σxo
2 + ½ ∆r2    ; 

  

   
 
This is independent of the initial (and final) distribution.  Rem.:   ∆r2 ={ ∆x2 + (β∆x'  + α ∆x )2 } 

 

εkσ --> ε kσ { 1 + ½ (∆r 2/ σxo
2) }  
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Increase of rms emittance, cont. 
  

 
index m:  machine phase space (origin 0 , Fig.) 
index i ; injected beam (displaced by ∆r) space 
  
 A  test particle (cf. Figure)has 
 rrr im
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The injection error ( ∆r and Ψ ) is fixed but    
the phases Ψi  of the injected particles are                     
uniformly  distributed  from 0  --> 2π . 
 Averaging  
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Distribution after filamentation of an injection error 
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Momentum error,  dispersion error 
 
 
Assume a beam is injected  with a momentum error δp/p. If the dispersion  D of the transfer line matches 
the dispersion of  the ring  and  the  beam is centered around its displaced ( δx=D δp/p, δx'=D'δp/p) off-
momentum orbit, then perfect matching will prevail. If however the beam is injected onto the center of the 
aperture, it has a position error    
 ∆r = { D2 + (βD'  + α D )2 }1/2 δp/p, 
and our previous formulae can be used 
 
Next: if  the dispersion is mismatched (without loss of generality assume that the machine has zero 
and the line has finite D ; in the general case we just can substitute D --> ∆D ).  Then for any  particle 
 

x = r  cos(Ψ)  +  D ∆p/p ,   px = r sin (Ψ) + (βD'  + α D ) ∆p/p 
 

2 σ2 =  < x2 + px
2 > = < r2 + { D2 + (βD'  + α D )2} (∆p/p)2 > , 

 
σ2   = σ 2  + { D2 + ½ (βD'  + α D )2}(σp/p)2 

 

 
 εkσ ---> ε kσ { 1 + ½ { D2 +  (βD'  + α D )2}(σp /p)2 / σo

2) } 
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Focussing error (mismatch) at transfer 

 
Suppose the twiss functions at the "hand over point" (exit of the transfer line --> entrance of the ring) differ 
from the ring ones . Normalising the ring phase space trajectories to circles, the trajectories of the 
mismatched injected beam are ellipses. Particles contained in a given ellipse fill, after filamentation, the 
circumscribed circle of the ring phase space with an area encrease  :ε% -->   ε%  ( b/a )     (major axis/minor 
axis)  fig     

 
Calculation shows that this can be expressed as 
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 Mismatch at transfer, continued 
 
 
To calculate the increase of the rms-emittance represent the particles motion at the end of the beam line by  
 

iil,iil cosb/aApsina/bAx ψψ == where  2
iAπ  is the single particle emittance and the 

average  . βσππ /2A 2
x

2
i =><  is twice the rms- emittance in the line.  The xl , pl set the initial 

conditions for the circular phase space motion  with an amplitude ri
2= xl

2 + pl
2 in the ring. Averaging over 

all particles we find  
 

  ( )
2
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i

2
i

+><>=<  this is twice the rms emittance after filamentation in the ring. Thus 

the blow up of the rms emittance is  ( )
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Recapitulation 
 
 
 
 

Steering error Mismatch 

 
Blow up  ε% / ε%,0 
of emittance containing 
 given fraction of 
partices 
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An example 
 
 
 Relative steering error 
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Dilution  ε% / ε%,0 
of geometrical 
emittance  

 
 

1.73 

 
 

1.56 
 

 
 
Dilution εrms / εrms,o of 
rms emittance 

 
 

1.05 

 
 

1.1 
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Scattering in a foil or a window 
 
A particle (of charge number qp ( =1 for proton), momentum p [MeV/c], velocity βp=vp/c) traversing a foil  ( 
thickness L, material of 'radiation length' Lrad undergoes multiple Coulomb scattering. The rms scattering 
angle in each of the transverse planes is given by ( εcorr is a correction factor neglected later on) 

  ( )corr
rad

p
p

rms 1
L

Lq
p

c/MeV14 ε
β

θ +=  

The (normalised) circular phase space trajectories of a matched beam at the entrance are converted into 
elliptical trajectories at the exit (Fig.  ).    In fact for any  particle scattered by an angle  θi  
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These are the initial conditions for the new betatron oscillation after the scattering event.Averaging over the 
beam we take the phases ψi  of  the original oscillation uniformly distributed and uncorrelatde with the 
scattering angle. After filamentation in the line and/or the subsequent ring the new betatron phase are also 
uniformly distributed and one obtains 
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Thus blow up of  kσ emittance by       βθπε∆ σ
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Transition of the beam through a foil 
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Phase space before and after scattering at the foil 
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Scattering in foil or thin window, cont. 

 
Above we have tacitly assumed that the beta function is the same at the entrance and exit so that the beam 
remains matched in the absence of the scatterer. By re-adjusting the optics in the downstream part of the line 
the blow-up can in fact be reduced (approx. halved). The idea is to provide different β-functions (β0 > β1 ) at 
entrance (o) and exit (1). For simplicity, we perform the calculation only for α= 0. Then, for any particle  
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Taking the squares and averaging over the beam with the assumption that the beam is - and remains 
matched before and after the foil  ( so that all the cos2 and sin2 terms average to ½ )  
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The solution of this system is 
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Remember that the 1σ-emittance is εσ = π A2/2. Then, for small  ∆ε / ε , one obtains 
 
 ∆εσ   = π/4 θ 2rms    (and hence ∆εkσ   = π/4 k2 θ 2rms ) 

β1 = βο  [ 1 − (π/4 ) θ 2rms / εσ ] 
 

This is half the emittance increase than for constant  β1 = βο  (after filamentation)  
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Multiple Coulomb scattering on the residual gas 
 

This is treated in many papers of which I find the one by W. Hardt (CERN ISR-300/GS/68-11) especially 
instructive. Here we can use our previous results immediately by taking the residal gas atmosphere as a "thin 
scatterer". For pure Nitrogen (N2) at pressure P the radiation length is  LradN2 ≈ 305 m /( P/760 torr) and the 
thickness traversed by the beam in time t is L=βpct . Then from (***) we get the blow-up of the 

kσ −emittance as          
)torr760/P(305

tc
)

p
c/MeV14(qk p

p

2
p

2
2k

2 β
β

β
ε∆ π

σ =   

  
Here β is the average beta function as scattering occurs everywhere around the ring. With 
p=938 MeV/c*Ap *βpγp,   Ap = mass number of  the ion ( 1 for proton),  one obtains Hardt's formula (except 
for a slight difference in the numerical factor as he takes 15 MeV/c  in the scattering angle formula) 

 2
p

3
p

2
p

2
p2

k
tP3.0

A
q

k
2 γβ

βπε σ ≈∆
 (  P[torr]   t[sec] ) 

This relation is widely used to determine the vacuum requirement in a storage ring. For a synchrotron one  

has to integrate  
p

2
p

td
γβ

 over the acceleration cycle to get the blow up of the normalised emittance . For an 

atmosphere with different gases of partial pressures Pi we can define the N2 equivalent P for multiple 
Coulomb scattering as   ( )�= i,rad2N,radiequ2N LLPP  
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Hardt’s classical internal paper (ISR-300/GS/68-11) 
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Multiple Coulomb scattering, orders of magnitude  
 

 
In LEAR the vacuum pressure (N2 eqivalent for scattering) is of the order of  P=10-12 torr. 
Then: Lrad = 2.3 1017 m (about 25 light years).  
 
At  p=100MeV/c  ( βp≈0.1 ) an rms scattering angle of θrms=5 10-3 rad (which is about the acceptance limit 
of LEAR, s. below)  is reached after a path length L= 1.3 10-5 x Lrad = 3 1012 m (about 2.7 light hours).  
 
With the speed βp c = 3 107 m/s  the beam traverses this distance  in    ≈ 27 h  (≈ one day). 
With the circumference of  C≈ 80 m  this corresponds to about 4 1010  revolutions.  
 
For an average beta function of 10m, the rms scattering angle of  5 10-3  rad corresponds to an encrease of the  
1σ -emmittance by  ∆ε1σ = 125 π mm mrad .  
 
With an acceptance of 125 π mm mrad  60 % of a Gaussian beam would be lost in 27 h.  



 
emittance blow up                                      CAS'2003,  Zeuthen,  Sept. 2003                                     D.  Möhl Slide 34 

 

Resonance crossing 
 

Dangerous, low order resonances are usually avoided by choosing an appropriate 
working point (Qx, Qy). However high order resonances may be touched and 
traversed  due to small,  unavoidable or programmed tune changes. For a rapid 
traversal of a resonance pQ=integer the amplitude increase  (for small ∆a/a)  is 
given by 

 
typicallyt

3

t Qp
10

Qp
ea/a

∆
≈

∆
∆≈∆

−π
   

( p: order,  ∆e : width of the resonance, ∆Qt: tune change per turn  ). The 
emittance growth after filamentation (∆ε/ε=  ½∆a2/a2 ≈ ∆a/a ) is given by the 
same expression. Hence only few transitions can be tolerated even of high order 
resonances. For repeated random crossings the amplitude growth is multiplied 
by the square root of  the number  crossings. 
For slow tune variation, particles can be trapped in resonance ‘bands’ which 
move them outwards, eventually even to the aperture limit. This can happen 
through a momentum diffusion (e.g. due to residual gas scattering s. below) 
leading to a tune diffusion via the chromaticity ξ:   ∆Q/Q=ξ ∆p/p. 

 ------> A very high ‘stability’ of the tune is essential 
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 Power supply ripple 
Could be treated by : ( )x)s(g)s(dx)s(Kx +=+′′ ε  where )s(dε and )s(gε are small random 
functions representing bending- and focussing-ripple. Instead we use previous assuming that the particle 
receives small random kicks. 
 
Dipole errors: Let θ(n) be the random deflection error per turn with variance  < θ(n)2 >= θ2

n,rms. Each kick 

introduces an increase in the kσ-emittance of     2
)n(2

k )k(
dn

d θβε πσ =  according to the previous results. For 

true (white) noise, the effect of the multiple kicks adds up statistically ( i.e. "in square") . After n = frev*t 
turns one therefore has: 

 tf)k( rev
2

rms,n2k θβε∆ π
σ =  

 
Orders of magnitude: storage for 1 day: n= frev*t = 1010 turns ( more revolutions than earth around sun!!) 
 typical beta function:  β = 20 m ,  
 assume one magnet giving a nominal angle of  θo =10 mrad  
 with field jitter  (∆B/B) rms= 10-6 ---> θ2

n,rms =( 10 mrad (∆B/B) rms ) 2   =(10-5 mrad)2   

  ---> ∆εσ=  10 π mm mrad.  
  
 This might suggest a  (∆I/I) ? =? (∆B/B )  power supply stability requirement of 1/106 
  However .... the frequency content of the noise is very important! 
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Power supply ripple, importance of frequency content. 
 

Assuming one localised kick per turn, calculate effect in the normalised variables   ( x,  px= α x + β x' ) .  
The compound effect (at the observation time o) is:  --the kick ∆po at t=o, -- plus the kick ∆p1 at the previous 
turn transposed by the 1 turn matrix --plus....-- plus the kick n turns ago transformed by the n-turn matrix:  

 (**)      
��
�

�
��
�

�
=��

�

�
��
�

�
�
= l

n

ol
l

x p
0

M
p
x

∆∆
∆

  

where the �-turn matrix is given by  the expression       Q2
cos
sin

sin
cos

M πµ
µ
µ

µ
µ

=��
�

�
��
�

�

−
= with

�

�

�

�

�  

May also write:   (**)      ��
==

==
n

0
x

n

0
cospp,sinpx

�

�

�

� �� µ∆∆µ∆∆ . 
 

Now assume purely sinusoidal kicks 

∆πµµ∆∆ amplitudeandi.e.frequencywith revkkkk ff2fsinp == �� .  Then the sum (**) gives 

 

( ) ( )Q)ff(
}sin{

}ncos{})1nsin{(

}sin{

}ncos{})1nsin{(

2
x revkk2

1 ±=±=
�
�
�

�

�
�
�

� +
−

+
= ±

+

++

−

−− πµµµ
µ

µµ
µ

µµ∆∆ :where  

This is bounded for ∞→n  except when  πµ m=±  i.e. 
 for mQff revk =±)(  In that case: 2nx ∆∆ =  
 _____________________________________________________________________________________________________________________________________ 

-->|The excitation is by those noise components that coincide in frequency fk with the betatron sidebands| 
 |_________________________ ( ) revk fQmf ±=  ___________________________________________| 
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Power supply noise by differential equation  
 
 

Use the simplified 'linear oscillator' eq.         )t(uxx 22
ββ

ωω =+��  where  u(t) is the 'noisy deflection'. 

The statistical properties of  u(t) are supposed to be independent of time ("u(t) is stationary") and 
represented by the autocorrelation function : 

.)( )(u)(u 2121 ττττϕ
−−−−−−−−−−−−−−−−−

=−  The  spectral power density function φ (ω)  is defined by the Fourier 

transform of the autocorrelation function  � �
∞

∞−

∞

∞−

− == ωωφτϕττϕ
π

τωτωωφ de)()(de)(
2
1 ii)(  .  

The response of the oscillator can be shown (CERN report by Hereward and Johnsen  or book e.g. by 

Oksendahl ) to be a noisy waveform  x(t) with a mean square  amplitude t)(22A βωφπ=
−−−

 that increases 
linear with time and is proportional to  the power density of the noise at the resonant frequency of the 
oscillator. For white noise the autocorrelation is a δ-function 

)(u)()(u)( 21
2

211
2

21 rms,11 ττδττδτττϕ −=−=−
−−−−−−−

and the power density is constant 2
rms,1

u
2
1)(
π

ωφ =  .  

Then the mean square amplitude is tuA 2
rms1

2 =
−−−

.  In reality the noise on the bending magnet is filtered by 
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the large inductance of the magnet. For any system with a transfer function H(ω) and white noise with 

w)( φωφ =  at the input, the noise at the output is  w
2)(H)( φωφ ω=  .  

 Thus for  H(ω) = ( i ω L ) -1  the mean squared amplitude response is  2

2

)L(

tu
A rms12

βω
=

−−−
 or by comparison 

with the previous result tf
)L(
)k(

rev2

2
rms,n

k 2
β

π
σ ω

θ
βε∆ =  

 
If the magnet excitation current has a noise density leading to a ripple of 10-3 at 50 Hz the effective density 
at the betatron frequency (which is several 100 KHz) is smaller than 10-9. . 
These qualitative considerations show the way towards explaining the puzzle of the insensitivity to  power 
supply ripple. However to deal with betatron excitation by a short kicker we have to introduce (at least) one 
more element.  
Particles 'sample' the noisy kick once per turn. This can be expressed by multiplying the u(t) by a periodic 

δ -function δ( t - m T) which we expand as ( ) �=−
∞

−∞=m

ti revemTt ωδ .  Then the betatron equation to be 

treated is �=+
∞

−∞=m

tmi22 reve)t(uxx ω
ββ

ωω��  with the result   �
+

=
∞

∞−

−−−

2
rev

2

}L)im{(

tu
A rms12

βωω
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--->  noise components with frequencies near the betatron sidebands (n±Q)ωrev (only) 
lead to a linear increase of  the mean squared betatron amplitudes (and emittance) 
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Hereward and Johnson’s (yellow) report on noise (CERN/60-38) 
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 Intra-beam scattering 
 

 Small angle (multiple) Coulomb scattering between particles of the beam. 
 In the collisions, energy transfer:  longitudinal <----> horizontal <---->vertical  occurs 
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Outline of the calculation  
(due to A.Piwinski, 1974) 

 

• Transform the momenta of the two colliding particle into their centre of mass 
system. 

• Calculate the change  of the momenta using the Rutherford cross-section. 

• Transform the changed momenta back into the laboratory system. 

• Calculate the change of the emittances due to the change of momenta at the 
given location of the collision. 

• Take the average over all possible scattering angles (impact parameters from 
the size of the nucleus to the beam radius). 

• Assume a ‘Gaussian beam’ (in all three planes). Take the average over 
momenta and transverse position of the particles at the given location on the 
ring circumference. 

• Finally calculate the average around the circumference (taking the lattice 
function of the ring into account) to determine the change per turn. 
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Particularities of IBS.  
The sum of the three emittances 

• For constant lattice functions and below transition energy, the sum of 
the three emittances is constant (the beam behaves like a ‘gas. in a 
box’). 

• Above transition the sum of the emittances always grows (due to the 
negative mass effect, i.e. particles ‘being pushed go around slower’). 

• In any strong focussing lattice the sum of the emittances always grows 
(also below transition because of the ‘friction’ due to the derivatives of 
the lattice functions). 

• The increase of the 6-dimentional phase space volume can be explained 
by transfer of energy from the common longitudinal motion into 
transverse energy spread. 

• Although the sum grows there can be strong transfer of emittance and 
theoretically even reduction in one at the expense of fast growth in 
another plane (in practise the reduction in one plane has not been 
observed). 
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 Particularities of IBS, scaling. 
The exact IBS growth rates have to be calculated by computer codes. 
One determines “form factors” F giving 1/τx,y,l =1/τ0 * Fx,y,l . The basic 
scaling is given by 

 ***

22

0
***2

22
2

0

0 /)/4(
/1

lyx

b

lyx

b A
qN

E
A

qrN

εεεγεεεγπ
τ

��
�
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�

�

∝
��
�

�
��
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=   

 
 Nb : number of particles per bunch,    r0 :  classical proton radius,  

)/(, 0/
*

,
2
,

*
, cEppllyxyxyx ∆== σπβγσεβσπβγε : normalised 1 σ emittances of bunch 
γβ,  : relativistic factors,     E0 : proton rest mass 

 
 One notes: 
 

  
  

o Strong dependence on ion charge (q4/A2) 
o Linear dependence on (normalised) phase 

space density (Nb/(εx*εy*εl*))  
o Weak dependence on energy ( 1/γ) 
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Conclusions. 
 

• Emittance (i.e. beam density) preservation is a mayor concern 
in the design of modern accelerators and colliders. 

 
• There is a great number of ‘single particle’ and ‘collective’ 

effects which have to be perfectly controlled to avoid excessive 
‘beam heating’. 

 
• Beam cooling (not treated in this talk) can –to some extent-- be 

used to  fight emittance growth and even lead to very small 
equilibrium emittances. These are the result of the balance 
between the cooling and ( many of ) the heating mechanisms 
mentioned.  
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