
CAS Zeuthen  15-26 September 2003 1

LONGITUDINAL DYNAMICS

by

Joël Le DuFF

(LAL-Orsay)

CAS on Intermediate Accelerator Physics Course
Zeuthen 15-26 September 2003



CAS Zeuthen  15-26 September 2003 2

summary

Radio-Frequency Acceleration and Synchronism Condition
Principle of Phase Stability and Consequences
The Synchrotron
Dispersion Effects in Synchrotron
Energy-Phase Equations
Longitudinal  Phase Space Motion
Particularities of the electron Synchrotron
From Synchrotron to Linac
Adiabatic Damping
Dynamics in the vicinity of transition energy
Stationnary Bucket



CAS Zeuthen  15-26 September 2003 3

Bibliography : Old Books

M. Stanley Livingston        High Energy Accelerators
(Interscience Publishers, 1954)

J.J. Livingood                    Principles of cyclic Particle Accelerators
(D. Van Nostrand  Co Ltd ,  1961)

M. Stanley Livingston and J. B. Blewett   Particle Accelerators
(Mc Graw Hill Book Company, Inc 1962)

K.G. Steffen High Energy optics
(Interscience Publisher, J. Wiley & sons, 1965)

H. Bruck Accelerateurs  circulaires de particules
(PUF, Paris 1966)

M. Stanley Livingston (editor) The development of High Energy  Accelerators 
(Dover Publications, Inc, N. Y. 1966)

A.A. Kolomensky & A.W. Lebedev    Theory of cyclic Accelerators
(North Holland Publihers Company, Amst. 1966)

E. Persico, E. Ferrari, S.E. Segre     Principles of Particles Accelerators
(W.A. Benjamin, Inc. 1968)

P.M. Lapostolle & A.L. Septier          Linear Accelerators
(North Holland Publihers Company, Amst. 1970)

A.D. Vlasov                         Theory of Linear Accelerators
(Programm for scientific translations, Jerusalem 1968)



CAS Zeuthen  15-26 September 2003 4

Bibliography : New Books

M. Conte, W.W. Mac Kay     An Introduction to the Physics of particle Accelerators
(World Scientific, 1991)

P. J. Bryant and K. Johnsen The Principles of Circular Accelerators and Storage Rings
(Cambridge University Press, 1993)

D. A. Edwards, M. J. Syphers An Introduction to the Physics of High Energy Accelerators
(J. Wiley & sons, Inc, 1993)

H. Wiedemann Particle Accelerator Physics
(Springer-Verlag, Berlin, 1993)

M. Reiser Theory and Design of Charged Particles Beams
(J. Wiley & sons, 1994)

A. Chao, M. Tigner Handbook of Accelerator Physics and Engineering
(World Scientific 1998)

K. Wille                           The Physics of Particle Accelerators: An Introduction
(Oxford University Press, 2000)

E.J.N. Wilson An introduction to Particle Accelerators
(Oxford University Press, 2001)

And CERN Accelerator Schools (CAS) Proceedings



CAS Zeuthen  15-26 September 2003 5

Main Characteristics of an Accelerator

ACCELERATION is the main job of an accelerator.
•The accelerator provides kinetic energy to charged particles, hence increasing their 
momentum.
•In order to do so, it is necessary to have an electric field , preferably along the 
direction of the initial momentum.

E
r

eEdt
dp=

BENDING is generated by a magnetic field perpendicular to the plane of the 
particle trajectory. The bending radius ρ obeys to the relation : 

ρB
e
p

=

FOCUSING is a second way of using a magnetic field, in which the bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density.
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Radio-Frequency Acceleration

Cylindrical electrodes separated by gaps and 
fed by a RF generator, as shown on the Figure, 
lead to an alternating electric field polarity

Synchronism condition             L = v T/2 
(v = particle velocity)
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Radio-Frequency Acceleration (2)

L = vT/2  (π mode)                         L = vT (2π mode)

Single Gap                                 Multi-Gap
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Energy Gain

Newton-Lorentz Force Ee=
dt
pd rr

Relativistics Dynamics

cpEE 222
0

2 += dpvdE =

Eedt
dp

dz
dpvdz

dE
z===

dzEedWdE z== ∫= dzEeW z

RF Acceleration

(neglecting transit time factor)

( )tEtEE zRFzz φω sinˆsinˆ ==

∫ =VdzEz ˆˆ

φsinV̂eW =
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Principle of Phase Stability

Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase Φs .

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time.

is the energy gain in one gap for the particle to reach the next
gap with the same RF phase: P1 ,P2, …… are fixed points.sVeseV Φ= sinˆ

If an increase in energy is transferred into an increase in velocity, M1 & N1 
will move towards P1(stable), while M2 & N2 will go away from P2 (unstable).
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A Consequence of Phase Stability

Transverse Instability
00 <

∂

∂
⇒>

∂

∂

z

zE

t

V
Longitudinal phase stability means : 

defocusing 
RF force

000. >
∂

∂
⇒=

∂
∂

+
∂

∂
⇒=∇

x
E

z
E

x
EE xzxThe divergence of the field is

zero according to Maxwell : 

External focusing (solenoid, quadrupole) is then necessary
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions:

Be
PB

cteRcte

h

cte

Ve

rRF

s

⇒=

==

=

=Φ=Φ

Φ

ρ

ρ

ωω

sin
^

If v = c, ωr hence ωRF remain constant (ultra-relativistic e- )

Energy gain per turn

Synchronous particle

RF synchronism

Constant orbit

Variable magnetic field
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The Synchrotron (2)

Energy ramping is simply obtained by varying the B field:

v

BRe
rTBeturnpBe

dt
dp

eBp
′

=′=∆⇒′=⇒=
ρπ

ρρρ
2

)(

pvEcpEE ∆=∆⇒+=
222

0
2Since:

( ) ( ) φρπ ssturn VeRBeWE sinˆ'2 ==∆=∆

•The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference.
•Each synchronous particle satifies the relation p=eBρ. They have the 
nominal energy and follow the nominal trajectory.
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Dispersion Effects in a Synchrotron

cavity

Circumference

2πR

If a particle is slightly shifted in 
momentum it will have a different 
orbit:

dp
dR

R
p=αE

This is the “momentum compaction” 
generated by the bending field.

E+δE

If the particle is shifted in momentum it will 
have also a different velocity. As a result of 
both effects the revolution frequency changes:

dp
df

f
p r

r
=ηp=particle momentum

R=synchrotron physical radius

fr=revolution frequency
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Dispersion Effects in a Synchrotron (2)

θ

xρ

p
dpp +

dθ

x0s
s

( ) θρ
θρ
dxds

dds
+=

=0
dp
dR

R
p=α

The elementary path difference 
from the two orbits is:

ρ
x

ds
dl

ds
dsds ==−

00

0

leading to the total change in the circumference:
< >m means that 
the average is 
considered over 
the bending 
magnet only

m
m

xdRxdsdsxdRdl =⇒∫=∫ ∫== 00
12 ρρπ

p
dpDx x= R

D
mx=αSince: we get:
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Dispersion Effects in a Synchrotron (3)

R
dRd

f
df

R
cf

r

r
r −=⇒= β

β
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2dp
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α
γ 1=trη=0 at the transition energy 
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Phase Stability in a Synchrotron 

From the definition of η it is clear that below transition an increase in 
energy is followed by a higher revolution frequency (increase in velocity 
dominates) while the reverse occurs above transition (v ≈ c and longer path) 
where the momentum compaction (generally > 0) dominates.

Stable synchr. Particle 
for η<0

η > 0
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Longitudinal Dynamics

It is also often called “ synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF 
phase experienced by the same particle. Since there is a 
well defined synchronous particle which has always the same 
phase φs, and the nominal energy Es, it is sufficient to follow
other particles with respect to that particle. So let’s 
introduce the following reduced variables:

revolution frequency :             ∆fr = fr – frs

particle RF phase     :              ∆φ = φ - φs

particle momentum   :              ∆p = p - ps

particle energy         :              ∆E = E – Es

azimuth angle            :              ∆θ = θ - θs
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First Energy-Phase Equation

θ
R

∫=∆−=∆⇒= dtwithhhff rrRF ωθθφ

( ) ( ) dt
d

hdt
d

hdt
d

r
φφθω 11 −=∆−=∆=∆

For a given particle with respect to the reference one:

cpEE 222
0

2 +=

s

r

rs

s

dp
dp







= ω

ωηSince: and
pRpvE srss ∆=∆=∆ ω

( ) φηω
φ

ηωω
&

rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=∆−=∆one gets:
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Second Energy-Phase Equation

The rate of energy gained by a particle is: π
ωφ 2sinˆ rVedt

dE=

The rate of relative energy gain with respect to the reference 
particle is then:

)sin(sinˆ2 s
r

VeE φφωπ −=




∆ &

Expanding the left hand side to first order:

( ) ( )ETdt
dETTEETTETE rsrsrrsrr ∆=∆+∆=∆+∆≅∆ &&&&&

leads to the second energy-phase equation:

( )s
rs

VeE
dt
d φφωπ sinsinˆ2 −=






 ∆
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Equations of Longitudinal Motion

( )s
rs

VeE
dt
d φφωπ sinsinˆ2 −=






 ∆( ) φηω

φ
ηωω

&
rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=∆−=∆

deriving and combining

( ) 0sinsin2
ˆ =−+





s
rs

ss Ve
dt
d

h
pR

dt
d φφπ

φ
ηω

This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time…………………
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Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 1th order 
equations:

( )sVedt
dW φφ sinsinˆ −=

WRp
h

dt
d

ss

rsηω
π

φ
2
1−=

pREW s
rs

∆=




 ∆= πωπ 22

These equations of motion derive from a hamiltonian H(φ,W,t):

W
H

dt
d

∂
∂=φ

φ∂
∂−= H

dt
dW

( ) ( )[ ] WpR
hVetWH

ss

rs
sss

2

4
1sincoscosˆ,, ηω
πφφφφφφ −−+−=
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Small Amplitude Oscillations

Let’s assume constant parameters Rs, ps, ωs and η:

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&&
ss

srs
s pR

Veh
π

φηω
2

cosˆ
2=Ωwith

Consider now small phase deviations from the reference particle:

( ) φφφφφφφ ∆≅−∆+=− ssss cossinsinsinsin (for small ∆φ)

and the corresponding linearized motion reduces to a harmonic oscillation:

02 =∆Ω+ φφ s
&& stable for         and  Ωs real02>Ωs

γ < γtr η > 0             0 < φs < π/2               sinφs > 0

γ > γtr η < 0           π/2 < φs < π sinφs > 0
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ&& (Ωs as previously defined)

Multiplying by   and integrating gives an invariant of the motion:φ&

( ) Is
s

s =+Ω− φφφφ
φ sincoscos2

22&

which for small amplitudes reduces to:

( ) Is =∆Ω+ 22
2

2
2 φφ& (the variable is ∆φ and φs is constant)

Similar equations exist for the second variable : ∆E∝dφ/dt
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Large Amplitude Oscillations (2)

When φ reaches π-φs the force goes 
to zero and beyond it becomes non 
restoring. Hence π-φs is an extreme 
amplitude for a stable motion which 

in the phase space(            ) is shown 

as closed trajectories. 

φφ ∆Ω ,
s

&

Equation of the separatrix:

( ) ( ) ( )( )sss
s

s
s

s

s φφπφπφφφφφ
φ sincoscossincoscos2

222
−+−Ω−=+Ω−

&

Second value φm where the separatrix crosses the horizontal axis:

( ) ( ) ssssmm φφπφπφφφ sincossincos −+−=+
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Energy Acceptance

From the equation of motion it is seen that    reaches an extremum 
when        , hence corresponding to        .

Introducing this value into the equation of the separatrix gives:   

φ&
0=φ&& sφφ =

( ){ }sss φπφφ tan222 22
max −+Ω=&

That translates into an acceptance in energy:

( )






−=





 ∆ φηπβ s

ss
G

Eh
Ve

E
E ˆ 2

1

max
m

( ) ( )[ ]φπφφφ ssssG sin2cos2 −+=

This “RF acceptance” depends strongly on φs and plays an important role 
for the electron capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase 

As the synchronous phase 
gets closer to 90º the 
area of stable motion 
(closed trajectories) gets 
smaller. These areas are 
often called “BUCKET”.

The number of circulating 
buckets is equal to “h”.

The phase extension of 
the bucket is maximum 
for φs =180º (or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage.
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Potential Energy Function 

( )φφ F
dt
d =2
2

( ) φφ ∂
∂−= UF

( ) ( ) FdFU s
s

s
00

2
sincoscos −∫ +Ω−=−= φ φφφφφφ

The longitudinal motion is produced by a force that can be derived from 
a scalar potential:

The sum of the potential 
energy and kinetic energy is 
constant and by analogy 
represents the total energy 
of a non-dissipative system.
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From Synchrotron to Linac

In the linac there is no bending magnets, hence there is no 
dispersion effects on the orbit and α=0 and η=1/ γ2.

sRC π2=

cavity

Ez

s
sRC π2=
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From Synchrotron to Linac (2)

In the linac there is no bending magnets, hence there is no 
dispersion effects on the orbit and α=0 and η=1/ γ2.

sRC π2= λβ RFhC=

cavity

Ez λβ RF

S or z
sRC π2=
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From Synchrotron to Linac (3)

Since in the linac α=0 and η=1/ γ2, the longitudinal frequency becomes: 

pR
Veh

ss

srs
s π

φωγ
2

cosˆ2
2

−

=Ω

Moreover one has: 

vmpERVh sssRFs 002ˆ γπωω ===

leading to:

vm
Ee

s

sRF
s γ

φω
3

0

02 cos=Ω 0→Ω∞→ sγ

Since in a linac the independant variable is z rather than t one gets:

vm
Ee

s s

sRF
33

0

0
2 cos2

γ
φω

λ
π =
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Adiabatic Damping

Though there are many physical processes that can damp the 
longitudinal oscillation amplitudes, one is directly generated by the 
acceleration process itself. It will happen in the synchrotron, even 
ultra-relativistic, when ramping the energy but not in the ultra-
relativistic electron linac which does not show any oscillation. 

As a matter of fact, when Es varies with time, one needs to be more 
careful in combining the two first order energy-phase equations in 
one second order equation:

( )

( ) 0

0

2

2

2

=∆Ω++

=∆Ω++

∆Ω−=

φφφ

φφφ

φφ

ss
s

s

ssss

sss

EE
E

EEE

EEdt
d

&&&&

&&&&

&The damping coefficient is 
proportional to the rate of 
energy variation and from the 
definition of  Ωs one has:

s

s

s

s
E
E

Ω
Ω−=
&&

2
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Adiabatic Damping (2)

( ) WpR
hVetWH

ss

rs
s

22

4
1cos2

ˆ),,( ωη
πφφφ −∆−≅

tWW sΩ= cosˆ

( ) tsΩ∆=∆ sinφ̂φ

So far it was assumed that parameters related to the acceleration 
process were constant. Let’s consider now that they vary slowly with 
respect to the period of longitudinal oscillation (adiabaticity). 

For small amplitude oscillations the hamiltonian reduces to:

with

Under adiabatic conditions the Boltzman-Ehrenfest theorem states 
that the action integral remains constant:

(W, φ are canonical variables)∫ == .constdWI φ

WpR
h

W
H

dt
d

ss

rsωη
π

φ
2
1−=∂

∂=

∫ ∫−== dtWpR
hdtdt

dWI
ss

rs 2

2
1 ωη
π

φ

Since:

the action integral becomes:
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Adiabatic Damping (3)

leads to:

∫ Ω
=

s

WdtW
ˆ 22 πPrevious integral over one period:

.ˆ
2

2

constW
pR

hI
sss

rs =
Ω

−= ωη

From the quadratic form of the hamiltonian one gets the relation:

φ
ωη

π ˆ2ˆ ∆Ω=
rs

sss
h
RpW

Finally under adiabatic conditions the long term evolution of the 
oscillation amplitudes is shown to be:

EVRE
s

sss

4/1
2

4/1

cosˆ
ˆ −∝








∝∆

φ
ηφ EEorW s

4/1ˆˆ ∝∆

iantinW varˆ.ˆ =∆φ
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Dynamics in the Vicinity of Transition Energy

one gets:

γγα
γ

η 22
2
1 −− −=−= tIntroducing in the previous expressions:











 −

∝∆
−−

γ
γγ

φ
φ

22 4/1

cosˆ
1ˆ t

sV











 −

∝∆
−−

−

γ
γγ

φ

22 4/1

cosˆ
1ˆ t

sV
E











 −

∝Ω
−−

γ
γγ

φ
22 2/1

cosˆ t
ss V
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Dynamics in the Vicinity of Transition Energy (2)

γt

In fact close to transition, 
adiabatic solution are not 
valid since parameters change 
too fast. A proper treatment 
would show that:

∆φ will not go to zero

∆E will not go to infinity

φ̂∆Ωs

γγ γt

E
E
s

ˆ∆

γ
γt
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Stationnary Bucket

This is the case sinφs=0 (no acceleration) which means φs=0 or π . The 
equation of the separatrix for φs= π (above transition) becomes:

Ω=Ω+ 22
2

cos2 ss φφ&
2sin22
22

2
φφ

Ω= s

&

Replacing the phase derivative by the canonical variable W:

0  π 2π

Wbk

W
φ

ωηπ
ω

π &
rs

ss

rs h
RpEW 22 −=∆=

and introducing the expression 
for Ωs leads to the following 
equation for the separatrix:

φ

2sin2
ˆ

2 φ
ηπ h
EVe

c
CW s−±=

with C=2πRs
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Stationnary Bucket (2)

Setting φ=π in the previous equation gives the height of the bucket:

ηπ h
EVe

c
CW s

bk 2
ˆ

2 −=

The area of the bucket is:

∫= π φ2
02 dWAbk

∫ =π φφ2
0 42sin dSince:

ηπ h
EVe

c
CA s

bk 2
ˆ

16 −= 8
AW bk

bk =one gets:
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Bunch Matching into a Stationnary Bucket 

A particle trajectory inside the separatrix is described by the equation:

0  π 2π

Wbk

Wb

π

φm 2π-φm

( ) Is
s

s =+Ω− φφφφ
φ sincoscos2

22& φs= π Is =Ω+ φφ cos2
2

2&

φφφ
mss coscos2

22
2

Ω=Ω+
&

( )φφφ coscos2 −Ω±= ms
&

2cos2cos8
22 φφ −±= mbkAW

The points where the trajectory 
crosses the axis are symmetric with 
respect to φs= π

W

φ
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Bunch Matching into a Stationnary Bucket (2)

Setting φ = π in the previous formula allows to calculate the bunch height:

2cos8
φmbk

b
AW =

or:

2cosφm
s RFs b E
E

E
E 





 ∆=





 ∆

2cosφmbkb WW =

This formula shows that for a given bunch energy spread the proper 
matching of a shorter bunch will require a bigger RF acceptance, hence a 
higher voltage ( short bunch means φm close to π ).
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Effect of a Mismatch

Starting with an injected bunch with short lenght and large energy spread, 
after a quarter of synchrotron period the bunch rotation shows a longer 
bunch with a smaller energy spread.

W W

φ φ

( ) ( )φφ ∆−∆= 22

16 m
bkAW ( ) ( ) 116

22

=







∆
∆+








∆ φ
φ

φ mmbkA
W

( )φπ ∆= 2

16 mbkb AA

For small oscillation amplitudes the equation of the ellipse reduces to:

Ellipse area is called longitudinal emittance
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Capture of a Debunched Beam with Adiabatic Turn-On
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Capture of a Debunched Beam with Fast Turn-On
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