Lattice Design in Particle Accelerators
 Bernhard Holzer, DESY

Historical note:

... Particle acceleration where lattice design is not needed

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

Rutherford Scattering, 1906
Using radioactive particle sources: α-particles of some MeV energy

1952: Courant, Livingston, Snyder: Theory of strong focusing in particle beams \rightarrow Ted Wilson in this school

Lattice design: design and optimisation of the principle elements of an accelerator ... the lattice cells

Lattice Design: Prerequisites

. I will start very easy ... and slowly the topic will become more and more
 .. interesting

Lorentz Force:

$$
\vec{F}=q *(\overrightarrow{2} / \vec{v} \times \vec{B})
$$

neglecting electrical fields:

$$
\vec{F}=q^{*}(\vec{v} \times \vec{B})
$$

High energy accelerators \rightarrow circular machines
somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring

In a constant external magnetic field the particle trajectory will be a part of a circle and ...
... the centrifugal force will be equal to the Lorentz force

$$
\begin{aligned}
e^{*} V^{*} B=\frac{m V^{2}}{\rho} & \rightarrow e^{*} B=\frac{m V}{\rho}=p / \rho \\
& \rightarrow \quad B^{*} \rho=p / e
\end{aligned}
$$

$p=$ momentum of the particle,
$\rho=$ curvature radius
$B * \rho$ is called the "beam rigidity"

Circular Orbit:

$$
\alpha=\frac{d s}{\rho} \approx \frac{d l}{\rho} \quad \alpha=\frac{B * d l}{B * \rho}
$$

The angle swept out in one revolution

field map of a storage ring dipole magnet must be 2π, so strength

$$
\alpha=\frac{\int B d l}{B * \rho}=2 \pi \quad \text {..for a full circle } \quad \rightarrow \int B d l=2 \pi * \frac{p}{q}
$$

Example HERA:

920 GeV Proton storage ring
number of dipole magnets $\mathrm{N}=416$

$$
\begin{aligned}
\mathrm{l} & =8.8 \mathrm{~m} \\
\mathrm{q} & =+1 \mathrm{e}
\end{aligned}
$$

$$
B \approx \frac{2 \pi * 920 * 10^{9} e V}{416 * 3 * 10^{8} \frac{m}{s} * 8.8 m * e} \approx 5.15 \text { Tesla }
$$

Focusing forces and particle trajectories:

Magnetic field in a quadrupole magnet

$$
B_{x}=-g * z, \quad B_{z}=-g * x
$$

leads to a linear retrieving force on the particle.

Relating the fields to their optical effect: normalise to the particles momentum:

$$
\begin{aligned}
& \text { dipole magnet }: \frac{1}{\rho}=\frac{B}{p / e} \\
& \text { quadrupole lens : } \mathrm{k}=\frac{\mathrm{g}}{p / e} \quad \text { focal length }: \mathrm{f}:=\frac{1}{\mathrm{k}^{* 1}}
\end{aligned}
$$

Under the influence of the focusing and defocusing forces the differential equation of the particles trajectory can be developed:
$x^{\prime \prime}+\boldsymbol{K} * x=0$

$$
\begin{array}{ll}
K=-k+1 / \rho^{2} & \text { hor. plane } \\
K=k & \text { vert. plane }
\end{array}
$$

Example:
HERA Ring: Circumference:

$$
\begin{aligned}
& \text { Circumference: } \quad \begin{array}{c}
C_{0}=6335 \mathrm{~m} \\
\text { Bending radius: } \\
\text { Quadrupol Gradient: } \\
\text { Q } \mathrm{G}=110 \mathrm{~T} / \mathrm{m} \\
\rightarrow \quad \mathrm{k}=330.64 * 10^{-3} / \mathrm{m}^{2} \\
\rightarrow 1 / \mathrm{p}^{2}=2.97 * 10^{-6} / \mathrm{m}^{2}
\end{array}
\end{aligned}
$$

the two storage rings of the HERA collider

! For estimates in large accelerators the weak focusing term $1 / \rho^{2}$ can in general be neglected ...

Single particle trajectories:

Equation of motion

$$
y^{\prime \prime}+K(s) * y=0
$$

$$
\begin{aligned}
& y(s)=y_{0} * \cos (\sqrt{|K|} * s)+\frac{y_{0}^{\prime}}{\sqrt{|K|}} * \sin (\sqrt{|K|} * s) \\
& y^{\prime}(s)=-y_{0} * \sqrt{|K|} * \sin (\sqrt{|K|} * s)+y_{0}^{\prime} * \cos (\sqrt{|K|} * s)
\end{aligned}
$$

Or written more convenient in matrix form: $\binom{\boldsymbol{y}}{\boldsymbol{y}^{\prime}}_{s}=\boldsymbol{M} *\binom{\boldsymbol{y}}{\boldsymbol{y}^{\prime}}_{0}$

Matrices of lattice elements

Hor. focusing Quadrupole Magnet $\quad M_{Q F}=\left(\begin{array}{cc}\cos (\sqrt{|K|} * l) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} * l) \\ -\sqrt{|K|} \sin (\sqrt{|K|} * l) & \cos (\sqrt{|K|} * l)\end{array}\right)$
Hor. defocusing Quadrupole Magnet

$$
M_{Q D}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} * l) & \frac{1}{\sqrt{\mid K}} \sinh (\sqrt{|K|} * l) \\
\sqrt{|K|} \sinh (\sqrt{|K|} * l) & \cosh (\sqrt{|K|} * l)
\end{array}\right)
$$

Drift space $\quad M_{\text {Drift }}=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)$

Periodic Lattices:

In the case of periodic lattices the transfer matrix can be expressed as a function of a set of periodic parameters α, β, γ

$$
M(s)=\left(\begin{array}{cc}
\cos \mu+\alpha_{s} \sin \mu & \beta_{s} \sin \mu \\
-\gamma_{s} \sin \mu & \cos (\mu)-\alpha_{s} \sin \mu
\end{array}\right) \quad \mu=\int_{s}^{s+L} \frac{d t}{\beta(t)}
$$

For stability of the motion in periodic lattice
structures it is required that

$$
|\operatorname{trace}(M)|<2
$$

In terms of these new periodic parameters the solution of the equation of motion is

$$
\begin{aligned}
& y(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\Phi(s)-\delta) \\
& y^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta}} *\{\sin (\Phi(s)-\delta)+\alpha \cos (\Phi(s)-\delta)\}
\end{aligned}
$$

The new parameters α, β, γ can be transformed through the lattice via the matrix elements defined above.

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

Question: What does that mean ????
... and here starts the lattice design !!!

Question: What does that mean ????
Most simple example: drift space $\quad M=\left(\begin{array}{cc}C & S \\ C^{\prime} & S^{\prime}\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
particle coordinates $\quad\binom{x}{x^{\prime}}_{l}=\left(\begin{array}{ll}1 & l \\ 0 & 1\end{array}\right) *\binom{x}{x^{\prime}}_{0} \quad \rightarrow x(l)=x_{0}+l * x_{0}{ }^{\prime}$
transformation of twiss parameters:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{l}=\left(\begin{array}{ccc}
1 & -2 l & l^{2} \\
0 & 1 & -l \\
0 & 0 & 1
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0} \quad \beta(s)=\beta_{0}-2 l * \alpha_{0}+l^{2} * \gamma_{0}
$$

Stability ...?
$|\operatorname{trace}(M)|=1+1=2$
\rightarrow A periodic solution doesn't exist in a magnetic

The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.
(Nota bene: nothing = elements that can be neglected on first sight: drift, bending magnet, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu=45^{\circ}$,
\rightarrow calculate the twiss parameters for a periodic solution

... Can we understand, what the optics code is doing?

The action of a magnet on the beam
is given by the transfer matrix:

$$
M_{Q F}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} * l) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} * l) \\
-\sqrt{|K|} \sin (\sqrt{|K|} * l) & \cos (\sqrt{|K|} * l)
\end{array}\right)
$$

Input: strength and length of the FoDo elements

$$
\begin{aligned}
& \mathrm{K}=+/-0.54102 \mathrm{~m}^{-2} \\
& \mathrm{lq}=0.5 \mathrm{~m} \\
& \mathrm{ld}=2.5 \mathrm{~m}
\end{aligned}
$$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$
M_{F o D o}=M_{Q F H} * M_{L D} * M_{Q D} * M_{L D} * M_{Q F H}
$$

Putting the numbers in and multiplying out ...

$$
M_{\text {FoDo }}=\left(\begin{array}{cc}
0.707 & 8.206 \\
-0.061 & 0.707
\end{array}\right)
$$

The transfer matrix for 1 period gives us all the information that we need !
1.) is the motion stable? $\quad\left|\operatorname{trace}\left(M_{\text {FoDo }}\right)\right|=\mathbf{1 . 4 1 5} \quad \rightarrow \quad<2$
2.) Phase advance per cell

3.) hor $\boldsymbol{\beta}$-function

$$
\beta=\frac{M(1,2)}{\sin (\mu)}=11.611 \mathrm{~m}
$$

4.) hor α-function

$$
\alpha=\frac{M(1,1)-\cos (\mu)}{\sin (\mu)}=0
$$

Some perls of wisdom about lattice cells:

1.) think first ...

* a first estimate of the FoDo parameters can and should be done before we run our optics codes.
* we can learn a lot without doing to many too sophisticated calculations
* the optic codes will never tell us whether a lattice cell is technically feasible
* at the very beginning we have to define parameters that lead at least to a stable periodic solution
2.) some rules of „thumb"... to start with: the tune Q
phase advance per cell (i.e.)period:

$$
\begin{aligned}
& \mu=\int_{s}^{s+L} \frac{d t}{\beta(t)} \\
& Q:=N * \frac{\mu}{2 \pi}=\frac{1}{2 \pi} * \oint \frac{d s}{\beta(s)}
\end{aligned}
$$

Tune $:=$ phase advance of the machine in units of 2π

$$
\rightarrow Q \approx \frac{1}{2 \pi} * \frac{2 \pi \bar{R}}{\bar{\beta}}=\bar{R} / \bar{\beta}
$$

The tune is roughly given by the mean bending radius of the circular accelerator divided by the mean β-function
3.) can we do it a little bit easier?

Matrix of a focusing quadrupole magnet: $\quad M_{Q F}=\left(\begin{array}{cc}\cos (\sqrt{|K|} * l) & \frac{1}{\sqrt{K}} \sin (\sqrt{|K|} * l) \\ -\sqrt{|K|} \sin (\sqrt{|K|} * l) & \cos (\sqrt{|K|} * l)\end{array}\right)$

If the focal length \boldsymbol{f} is much larger than the length of the quadrupole magnet,

$$
f=1 / k l_{Q} \gg l_{Q}
$$

the transfer matrix can be aproximated using $\quad k l_{Q}=$ const,$l_{Q} \rightarrow 0$

$$
M=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)
$$

FoDo in thin lens approximation

Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole:
$M_{\text {halfCell }}=M_{Q D / 2} M_{I D} M_{Q F / 2}$
$\boldsymbol{M}_{\text {half } \text { cell }}=\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \mathbf{1} / \widetilde{\boldsymbol{f}} & \mathbf{1}\end{array}\right) *\left(\begin{array}{cc}\mathbf{1} & \boldsymbol{l}_{\boldsymbol{D}} \\ \mathbf{0} & \mathbf{1}\end{array}\right) *\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ -\mathbf{1} / \widetilde{\boldsymbol{f}} & \mathbf{1}\end{array}\right) \quad \begin{aligned} & I_{D} \text { indicates the length of the drift } \\ & \text { which is now just half the cell length } \\ & \boldsymbol{l}_{\boldsymbol{D}}=\boldsymbol{L} / \mathbf{2}\end{aligned}$
$M_{\text {halfCell }}=\left(\begin{array}{cc}1-l_{D} / \widetilde{f}^{\prime} & l_{D} \\ -l_{D} / \widetilde{f}^{2} & 1+l_{D} / \widetilde{f}\end{array}\right)$
and starting at the middle of a quadrupole the focal length of the half quad is

$$
\tilde{f}=2 f
$$

For the second half cell set $\boldsymbol{f} \rightarrow \boldsymbol{f}$

FoDo in thin lens approximation
Matrix for the complete FoDo cell:

$$
M=\left(\begin{array}{cc}
1+l_{D} / \widetilde{f}^{\prime} & l_{D} \\
-l_{D} / \widetilde{f}^{2} & 1-l_{D} / \widetilde{f}
\end{array}\right) *\left(\begin{array}{cc}
1-l_{D} / \widetilde{f} & l_{D} \\
-l_{D} / \widetilde{f}^{2} & 1+l_{D} / \widetilde{f}
\end{array}\right)
$$

Multiplying out we get ...

$$
M=\left(\begin{array}{cc}
1-\frac{2 l_{D}^{2}}{\widetilde{f}^{2}} & 2 l_{D}\left(1+\frac{l_{D}}{\widetilde{f}}\right) \\
2\left(\frac{l_{D}^{2}}{\widetilde{f}^{3}}-\frac{l_{D}}{\widetilde{f}^{2}}\right) & 1-2 \frac{l_{D}^{2}}{\widetilde{f}^{2}}
\end{array}\right)
$$

Now we know, that the phase advance is related to the transfer matrix by

$$
\cos \mu=\frac{1}{2} \operatorname{trace}(M)=1 / 2 *\left(2-\frac{4 l_{D}^{2}}{\widetilde{f}^{2}}\right)=1-\frac{2 l_{D}^{2}}{\widetilde{f}^{2}}
$$

After some beer and with a little bit of trigonometric gymnastics

$$
\cos (x)=\cos ^{2}(x / 2)-\sin ^{2}(x / 2)=1-2 \sin ^{2}(x / 2)
$$

We can calculate the phase advance as a function of the FoDo parameter

$$
\begin{aligned}
& \cos (\mu)=1-2 \sin ^{2}(\mu / 2)=1-\frac{2 l_{D}^{2}}{\widetilde{f}^{2}} \\
& |\sin (\mu / 2)|=l_{D} / \widetilde{f}=\frac{L_{\text {Cell }}}{2 \widetilde{f}} \\
& |\sin (\mu / 2)|=\frac{L_{\text {Cell }}}{4 f}
\end{aligned}
$$

Example: 45-degree Cell

$$
\begin{aligned}
\mathrm{L}_{\mathrm{Cell}} & =\mathrm{l}_{\mathrm{QF}}+\mathrm{l}_{\mathrm{D}}+\mathrm{l}_{\mathrm{QD}}+\mathrm{l}_{\mathrm{D}}=0.5 \mathrm{~m}+2.5 \mathrm{~m}+0.5 \mathrm{~m}+2.5 \mathrm{~m}=6 \mathrm{~m} \\
1 / \mathrm{f} & =\mathrm{k}^{*} \mathrm{l}_{\mathrm{Q}}=0.5 \mathrm{~m} * 0.541 \mathrm{~m}^{-2}=0.27 \mathrm{~m}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\sin (\mu / 2) \approx & \frac{L_{C e l l}}{4 f}=0.405 \\
& \rightarrow \mu \approx 47.8^{\circ} \\
& \rightarrow \beta \approx 11.4 \mathrm{~m}
\end{aligned}
$$

Remember:

 Exact calculation yields:$$
\begin{aligned}
& \mu=45^{\circ} \\
& \beta=11.6 \mathrm{~m}
\end{aligned}
$$

Stability in a FoDo structure $\quad \boldsymbol{M}=\left(\begin{array}{cc}\mathbf{1}-\frac{\mathbf{2 l}}{\widetilde{f}_{D}^{2}} & \mathbf{2 \boldsymbol { l } _ { \boldsymbol { D } }}\left(\mathbf{1}+\frac{\boldsymbol{l}_{\boldsymbol{D}}}{\widetilde{f}}\right) \\ \mathbf{2}\left(\frac{\boldsymbol{l}_{D}^{2}}{\widetilde{f}^{3}}-\frac{\boldsymbol{l}_{D}}{\widetilde{f}^{2}}\right) & \mathbf{1}-\mathbf{2} \frac{\boldsymbol{l}_{D}^{2}}{\widetilde{f}^{2}}\end{array}\right)$

Transformation matrix in terms of the Twiss parameters

Transformation of the coordinate vector ($\mathrm{x}, \mathrm{x}^{\prime}$) in a magnet

$$
\binom{x(s)}{x^{\prime}(s)}=M\binom{x_{0}}{x_{0}^{\prime}} \quad M_{Q F}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} * l) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} * l) \\
-\sqrt{|K|} \sin (\sqrt{|K|} * l) & \cos (\sqrt{|K|} * l)
\end{array}\right)
$$

General solution of the equation of motion

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon * \beta(s)} * \cos (\phi(s)+\varphi) \\
& x^{\prime}(s)=-\sqrt{\varepsilon / \beta(s)} *\{\alpha(s) \cos (\phi(s)+\varphi)+\sin (\phi(s)+\varphi)\}
\end{aligned}
$$

Transformation of the coordinate vector ($\mathrm{x}, \mathrm{x}^{\prime}$) expressed as a function of the twiss parameters

$$
M_{0 \rightarrow s}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \phi+\alpha_{s} \sin \phi\right) & \sqrt{\beta_{s} \beta_{0}} \sin \phi \\
\frac{\left(\alpha_{0}-\alpha_{S}\right) \cos \phi-\left(1+\alpha_{0} \alpha_{S}\right) \sin \phi}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta_{s}}}\left(\cos \phi-\alpha_{s} \sin \phi\right)
\end{array}\right)
$$

Transfer matrix for half a FoDo cell:

$$
M_{\text {half } \text { cell }=}=\left(\begin{array}{cc}
1-l_{D} / \widetilde{f} & l_{D} \\
-l_{D} / \widetilde{f}^{2} & 1+l_{D} / \widetilde{f}
\end{array}\right)
$$

Compare to the twiss parameter form of M where Φ denotes the phase advance through

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta}{\beta_{0}}}(\cos \phi+\alpha \sin \phi) & \sqrt{\beta \beta_{0}} \sin \phi \\
\frac{\left(\alpha_{0}-\alpha\right) \cos \phi-\left(1+\alpha_{0} \alpha\right) \sin \phi}{\sqrt{\beta \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta}}(\cos \phi-\alpha \sin \phi)
\end{array}\right)
$$ the half cell

In the middle of a foc (defoc) quadrupole of the FoDo we allways have $\alpha=0$, and the half cell will lead us from $\beta_{\max }$ to $\beta_{\text {min }}$

$$
M=\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\sqrt{\stackrel{\beta}{\beta}} \cos \phi & \sqrt{\hat{\beta} \dot{\beta}} \sin \phi \\
\frac{-1}{\sqrt{\hat{\beta} \grave{\beta}}} \sin \phi & \sqrt{\frac{\hat{\beta}}{\dot{\beta}}} \cos \phi
\end{array}\right)
$$

Solving for $\beta_{\max }$ and $\beta_{\min }$ and remembering that $\ldots . \quad\left|\sin \frac{\mu}{2}\right|=\frac{\boldsymbol{l}_{\boldsymbol{D}}}{\widetilde{f}}=\frac{\boldsymbol{L}}{4 \boldsymbol{f}}$

The maximum and minimum values if the $\boldsymbol{\beta}$-function are solely determined by the phase advance and the length of the cell.

Longer cells lead to larger β
typical shape of a proton
bunch in the HERA FoDo Cell

Optimisation of the FoDo Phase advance: Beam dimension

In both planes a gaussian particle distribution is assumed given by the beam emittance ε and the β-function

$$
\sigma=\sqrt{\varepsilon \beta}
$$

In general proton beams are ,round" in the sense that

$$
\varepsilon_{x} \approx \varepsilon_{y}
$$

So for highest aperture we have to minimise the β-function in both planes:

$$
r^{2}=\varepsilon_{x} \beta_{x}+\varepsilon_{y} \beta_{y}
$$

typical beam envelope, vacuum chamber and pole shape in a foc. Quadrupole lens in HERA

Optimising the FoDo phase advance

$$
r^{2}=\varepsilon_{x} \beta_{x}+\varepsilon_{y} \beta_{y}
$$

search for the phase advance μ that results in a minimum of the sum of the beta's

$$
\hat{\beta}+\tilde{\beta}=\frac{\left(1+\sin \frac{\mu}{2}\right) * L}{\sin \mu}+\frac{\left(1-\sin \frac{\mu}{2}\right) * L}{\sin \mu}
$$

$\left.\begin{array}{rl}\hat{\beta}+\hat{\beta} & =\frac{2 L}{\sin \mu} \quad \frac{d}{d \mu}(\mathbf{2 L} / \sin \mu\end{array}\right)=\mathbf{0}$

Nota bene: electron beams are typicalle flat, $\varepsilon_{y} \approx 2 \ldots 10 \% \varepsilon_{y}$ \rightarrow optimise only $\beta_{\text {hor }}$

$$
\frac{d}{d \mu}(\hat{\beta})=\frac{d}{d \mu} \frac{L\left(1+\sin \frac{\mu}{2}\right)}{\sin \mu}=0 \rightarrow \mu \approx 76^{\circ}
$$

red curve: $\beta_{\max }$
blue curve: $\beta_{\text {min }}$
as a function of the phase advance μ

Orbit distortions in a periodic lattice
field error of a dipole/distorted quadrupole

$$
\rightarrow \delta(\mathrm{mrad})=\frac{d s}{\rho}=\frac{\int B d s}{p / e}
$$

the particle will follow a new closed traiectory the distorted yrbit:

$$
\beta(\tilde{S}) \text { indicates the sensitivity of the beam } \rightarrow \text { here orbitcofreetors should be }
$$ placed in the lattice

* the orbit amplitude will be large at places where in the lattice β (s)
is large \rightarrow here beam position monitors should be installed

Chromaticity in the FoDo Lattice

$$
\text { Definition } \quad \Delta Q=\xi * \frac{\Delta p}{p}
$$

The chromaticity describes an optical error of quadrupole lenses: For a given magnetic field, i.e. gradient particles with smaller momentum will feel a stronger focusing force and vice versa.
For small momentum errors $\Delta \mathrm{p} / \mathrm{p}$ the focusing parameter k can be written as

$$
\begin{gathered}
k(p)=\frac{g}{p / e}=g * \frac{e}{p_{0}+\Delta p} \\
k(p) \approx \frac{e}{p_{0}}\left(1-\frac{\Delta p}{p}\right) * g=k_{0}+\Delta k \quad \rightarrow \quad \Delta k=-k_{0} \frac{\Delta p}{p}
\end{gathered}
$$

This describes a quadrupole error that leads to a tune shift of ...

$$
\Delta Q=\frac{1}{4 \pi} \int \Delta k \beta(s) d s=\frac{-1}{4 \pi} \frac{\Delta p}{p} \int k_{0} \beta(s) d s
$$

ξ contribution in the lattice

$$
\xi=-\frac{1}{4 \pi} \int \beta(s) * k(s) d s
$$

Chromaticity in the FoDo Lattice

$$
\xi=-\frac{1}{4 \pi} \int \beta(s) * k(s) d s
$$

$$
\xi \approx-\frac{1}{4 \pi} N * \frac{\hat{\beta}-\beta^{\vee}}{f_{Q}}=-\frac{1}{4 \pi} N * \frac{1}{f_{Q}} *\left\{\frac{L\left(1+\sin \frac{\mu}{2}\right)-L\left(1-\sin \frac{\mu}{2}\right)}{\sin \mu}\right\}
$$

using some trigonometric transformations ... ξ can be expressed in a very simple form:

$$
\begin{array}{rr}
\xi=-\frac{1}{4 \pi} N \frac{1}{f_{Q}} \frac{2 L \sin \frac{\mu}{2}}{\sin \mu}=-\frac{1}{4 \pi} N \frac{1}{f_{Q}} \frac{L \sin \frac{\mu}{2}}{f_{Q} \sin \frac{\mu}{2} \cos \frac{\mu}{2}} \quad \begin{array}{rr}
\text { remember } \ldots \\
\xi_{\text {Cell }}=-\frac{1}{4 \pi} \frac{1}{f_{Q}} \frac{L \tan \frac{\mu}{2}}{f_{Q} \sin \frac{\mu}{2}} & \text { putting } \ldots \sin \frac{x}{2} \cos \frac{x}{2}
\end{array} \quad \sin \frac{\mu}{2}=\frac{L}{4 f_{Q}}
\end{array}
$$

Contribution of one FoDo Cell to the chromaticity of the ring:

$$
\xi_{\text {Cell }}=-\frac{1}{\pi} * \tan \frac{\mu}{2}
$$

Resumé

1.) Dipole strength: $\int \boldsymbol{B} \boldsymbol{d} \boldsymbol{s}=\boldsymbol{N} * \boldsymbol{B}_{0} * l_{e f f}=\mathbf{2} \boldsymbol{\pi} \frac{\boldsymbol{p}}{\boldsymbol{q}}$
$l_{\text {eff }}$ effective magnet length, N number of magnets
2.) Stability condition: $\quad|\boldsymbol{T r a c e}(\boldsymbol{M})|<2$
for periodic structures within the lattice / at least for the transfer matrix of the complete circular machine
3.) Transfer matrix for periodic cell $\quad M(s)=\left(\begin{array}{cc}\cos \mu+\alpha(s) \sin \mu & \beta(s) \sin \mu \\ -\gamma(s) \sin \mu & \cos (\mu)-\alpha(s) \sin \mu\end{array}\right)$ α, β, γ depend on the position s in the ring, μ (phase advance) is independent of s
4.) Thin lens approximation: $\boldsymbol{M}_{Q F}=\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \frac{1}{\boldsymbol{f}_{Q}} & \mathbf{1}\end{array}\right) \quad \boldsymbol{f}_{\underline{Q}}=\frac{\mathbf{1}}{\boldsymbol{k}_{Q} \boldsymbol{l}_{Q}}$ focal length of the quadrupole magnet $f_{Q}=1 /\left(k_{Q} l_{Q)} \gg l_{Q}\right.$
5.) Tune (rough estimate): $\quad \boldsymbol{Q} \approx \frac{\overline{\boldsymbol{R}}}{\bar{\beta}}$
$\bar{R}, \overline{\boldsymbol{\beta}}$ average values of radius and $\boldsymbol{\beta}$-function
$\begin{aligned} & \text { 6.) Phase advance per FoDo cell } \\ & \text { (thin lens approx) }\end{aligned}\left|\sin \frac{\mu}{2}\right|=\frac{\boldsymbol{L}_{\text {Cell }}}{\mathbf{4} f_{Q}}$
$L_{\text {Cell }}$ length of the complete FoDo cell, \boldsymbol{f}_{Q} focal length of the quadrupole, μ phase advance per cell
7.) Stability in a FoDo cell (thin lens approx)

$$
f_{Q}>\frac{L_{C e l l}}{4}
$$

8.) Beta functions in a FoDo cell $\quad \hat{\beta}=\frac{\left(1+\sin \frac{\mu}{2}\right) L_{\text {Cell }}}{\sin \mu} \quad \stackrel{\vee}{\beta}=\frac{\left(1-\sin \frac{\mu}{2}\right) L_{\text {Cell }}}{\sin \mu} \quad$ (thin lens approx)
$L_{\text {Cell }}$ length of the complete FoDo cell, μ phase advance per cell

APPENDIX

Single particle trajectories:

$$
y^{\prime \prime}+K * y=0
$$

The differential equation for the particle movement can be solved by the Ansatz ...

$$
\begin{aligned}
y & =a_{1} * \cos \left(\omega^{* s}\right)+a_{2} * \sin \left(\omega^{* s}\right) \\
y^{\prime} & =-a_{1} \omega^{*} \sin \left(\omega^{*} s\right)+a_{2} \omega^{*} \cos \left(\omega^{* s}\right) \\
y^{\prime \prime} & =-a_{1} \omega^{2} * \cos \left(\omega^{* s}\right)-a_{2} \omega^{2} * \sin \left(\omega^{* s}\right) \\
& =-\omega^{2} * y \\
\rightarrow K & =\omega^{2}, \quad \omega=\sqrt{K}
\end{aligned}
$$

So we get for the equation of motion in a storage ring

$$
y(s)=a_{1} * \cos (\sqrt{K} * s)+a_{2} * \sin (\sqrt{K} * s)
$$

Equation of motion

$$
y(s)=a_{1}^{*} \cos \left(\sqrt{K}^{*} s\right)+a_{2}^{*} \sin (\sqrt{K} * s)
$$

The parameters a_{1} and a_{2} refer to the individual particle and are determined by boundary conditions.

$$
\begin{array}{ll}
y(0)=y_{0} & \rightarrow a_{1}=y_{0} \\
y^{\prime}(0)=y_{0}{ }^{\prime} & \rightarrow a_{2}=\frac{y_{0}{ }^{\prime}}{\sqrt{K}}
\end{array}
$$

resulting in

$$
\begin{aligned}
& y(s)=y_{0}{ }^{*} \cos \left(\sqrt{K}^{*} s\right)+\frac{y_{0}^{\prime}}{\sqrt{K}} * \sin \left(\sqrt{K^{*}} s\right) \\
& y^{\prime}(s)=-y_{0}{ }^{*} \sqrt{K}^{*} \sin \left(\sqrt{K}^{*} s\right)+y_{0}^{\prime}{ }^{*} \cos \left(\sqrt{K}^{*} s\right)
\end{aligned}
$$

Or written more convenient in matrix form:

$$
\binom{y}{y^{\prime}}_{s}=M^{*}\binom{y}{y^{\prime}}_{0}, \quad M=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)
$$

Matrices of lattice elements

$$
\begin{aligned}
& M_{\text {Qr }}=\left(\begin{array}{cc}
\cos (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sin (\sqrt{\mathrm{~K}} * l) \\
-\sqrt{K} \sin (\sqrt{\mathrm{~K}} * l) & \cos (\sqrt{\mathrm{K}} * l)
\end{array}\right) \\
& \text { Hor. focusing } \\
& \text { Quadrupole Magnet } \\
& M_{\mathrm{e} D}=\left(\begin{array}{cc}
\cosh (\sqrt{\mathrm{K}} * l) & \frac{1}{\sqrt{K}} \sinh (\sqrt{\mathrm{~K}} * l) \\
\sqrt{\mathrm{K}} \sinh (\sqrt{\mathrm{~K}} * l) & \cosh (\sqrt{\mathrm{K}} * l)
\end{array}\right) \\
& \text { Hor. defocusing } \\
& \text { Quadrupole Magnet }
\end{aligned}
$$

$M_{\text {Drift }}=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right) \quad$ Drift space
$K=-\boldsymbol{k}+\frac{\boldsymbol{1}}{\boldsymbol{\rho}^{2}} \quad$ in horizontal plane
$\boldsymbol{K}=\boldsymbol{k} \quad$ in vertical plane

Transformation of the principal trajectories in terms of the Twiss parameters

General solution of the equation of motion
(1)

$$
\begin{aligned}
& x(S)={\sqrt{\varepsilon^{*} \beta(S)}}^{*} \cos (\phi(S)+\varphi) \\
& x^{\prime}(S)=-\sqrt{\varepsilon / \beta(S)}^{*}\{\alpha(S) \cos (\phi(S)+\varphi)+\sin (\phi(S)+\varphi)\}
\end{aligned}
$$

Using theorems of trigonometric functions

$$
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \ldots
$$

(2)

$$
\begin{aligned}
x(s)=\sqrt{\varepsilon^{*} \beta(s)^{*}} * & \{\cos \phi(s) \cos (\varphi)-\sin \phi(s) \sin (\varphi)\} \\
x^{\prime}(s)=-\sqrt{\varepsilon / \beta(s)} & \{\alpha(s) \cos \phi(s) \cos (\varphi)-\alpha(s) \sin \phi(s) \sin (\varphi)+ \\
& +\sin \phi(s) \cos (\varphi)+\cos \phi(s) \sin (\varphi)\}
\end{aligned}
$$

Set initial conditions: $x(0)=x_{0}, x^{\prime}(0)=x^{\prime}{ }_{0}$,

$$
\beta(0)=\beta_{0}, \alpha(0)=\alpha_{0}, \Phi(0)=0
$$

$$
\begin{equation*}
\cos \phi=\frac{X_{o}}{\sqrt{\varepsilon \beta_{o}}} \quad \sin \phi=\frac{-1}{\sqrt{\varepsilon}}\left(x_{o}^{\prime} \sqrt{\beta_{o}}+\frac{\alpha_{o} X_{o}}{\sqrt{\beta_{o}}}\right) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Inserting in (1) } \quad x(s)=\sqrt{\frac{\beta(S)}{\beta_{o}}\left\{\cos \phi(S)+\alpha_{o} \sin \phi(S)\right\} X_{o}+\sqrt{\beta(S) \beta_{o}} \sin \phi(S) x_{o}^{\prime}} \\
& x^{\prime}(S)= \\
& \\
& \\
&
\end{aligned}
$$

So again we have got a matrix that transforms the orbit vector ($\mathrm{x}_{0}, \mathrm{x}_{0}^{\prime}$) into ($\mathrm{x}(\mathrm{s}), \mathrm{x}^{\prime}(\mathrm{s})$)

$$
\begin{aligned}
\binom{x(s)}{x^{\prime}(s)} & =M\binom{x_{0}}{x_{0}^{\prime}} \\
M & =\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \phi+\alpha_{s} \sin \phi\right) & \sqrt{\beta_{s} \beta_{0}} \sin \phi \\
\frac{\left(\alpha_{0}-\alpha_{S}\right) \cos \phi-\left(1+\alpha_{0} \alpha_{S}\right) \sin \phi}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta_{s}}}\left(\cos \phi-\alpha_{s} \sin \phi\right)
\end{array}\right)
\end{aligned}
$$

