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Lattice Design in Particle 
Accelerators

Bernhard Holzer, DESY

... Particle acceleration where lattice design is not needed
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Historical note:Historical note:

N(θ)

θ

Rutherford Scattering, 1906

Using radioactive particle sources:
α-particles of some MeV energy

II.) The „infancy of particle accelerators“

1923 Betatron,
1928 Cockroft-Walton Generator,
1929 Cyclotron 
1932 Van de Graaf Generator, etc

Diagram of the first cyclotron 
by Lawrence and Livingstone 

Historical note:Historical note:

12 MV-Tandem van de Graaf 
Accelerator
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1952: Courant, Livingston, Snyder: Theory of strong focusing in 
particle beams  � Ted Wilson in this school

Lattice design: design and optimisation of the principle 
elements of an accelerator ... the lattice cells

Lattice Design:  PrerequisitesLattice Design:  Prerequisites

... I will start very easy ... and slowly the topic will become more and more 
difficult ... interesting

High energy accelerators � circular machines

somewhere in the lattice we need a number of dipole magnets, 
that are bending the design orbit to a closed ring 
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In a constant external magnetic field the particle trajectory will be a part of a 
circle and ...

ρ

2mv
Bve =**

... the centrifugal force will be equal to the Lorentz force

p = momentum of the particle,
ρ = curvature radius

B*ρ is called the “beam rigidity”

ρ
ρ

/* p
mv

Be ==→

epB /* =→ ρ

Example: Heavy Ion Storage Ring: TSR
8 dipole magnets of equal bending 
strength 

Circular Orbit:Circular Orbit:

ρ
α

ρρ
α

*B
dl*Bdlds =≈=

q
p*Bdl...

*B
Bdl ππ

ρ
α 2circle full afor 2 =�→=�=

The angle swept out in one revolution 
must be 2π, so field map of a storage ring dipole magnet

Example HERA:
920 GeV  Proton storage ring
number of dipole magnets  N = 416

l = 8.8m
q = +1 e

Tesla.
e*m.*
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q/pB*l*NBdl
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Focusing forces and particle trajectories:Focusing forces and particle trajectories:

Magnetic field in a quadrupole magnet

x*gB,z*gB zx −=−=

leads to a linear retrieving force on the particle.

Relating the fields to their optical effect: normalise to the particles 
momentum:

l*k
1 :f  :length  focalgk  :lensquadrupole

1  :magnet dipole

==

=

e/p

e/p
B

ρ

Under the influence of the focusing and defocusing forces the differential 
equation of the particles trajectory can be developed:

0=+ x*K''x 21 ρ/kK +−=

kK =

Example: 

HERA Ring:  Circumference:       

Circumference:      C0 =6335  m
Bending radius:       ρ = 580 m
Quadrupol Gradient: G= 110T/m

� k  = 33.64*10-3 /m2

� 1/ρ2  = 2.97 *10-6 /m2

hor. plane

vert. plane

For estimates in large accelerators the weak focusing term 1/ρ2 can 
in general be neglected ...!

the two storage rings 
of the HERA collider
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Equation of motion
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Or written more convenient in matrix form:
0

�
�

�
�
�

�=�
�

�
�
�

�

'y
y

*M
'y
y

s

Single particle trajectories:
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Matrices of lattice elements
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Hor. focusing Quadrupole Magnet

Hor. defocusing Quadrupole Magnet

Drift space

Periodic Lattices:

In the case of periodic lattices the transfer matrix can be expressed 
as a function of a set of periodic parameters α, β, γ
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μ = phase advance 
per period:

�=
+ Ls

s )t(
dt

β
µ

In terms of these new periodic parameters the solution of the equation
of motion is 

{ }))s(cos())s(sin(*)s('y
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β
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For stability of the motion in periodic lattice 
structures it is required that

2<)M(trace
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The new parameters α, β, γ can be transformed through the lattice via the 
matrix elements defined above.
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Question: What does that mean ????

... and here starts the lattice design !!!

Question: What does that mean ????

Most simple example: drift space �
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particle coordinates

transformation of twiss parameters:
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Stability ...?

211 =+=)M(trace �A periodic solution doesn‘t exist in a magnetic 
lattice built exclusively of drift spaces.
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Lattice Design:Lattice Design:

Arc: regular (periodic) magnet structure: 
bending magnets � define the energy of the ring
main focusing & tune control, chromaticity correction,
multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, 
low beta insertions, RF cavities, etc....

... and the high energy experiments if they cannot be avoided 

The FoDoThe FoDo--LatticeLattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in 
alternating order with nothing in between.
(Nota bene: nothing = elements that can be neglected on first sight: drift, bending magnet, 
RF structures ... and especially experiments...)

L

QF QFQD

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell µ = 45°, 
� calculate the twiss parameters for a periodic solution
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Periodic solution of a FoDo Cell

Output of the optics program:

NR TYP LENGTH STRENGTH BETAX ALFAX PHIX BETAZALFAZPHIZ

0 IP 0 0.00E+00 11.611 0 0 5.295 0 0
1 QFH 0.25 -5.41E-01 11.228 1.514 0.0035 5.488 -0.78 0.007
2 QD 3.251 5.41E-01 5.4883 -0.781 0.0699 11.23 1.514 0.066
3 QFH 6.002 -5.41E-01 11.611 0 0.125 5.295 0 0.125
4 IP 6.002 0.00E+00 11.611 0 0.125 5.295 0 0.125

QX= 0.125 QZ= 0.125

°= 4521250 π*.

x
β

y
β

... Can we understand, what the optics code is doing?
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The action of a magnet on the beam
is given by the transfer matrix:
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1 l
M Drift

Input: strength and length of the FoDo elements

K  =+/- 0.54102 m-2

lq = 0.5 m
ld = 2.5 m

QFHLDQDLDQFHFoDo M*M*M*M*MM =

�
�
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−
=

70700610
20687070

..

..
MFoDo

Putting the numbers in and multiplying out ...

The matrix for the complete cell is obtained by multiplication of the element matrices
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The transfer matrix for 1 period gives us all the information that we need !

1.) is the motion stable? →= 4151.)M(trace FoDo <  2

2.) Phase advance per cell

→�
�

�
�
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−−
+

=
µαµµγ

µβµαµ
sin)cos(sin

sinsincos
)s(M

7070
2
1 .)M(trace*)cos( ==µ

°== 45
2
1 ))M(trace*cos(aµ

3.) hor β-function 

m.
)sin(
),(M 6111121 ==

µ
β

4.) hor α-function

011 =−=
)sin(

)cos(),(M
µ

µα

Some perls of wisdom about lattice cells:

1.) think first ... 
* a first estimate of the FoDo parameters can and should be done before we 
run our optics codes.

* we can learn a lot without doing to many too sophisticated calculations
* the optic codes will never tell us whether a lattice cell is technically feasible
* at the very beginning we have to define parameters that lead at least to a stable 
periodic solution 

L

�=
+ Ls

s )t(
dt

β
µphase advance per cell (i.e. )period:

Tune := phase advance of the machine in 
units of 2π �==

)s(
ds**N:Q

βππ
µ

2
1

2

ββ
π

π
RR*Q =≈→ 2

2
1

The tune is roughly given by the mean bending radius of the circular 
accelerator divided by the mean β-function

2.) some rules of „thumb“... to start with: the tune Q
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3.) can we do it a little bit easier ?
We can: the thin lens approximation

Matrix of a focusing quadrupole magnet:
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)l*Ksin(
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If the focal length f is much larger than the length of the quadrupole magnet,

Q
Q

lklf >>= 1

the transfer matrix can be aproximated using
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01

f
M

0→= QQ l,constkl

FoDo in thin lens approximation

lD

Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole:
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halfCell

lD indicates the length of the drift 
which is now just half the cell length

For the second half cell set f � -f

L

ff~ 2=

and starting at the middle of a 
quadrupole the focal length of the 
half quad is 
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FoDo in thin lens approximation
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Matrix for the complete FoDo cell:

�
�
�
�

�

�

�
�
�
�

�

�

−−

+−
=

2

2

23

2

2

2

212

1221

f~
l)

f~
l

f~
l(

)
f~
l(l

f~
l

M
DDD
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DMultiplying out we get ...

Now we know, that the phase advance is related to the transfer matrix by

2

2
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2 21422
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2
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l(*)M(tracecos DD −=−==µ

After some beer and with a little bit of trigonometric gymnastics

)x(sin)/x(sin)x(cos)xcos( 22122
222 −=−=

We can calculate the phase advance as a function of the FoDo parameter

f
L)/sin(

f~
Lf~/l)/sin(

f~
l)/(sin)cos(

Cell

Cell
D

D

4
2

2
2

21221 2

2
2

=
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µ

µ

µµ

Example: 45-degree Cell

LCell    =    lQF + lD + lQD +lD      =     0.5m+2.5m+0.5m+2.5m = 6m

1/f   =   k*lQ   =   0.5m*0.541 m-2 = 0.27 m-1

4050
4

2 .
f

L)/sin( Cell =≈µ

m.
.
411
847

≈→
°≈→

β
µ

m.611
45

=
°=

β
µ

Remember:
Exact calculation yields:
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Stability in a FoDo structure
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transfer matrix for the complete cell

Stability requires: 2<)M(trace 242 2

2
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f~
l)M(trace D

4
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L
f >→

For stability the focal length 
has to be larger than a 
quarter of the cell length !!

SPS Lattice

Transformation matrix in terms of the Twiss parameters
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Transformation of the coordinate vector (x,x´) in a magnet

General solution of the equation of motion

Transformation of the coordinate vector (x,x´) expressed 
as a function of the twiss parameters
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Transfer matrix for half a FoDo cell:
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In the middle of a foc (defoc) quadrupole of the FoDo we allways have α=0, 
and the half cell will lead us from βmax to βmin

Compare to the twiss 
parameter form of M 
where Φ denotes the 
phase advance through 
the half cell
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ˆ

sinˆcosˆ
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Solving for βmax and βmin and remembering that ….
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∨
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=
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∨

The maximum and minimum values if 
the β-function are solely determined by 
the phase advance and the length of the cell.

Longer cells lead to larger β

→

Z X, Y,( )

typical shape of a proton 
bunch in the HERA FoDo Cell

! 

!
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Optimisation of the FoDo Phase advance: Optimisation of the FoDo Phase advance: Beam dimension

In both planes a gaussian particle distribution is assumed given by the beam 
emittance ε and the β-function

yyxxr βεβε +=2

εβσ =

In general proton beams are „round“ in the sense that

yx εε ≈
So for highest aperture we have to minimise the β-function
in both planes:

typical beam envelope, vacuum chamber and pole 
shape in a foc. Quadrupole lens in HERA 

measured beam size
at the HERA IP

Optimising the FoDo phase advance 
yyxxr βεβε +=2

search for the phase advance µ that results in 
a minimum of the sum of the beta’s µ

µ

µ

µ

ββ
sin

L*)sin(
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L*)sin(
ˆ 2

1
2
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+
=+

∨

02 =)sin
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d
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µµ

°=→= 900
2

µµ
µ
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sin
Lˆ 2=+

∨
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Nota bene: electron beams are typicalle flat, εy ≈ 2 … 10 %  εy
� optimise only βhor

°≈→=
+

= 7602
1

µ
µ

µ

µ
β

µ sin

)sin(L

d
d)ˆ(

d
d

0 36 72 108 144 180
0

4

8

12

16

2020

0.013

βmax µ( )

βmin µ( )

1801 µ

red curve: βmax 
blue curve: βmin

as a function of the phase advance µ

Orbit distortions in a periodic lattice

field error of a dipole/distorted quadrupole 

e/p
Bdsds)mrad( �==→

ρ
δ

the particle will follow a new closed trajectory, the distorted orbit:

� −−= s~d)Q)s()s~(cos(
)s~(

)s~(*
Qsin
)s()s(x πφφ

ρ
β

π
β 1

2

* the orbit amplitude will be large if the β function at the location of the kick is large
indicates the sensitivity of the beam � here orbit correctors should be 

placed in the lattice
* the orbit amplitude will be large at places where in the lattice β(s)

is large � here beam position monitors should be installed

)~(sβ

● ● ●
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Chromaticity in the FoDo LatticeChromaticity in the FoDo Lattice

Definition p
p*Q ∆ξ∆ =

ξ contribution in the lattice �−= ds)s(k*)s(β
π

ξ
4
1

The chromaticity describes an optical error of quadrupole lenses: For a given magnetic 
field, i.e. gradient particles with smaller momentum will feel a  stronger focusing force
and vice versa. 

For small momentum errors ∆p/p the focusing parameter k can be written as

pp
e*g

e/p
g)p(k

∆+
==

0

kkg*)
p
p(

p
e)p(k ∆∆ +=−≈ 0

0

1 p
pkk ∆∆ 0−=→

This describes a quadrupole error that leads to a tune shift of ...

ds)s(k
p
pds)s(kQ β∆

π
β∆

π
∆ � �

−== 04
1

4
1
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4
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4
1

µµ
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πµ

µ
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cossinf

sinL

f
N
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sinL

f
N

Q
QQ

−=−=
remember ...

22
2 xcosxsinxsin =

2

21
4
1

µ

µ

π
ξ

sinf

tanL

f
Q

Q
Cell −= putting ... 

Qf
Lsin

42
=µ

2
1 µ
π

ξ tan*Cell −=Contribution of one FoDo Cell to the 
chromaticity of the ring:
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∨
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4
1

4
1

Chromaticity in the FoDo LatticeChromaticity in the FoDo Lattice
�−= ds)s(k*)s(β

π
ξ

4
1

using some trigonometric transformations ... ξ can be expressed in a very simple form:
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Resumé

1.) Dipole strength:
q
pl*B*NBds eff π20 =� =

leff effective magnet length, N number of magnets

2.) Stability condition: 2<)M(Trace

for periodic structures within the lattice / at least for the transfer matrix of 
the complete circular machine

3.) Transfer matrix for periodic cell

α,β,γ depend on the position s in the ring, µ (phase advance) is independent of s

�
�

�
�
�

�

−−
+

=
µαµµγ

µβµαµ
sin)s()cos(sin)s(

sin)s(sin)s(cos
)s(M

4.) Thin lens approximation:
��
�

�

�

��
�

�

�
= 11

01

Q

QF
f

M
QQ

Q lk
f 1=

focal length of the quadrupole magnet  fQ = 1/(kQlQ)  >> lQ

5.) Tune (rough estimate):
β
RQ ≈

β,R average values of radius and β-function

6.) Phase advance per FoDo cell
(thin lens approx) Q

Cell

f
Lsin
42

=µ

LCell length of the complete FoDo cell, fQ focal length of the 
quadrupole, µ phase advance per cell

7.) Stability in a FoDo cell
(thin lens approx) 4

Cell
Q

Lf >

8.) Beta functions in a FoDo cell
(thin lens approx)

LCell length of the complete FoDo cell, µ phase advance per cell

µ

µ

β
sin

L)sin(
ˆ Cell2

1 +
=

µ

µ

β
sin

L)sin( Cell2
1 −

=
∨
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Resumé  Resumé  periodic section („the arc“ in a large accelerator):

� parameters of the lattice cell defined by 2 quadrupole strengths
(sometimes even only by one if in series)

� for a given tune (phase advance) the twiss parameters are fixed
et vice versa.

�tune adjustments, variations of cell lengths, matching of twiss parameters
creation of symmetry points in the lattice ...

.... need more degrees of freedom, i.e. additional free quadrupole lenses,
varying drift lengths etc.  
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Single particle trajectories:

The differential equation for the particle movement can be solved by the Ansatz ...

0=+ y*K''y

K,K

y*
)s*sin(*a)s*cos(*a''y

)s*cos(*a)s*sin(*a'y

)s*sin(*a)s*cos(*ay

==→

−=
−−=

+−=

+=

ωω

ω
ωωωω

ωωωω

ωω

2

2

2
2

2
1

21

21

So we get for the equation of motion in a storage ring 

)s*Ksin(*a)s*Kcos(*a)s(y 21 +=

APPENDIXAPPENDIX

)*sin(*)*cos(*)( sKasKasy 21 +=

The parameters a1 and a2 refer to the individual particle and are 
determined by boundary conditions.

K

y
ayy

yayy

'')('

)(

0
20

010

0

0
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=→=

Equation of motion

resulting in

)*cos(*')*sin(**)('

)*sin(*')*cos(*)(

sKysKKysy

sK
K

y
sKysy
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Or written more convenient in matrix form:
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Matrices of lattice elements
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1 s
MDrift

Hor. focusing 
Quadrupole Magnet

Hor. defocusing 
Quadrupole Magnet

Drift space

2

1
ρ

+−= kK in horizontal plane

kK = in vertical plane

Transformation of the principal trajectories in terms of 
the Twiss parameters

General solution of the equation of motion
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Using theorems of trigonometric functions 
sin(a+b) = sin(a) cos(b)+cos(a) sin(b) ...

Set initial conditions: x(0)=x0 ,x´(0)=x´0,

β(0)= β0, α(0)= α0, Φ(0)=0
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Inserting in (1) { }
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So again we have got a matrix that transforms the orbit vector (x0, x´0) into (x(s), x´(s)) 
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