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Space Charge: What does it mean?Space Charge: What does it mean?
The net effect of the CoulombCoulomb interactions in a multi-particle system can be

classified  into two regimes:

1)1) Collisional RegimeCollisional Regime ==> dominated by binary collisionsbinary collisions caused by close
particle encounters ==> Single Particle EffectsSingle Particle Effects

2) 2) Space Charge RegimeSpace Charge Regime ==> dominated by the self fieldself field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective EffectsCollective Effects



A measure for the relative importance of collisional versus collective effects is the

Debye Length Debye Length llDD

Let consider a non-neutralizednon-neutralized system of identical charged particlesidentical charged particles

We wish to calculate the We wish to calculate the effective potentialeffective potential of a fixed  of a fixed test charged particletest charged particle
surrounded by other particlessurrounded by other particles that are statistically distributed. that are statistically distributed.
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The particle distribution around the test particle will deviate from a uniform
distribution so that the effective potential of the test particle is now defined as

the sum of the original and the induced potential:

  

† 

—2Fs
r r ( ) =

e
eo

d
r r ( ) +

e
eo

Dn r r ( )

  

† 

Dn r r ( ) = nm
r r ( ) - n

  

† 

nm
r r ( ) =

1
N

ed
r r - r r i( )

i= 1

N

Â

Local deviation from n

Local microscopic
distribution

Poisson Equation



Presupposing thermodynamic equilibrium,

nm will obey Maxwell-Boltzmann statistic:   
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Where the potential energy of the particles is assumed to be much smaller
than their kinetic energy
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The solution with the boundary condition that Fs vanishes at infinity is:
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Conclusion:Conclusion: the effective interaction range of the test particle is
limited to the Debye lengthDebye length

The charges sourrounding the test particles have a screening effect
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Smooth functions for the charge and field distributions can be used
as long as the Debye length remains small compared to the particle

bunch size
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Ex: Longitudinal Electrict field of a uniform charged cylinder

As computed by a multi-
particle tracking code

Analyticall expression



If collisions can be neglected the Liouville’s theorem holds in the 6-D
phase space (r,p). This is possible because the smoothed space-charge
forces acting on a particle can be treated like an applied force. Thus the

6-D phase space volume occupied by the particles remains constant
during acceleration.

In addition if all forces are linear functions of the particle displacement
from the beam center and there is no coupling between degrees of

freedom, the normalized emittance associated with each plane (2-D
phase space) remains a constant of the motion

Important consequencesImportant consequences



Continuous Uniform Cylindrical Beam ModelContinuous Uniform Cylindrical Beam Model
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Lorentz ForceLorentz Force
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The attractive magnetic force , which becomes significant at high
velocities, tends to compensate for the repulsive electric force.

Therefore, space charge defocusing is primarily a non-relativistic

has only radialradial  component  and

is a linearlinear function of the transverse coordinate
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Equation of motion:Equation of motion:
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If the initial particle velocities depend linearly on the initial coordinates

then the linear dependence will be conserved during the motion, because of the
linearity of the equation of motion.

This means that particle trajectories do not cross ==> Laminar BeamLaminar Beam
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What about RMS Emittance (Lawson)?What about RMS Emittance (Lawson)?



In the phase space (x,x’) all particles lie in the interval bounded by the points (a,a’).
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What about the rms emittance?
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The presence of nonlinear space charge forces can distort the
phase space contours and causes emittance growth
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Low Energy CaseLow Energy Case

Space Charge induced emittance Space Charge induced emittance oscillationsoscillations



Bunched Uniform Cylindrical Beam ModelBunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame

by series representation of axisymmetric field:



Lorentz Transformation to the Lab frameLorentz Transformation to the Lab frame
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It is still a linear field with r but with a longitudinal correlation z
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Simple Case: Transport in a Long SolenoidSimple Case: Transport in a Long Solenoid
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Small perturbations around the equilibrium solutionSmall perturbations around the equilibrium solution



Plasma frequency

† 

d ¢ ¢ r z( ) + 2ks
2dr z( ) = 0

† 

R z( ) = Req z( ) + dr z( )cos 2ksz( )
¢ R z( ) = -dr z( ) sin 2ksz( )

† 

kp = 2ks



x

px

Projected Phase Space Slice PhaseSlice Phase
SpacesSpaces

Emittance Oscillations are driven by space charge differentialEmittance Oscillations are driven by space charge differential
defocusing in core and tails of the beamdefocusing in core and tails of the beam
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Perturbed trajectories oscillate around the equilibriumPerturbed trajectories oscillate around the equilibrium
with thewith the

same frequency but with different amplitudessame frequency but with different amplitudes
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High Energy CaseHigh Energy Case



Effects of conducting or magnetic screensEffects of conducting or magnetic screens

Let us consider a point charge close to a conducting screen.

The electrostatic field can be derived through the "image method".
Since the metallic screen is an equi-potential plane, it can be
removed provided that a "virtual" charge is introduced such that the
potential is constant at the position of the screen



A constant current in the free space produces circular magnetic field.

If mrª1, the material, even in the case of a good conductor, does not
affect the field lines.



However, if the material is of ferromagneticferromagnetic typetype, with mmrr>>1>>1, due to its
magnetisation, the magnetic field lines are strongly affected, inside and outside the
material. In particular a very high magnetic permeability makes the tangential
magnetic field zero at the boundary so that the magnetic field is perpendicular to
the surface, just like the electric field lines close to a conductor.

In analogy with the image method for charges close to conducting screens, we get
the magnetic field, in the region outside the material, as superposition of the fields
due to two symmetric equal currents flowing in the same direction.



The scenario changesscenario changes when we deal with time-varying fieldstime-varying fields for which it is
necessary to compare the wall thicknesswall thickness and the skin depth (region of
penetration of the e.m. fields) in the conductor.

If the fields penetrate and pass through the material, we are practically in the
static boundary conditions case. Conversely, if the skin depth is very small,
fields do not penetrate, the electric filed lines are perpendicular to the wall, as
in the static case, while the magnetic field line are tangent to the surface.

In this case, the magnetic field lines can be obtained by considering two linear
charge distributions with opposite sign, flowing in the same direction
(opposite charges, opposite currents).



Circular  Perfectly Conducting  Pipe (Beam at Center)Circular  Perfectly Conducting  Pipe (Beam at Center)

In the case of charge distribution, and gÆ•, the electric field lines are perpendicular
to the direction of motion. The transverse fields intensity can be computed like in the
static case, applying the Gauss and Ampere laws. Due to the symmetry, the
transverse fields produced by an ultra-relativistic charge  inside the pipe are the same
as in the free space. This implies that for a distribution with cylindrical symmetry, in
the ultra-relativistic regime, there is a cancellation of the electric and magnetic
forces. Therefore, the uniform beam produces exactly the same forces as in the free
space.  It is interesting to note that this result does not depend on the longitudinal
distribution of the beam.
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Parallel Plates (Beam at Center)Parallel Plates (Beam at Center)

In some cases, the beam pipe cross section is such that we can consider only the
surfaces closer to the beam, which behave like two parallel plates. In this case, we
use the image method to a charge distribution of radius a between two conducting

plates 2h apart. By applying the superposition principle we get the total image field
at a position y inside the beam.
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Where we have assumed h>>a>y.

For d.c. or slowly varying currents, the boundary condition imposed by the
conducting plates does not affect the magnetic field. As a consequence there is no

cancellation effect for the fields produced by the "image" charges.

2h



From the divergence equation we derive also the other transverse component:
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Including also the direct space charge force, we get:
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Therefore, for g>>1, and for d.c. or slowly varying currents the cancellation effect
applies only for the direct space charge forces. There is no cancellation of the
electric and magnetic forces due to the "image" charges.



Parallel Plates - General expression of the forceParallel Plates - General expression of the force

Taking into account all the boundary conditions for d.c. and a.c.
currents, we can write the expression of the force as:
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where l is the total current, and l its d.c. part. We take the sign (+) if u=y, and the
sign (–) if u=x.



The betatron motion

We consider a perfectly circular accelerator with radius rx. The
beam circulates inside the beam pipe. The transverse single
particle motion in the linear regime, is derived from the equation
of motion. Including the self field forces in the motion equation,
we have
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Following the same steps already seen in the "transverse dynamics"
lectures, we write:
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We assume small transverse displacements x, and only transverse
quadrupole forces which keep the beam around the closed orbit:
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where Eo is the particle energy. This equation expressed as function of
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In the analysis of the motion of the particles in presence of the self
field,  we will adopt a simplified model where particles execute

simple harmonic oscillations around the reference orbit.

This is the case where the focussing term is constant. Although
this condition in never fulfilled in a real accelerator, it provides a

reliable model  for the description of the beam instabilities
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Shift and Spread of the Incoherent  TunesShift and Spread of the Incoherent  Tunes

When the beam is located at the centre of symmetry of the pipe, the e.m. forces due
to space charge and images cannot affect the motion of the centre of mass

(coherent), but change the trajectory of individual charges in the beam
(incoherent).(incoherent).

These force may have a complicate dependence on the charge position. A simple
analysis is done considering only the linear expansion of the self-fields forces
around the equilibrium trajectory.
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Transverse Incoherent  EffectsTransverse Incoherent  Effects

We take the linear term of the transverse force in the betatron
equation:
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The betatron shift is negative since the space charge forces are
defocusing on both planes. Notice that the tune shift is in general
function of “z”, therefore there is a tune spread inside the beam.



Consequences of the space charge  tune shiftsConsequences of the space charge  tune shifts

In circular accelerators the values of the betatron tunes should not be
close to rational numbers in order to avoid the crossing of linear and
non-linear resonances where the beam becomes unstable. The tune
spread induced by the space charge force can make hard to satisfy

this basic requirement. Typically, in order to avoid major resonances
the stability requires

† 

DQu < 0.5

In a LINAC or a beam transport line, the space charge forces
cause an energy spread and perturb the equilibrium beam size. It
is required that the defocusing space charge forces must not be

larger than the external forces.


