Non-Linear

Imperfections

CAS Zeuthen September 2003

Oliver Bruning / CERN AP-ABP

Non-Linear Imperfections

equation of motion
\longrightarrow Hills equation
\longrightarrow sine and cosine like solutions + one turn map
Poincare section
\qquad normalized coordinates
resonances
\longrightarrow tune diagram and fixed points
non-linear resonances
\longrightarrow driving terms
perturbation treatment of non-linear resonances
\longrightarrow amplitude growth and detuning guadrupole
\longrightarrow fixed points and slow extraction sextupole
\longrightarrow pendulum model and octupole resonance overlap

Hamiltonian dynamics and variable transformations \longrightarrow Hamilton function
\longrightarrow generating functions
\longrightarrow Equations of motion for action angel variables

Poi ncare Section I

Display coordinates after each turn:

Linear β - motion:
$\mathrm{x}_{\mathrm{i}}=\sqrt{\beta(\mathrm{s})} \cdot \sin \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{0}\right)$
$\mathrm{x}_{\mathrm{i}}^{\prime}=\left[\cos \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{0}\right)+\alpha(\mathrm{s}) \cdot \sin \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{0}\right)\right] / \sqrt{\beta(\mathrm{s})}$

Poincare Section II

for the sake of simplicity assume $\alpha=0$ at the location of the Poincare Section
$\mathbf{x}=\sqrt{\beta} \mathbf{r} \cdot \cos \left(2 \pi \mathbf{Q} \mathbf{i}+\phi_{\mathbf{0}}\right)$
$\mathbf{x}^{\prime}=\mathbf{r} \cdot \sin \left(2 \pi \mathbf{Q} \mathbf{i}+\phi_{\mathbf{0}}\right) / \sqrt{\beta}$
$\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{x}^{\mathbf{l}^{2}}}{\mathbf{b}^{2}}={r^{2}}^{2}$ canst.
for $\alpha \neq 0$
one can define a new set of coordinates via linear combination of x and x^{\prime} such that one axis of the ellipse is parallel to x-axis

Poincare Section III

Display normalized coordinates:

normalized coordinates:

$\mathbf{x} / \sqrt{\beta}=\mathbf{r} \cdot \boldsymbol{\operatorname { c o s }}\left(2 \pi \mathbf{Q} \mathbf{i}+\phi_{\mathbf{0}}\right)$
$\sqrt{\beta} \cdot \mathbf{x}^{\prime}=-\mathbf{r} \cdot \sin \left(2 \pi \mathbf{Q} \mathbf{i}+\phi_{\mathbf{0}}\right)$

Poincare Section

Resonances I

tune diagram with linear resonances:

stability:	Qy			
	n +1			
avoid integer and				
half integer		$\mathrm{n}+0.5$		
resonances!				
	n	$\mathrm{n}+0.5$	$\mathrm{n}+1$	

higher order resonances:

$$
n Q_{x}+m Q_{y}=r
$$

the rational numbers
lie 'dense' in the real numbers

there are resonances everywhere!

Resonances II

fixed points in the Poincare section:

$\mathbf{Q}=\mathbf{N}+\mathbf{1} / \mathbf{n}$

\longrightarrow every point is mapped on itself after \mathbf{n} turns!
\longrightarrow every point is a 'fixed point'
\longrightarrow motion remains stable if the resonances are not driven
\longrightarrow sources for resonance driving terms?

Non-Linear Resonances I

Sextupoles +octupoles

Magnet errors:

pole face accuracy

geometry errors
eddy currents
edge effects

Vacuum chamber:

LEP I welding

Beam-beam interaction

careful analysis of all

components

Non-Linear Resonances II

Taylor expansion for upright multipoles:

$$
\begin{gathered}
\mathbf{B}_{\mathbf{y}}+\mathbf{i} \cdot \mathbf{B}_{\mathbf{x}}=\sum_{\mathrm{n}=0} \frac{1}{\mathrm{n}!} \cdot \mathrm{f}_{\mathrm{n}} \cdot(\mathrm{x}+\mathrm{i} y)^{\mathrm{n}} \\
\text { with: } \quad f_{n}=\frac{\partial^{n+1} \mathbf{B}_{y}}{\partial \mathbf{x}^{n+1}}
\end{gathered}
$$

$\left.\begin{array}{l|l|l|l}\text { multipole } & \text { order } & \mathrm{B}_{\mathbf{x}} & \mathrm{B}_{\mathbf{y}} \\ \hline \text { dipole } & 0 & 0 & \mathrm{~B}_{\mathbf{0}} \\ \hline \text { quadrupole } & 1 & \mathrm{f}_{1} \mathrm{y} & \mathrm{f}_{1} \mathrm{x} \\ \hline \text { sextupole } & 2 & \mathrm{f}_{2} \mathrm{x} y & \frac{1}{2} \mathrm{f}_{2} \cdot\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \\ \hline \text { octupole } & 3 & \frac{1}{6} \mathrm{f}_{3} \cdot\left(3 \mathrm{y} \mathrm{x}^{2}-\mathrm{y}^{3}\right) & \frac{1}{6} \mathrm{f}_{3} \cdot\left(\mathrm{x}^{3}-3 \mathrm{x} \mathrm{y}\right.\end{array}{ }^{2}\right)$

skew multipoles:

rotation of the magnetic field by $1 / 2$ of the azimuthal magnet symmetry: 90° for dipole

Perturbation I

perturbed equation of motion:
$\frac{d^{2} x}{d s^{2}}+\left(\frac{2 \pi}{L} \cdot Q_{x}\right)^{2} \cdot x=\frac{F_{x}(x, y)}{v \cdot p}$
$\frac{d^{2} y}{d s^{2}}+\left(\frac{2 \pi}{L} \cdot Q\right)^{2} \cdot y=\frac{F_{y}(x, y)}{v \cdot p}$
assume motion in one degree only:
$y \equiv 0$ is a solution of the vertical equation of motion
$\rightarrow \quad B_{x} \equiv 0 ; \quad B_{\mathbf{y}}=\frac{1}{n!} \cdot f_{\mathbf{n}} \cdot x^{\mathbf{n}} \quad F_{x}=-v_{s} \cdot B_{y}$
perturbed horizontal equation of motion:

$$
\frac{\mathbf{d}^{2} x}{d \mathbf{s}^{2}}+\left(\frac{2 \pi}{L} \cdot \mathbf{Q}_{x}\right)^{2} \cdot x=\frac{-1}{n!} \cdot k_{n}(s) \cdot x^{n}
$$

normalized strength:

$$
k_{\mathrm{n}}=0.3 \cdot \frac{\mathbf{f}_{\mathrm{n}}\left[\mathrm{~T} / \mathrm{m}^{\mathrm{n}}\right]}{\mathrm{p}[\mathrm{GeV} / \mathrm{c}]} ;\left[\mathrm{k}_{\mathrm{n}}\right]=1 / \mathrm{m}^{\mathrm{n}+1}
$$

Perturbation II

perturbation just infront of Poincare Section:

where ' l ' is the length of the perturbation
perturbed Poincare Map:

Perturbation III

coordinates after 'i' itteration and before kick:
(1)

$$
x_{i} / \sqrt{\beta}=r \cdot \cos \left(\phi_{i}\right) \quad x_{i}^{\prime} \cdot \sqrt{\beta}=-r \cdot \sin \left(\phi_{i}\right)
$$

(2)

$$
\text { with: } \quad \phi_{\mathbf{i}}=\phi_{\mathbf{i}-\mathbf{1}}+2 \pi \mathrm{Q}
$$

coordinates after the perturbation kick:

$$
\begin{equation*}
\mathbf{x}_{\mathrm{i}+\mathrm{kick}} / \sqrt{\beta}=\mathbf{x}_{\mathrm{i}} / \sqrt{\beta} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{x}_{i+k i c k}^{\prime} \cdot \sqrt{\beta}=\mathbf{x}_{i}^{\prime} \cdot \sqrt{\beta}+\frac{\mathbf{I}}{\mathbf{n}} \cdot \mathbf{k}_{\mathbf{n}} \cdot \mathbf{x}_{\mathrm{i}}^{\mathbf{n}} \cdot \sqrt{\beta} \tag{4}
\end{equation*}
$$

(5) $\quad \mathbf{x}_{\mathrm{i}+\text { kick }} / \sqrt{\beta}=\left(\mathbf{r}+\Delta \mathbf{r}_{\mathrm{i}}\right) \cdot \boldsymbol{\operatorname { c o s }}\left(\phi_{\mathrm{i}}+\Delta \phi_{\mathrm{i}}\right)$
(6) $\mathbf{x}_{i+k i c k} \cdot \sqrt{\beta}=-\left(\boldsymbol{r}+\Delta \boldsymbol{r}_{i}\right) \cdot \sin \left(\phi_{i}+\Delta \phi_{i}\right)$

Perturbation IV

solve for ${ }^{\prime} \Delta r_{i}^{\prime}$ and ' $\Delta \phi_{i}{ }^{\prime}$:
\longrightarrow substitute (1) and (2) into (3) and (4)
\longrightarrow set new expression equal to (5) and (6)
\longrightarrow use: $\sin (\mathrm{a}+\mathrm{b})=\sin (\mathrm{a}) \cos (\mathrm{b})+\cos (\mathrm{a}) \sin (\mathrm{b})$

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

and: $\sin (\Delta \phi)=\Delta \phi ; \cos (\Delta \phi)=1$
to solve for ' $\Delta \mathrm{r}_{\mathrm{i}}{ }^{\prime}$ and ' $\Delta \phi_{i}{ }^{\prime}$:

$$
\begin{aligned}
\longrightarrow \Delta r_{i} & =-\Delta x_{i}^{\prime} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{\mathbf{i}}\right) \\
\Delta \phi_{i} & =\frac{-\Delta x_{i}^{\prime} \cdot \sqrt{\beta} \cdot \cos \left(\phi_{\mathbf{i}}\right)}{\left[r+\Delta x_{i}^{\prime} \cdot \sqrt{\beta} \cdot \sin \left(\phi_{i}\right)\right]}
\end{aligned}
$$

substitute the kick expression:
(7) $\Delta \mathrm{r}_{\mathrm{i}}=\frac{\boldsymbol{l}}{\mathrm{n}!} \cdot \mathrm{k}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \cdot \sqrt{\beta} \cdot \sin \left(\phi_{\mathbf{i}}\right)$
(8)

$$
\frac{\frac{\boldsymbol{l}}{\mathrm{n}!} \cdot \mathrm{k}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \cdot \sqrt{\beta} \cdot \cos \left(\phi_{\mathbf{i}}\right)}{\left[\mathrm{r}+\Delta \mathrm{r}_{\mathrm{i}}\right]}
$$

Perturbation V

quadrupole perturbation:

$$
\Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{\mathrm{i}}\right)
$$

$$
\text { with: } \mathrm{x}_{\mathrm{i}}=\sqrt{\beta \cdot} \mathrm{r} \cdot \cos \left(\phi_{\mathrm{i}}\right)
$$

$$
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r} \cdot \beta \cdot \sin \left(2 \phi_{\mathbf{i}}\right)
$$

sum over many turns with: $\quad \phi_{i}=2 \pi \mathrm{Q} \cdot \mathrm{i}$

(half integer resonance)
tune change (first order in the perturbation):

$$
\Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \beta \cdot\left[1+\cos \left(2 \phi_{\mathbf{i}}\right)\right] / 2
$$

average change per turn:

$$
\phi_{\mathrm{i}}=2 \pi \mathrm{Q} \cdot \mathrm{i}
$$

$<\Delta \mathrm{Q}_{\mathrm{i}}>=l \cdot \mathrm{k}_{\mathrm{i}} \beta / 4 \pi$

Q>

Perturbation VI

resonance stop band: $\mathrm{Q} \neq \mathrm{p} / 2$
the map perturbation generates a tune oscillation

$$
\delta \mathrm{Q}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \beta \cdot \cos \left(4 \pi \cdot \mathrm{Q} \mathrm{i}+2 \phi_{\mathbf{0}}\right) / 4 \pi
$$

\rightarrow particles will experience the half integer resonance if their tune satisfies:

$$
(\mathrm{p} / 2-<\Delta \mathrm{Q}>)<\left(\mathrm{Q}_{0}+<\Delta \mathrm{Q}>\right)<(\mathrm{p} / 2+<\Delta \mathrm{Q}>)
$$

tune diagram:
avoid integer and
half integer
$\mathrm{n}+0.5$
resonances and stay
away from the
resonance 'stop band' \mathbf{n}

$\mathrm{n}+0.5$
n + 1

Perturbation VII

sextupole perturbation:

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{x}_{\mathrm{i}}^{2} \cdot \sqrt{\beta} \cdot \sin \left(\phi_{\mathbf{i}}\right) / 2 \\
& \quad \text { with: } \mathrm{x}_{\mathrm{i}}=\sqrt{\beta \cdot \mathrm{r}} \cdot \cos \left(\phi_{\mathbf{i}}\right) \\
& \Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \beta^{3 / 2}\left[3 \sin \left(\phi_{\mathbf{i}}\right)+\sin \left(3 \phi_{\mathbf{i}}\right)\right] / 8
\end{aligned}
$$

sum over many turns: $\quad \phi_{\mathrm{i}}=2 \pi \mathrm{Q} \cdot \mathrm{i}$

$$
\mathrm{r}=0 \text { unless: } \mathrm{Q}=\mathrm{p} \text { or } \mathrm{Q}=\mathrm{p} / 3
$$

tune change (first order in the perturbation):

$$
\begin{aligned}
& 2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=l \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} {\left[3 \cos \left(2 \pi \mathrm{Q} \mathrm{i}+\phi_{\mathbf{0}}\right)\right.} \\
&\left.+\cos \left(6 \pi \mathrm{Q} \mathrm{i}+3 \phi_{\mathbf{0}}\right)\right] / 8
\end{aligned}
$$

sum over many turns:
(unless: $\mathrm{Q}=\mathrm{p}$ or $\mathrm{Q}=\mathrm{p} / 3$)

$$
<\Delta \mathrm{Q}>=0
$$

\longrightarrow stop band increases with amplitude!

Perturbation VIII

what happens for $\mathrm{Q}=\mathrm{p} ; \mathrm{p} / 3$?

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \cdot {\left[3 \sin \left(2 \pi \mathrm{Qi}+\phi_{\mathbf{0}}\right)\right.} \\
&\left.+\sin \left(6 \pi \mathrm{Qi}+3 \phi_{\mathbf{0}}\right)\right] / 8 \\
& \text { constant for each kick } \\
& 2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cdot \\
& {\left[3 \cos \left(2 \pi \mathrm{Qi}+\phi_{\mathbf{0}}\right)\right.} \\
&\left.+\cos \left(6 \pi \mathrm{Qi}+3 \phi_{\mathbf{0}}\right)\right] / 8
\end{aligned}
$$

amplitude 'r' increases every turn \longrightarrow instability
\rightarrow dephasing and tune change
\rightarrow motion moves off resonance

\longrightarrow stop of the instability

Perturbation IX

let us assume: $\mathrm{Q}=\mathrm{p} / 3$

$$
\begin{gathered}
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2}\left[3 \sin \left(\phi_{\mathbf{i}}\right)+\sin \left(3 \phi_{\mathbf{i}}\right)\right] / 8 \\
\left.\Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{2}} \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cdot \underset{\left[3 \cos \left(\phi_{\mathbf{i}}\right)\right.}{[}+\cos \left(3 \phi_{\mathbf{i}}\right)\right] / 8 \\
+2 \pi \mathrm{Q}
\end{gathered}
$$

the first terms change rapidly for each turn

\rightarrow the contribution of these terms are small and we omit these terms in the following (method of averaging)

$$
\begin{aligned}
\longrightarrow \quad \Delta \mathrm{r}_{\mathrm{i}} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \sin \left(3 \phi_{\mathbf{i}}\right) / 8 \\
\Delta \phi_{\mathrm{i}} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cos \left(3 \phi_{\mathbf{i}}\right) / 8+2 \pi \mathrm{Q}
\end{aligned}
$$

Perturbation X

fixed point conditions: $\mathrm{Q}_{0} \gtrsim \mathrm{p} / 3 ; \mathrm{k}_{2}>0$
$\Delta \mathrm{r} /$ turn $=0 \quad$ and $\quad \Delta \phi /$ turn $=2 \pi \mathrm{p} / 3$
with:

$$
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \cdot \sin \left(3 \phi_{\mathbf{i}}\right) / 8
$$

$$
\Delta \phi_{\mathrm{i}}=2 \pi \mathrm{Q}_{0}+\boldsymbol{l} \cdot \mathrm{k}_{\dot{2}} \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cos \left(3 \phi_{\mathbf{i}}\right) / 8
$$

$$
\phi_{\text {fixed point }}=\pi / 3 ; \pi ; 5 \pi / 3
$$

$$
\mathrm{r}_{\text {fixed point }}=\frac{16 \pi\left(\mathrm{Q}_{0}-\mathrm{p} / 3\right)}{l \mathrm{k}_{2} \beta^{3 / 2}}
$$

$\longrightarrow \quad \mathrm{r}=0$ also provides a fixed point in the

Perturbation XI

fixed point stability:
linearize the equation of motion around the fixed points:

Poincare map:

$$
\begin{aligned}
& r_{i+1}=r_{i}+f\left(r_{i}, \phi_{i}\right) \\
& \phi_{i+1}=\phi_{i}+g\left(r_{i}, \phi_{i}\right)
\end{aligned}
$$

single sextupole kick:

$$
\begin{aligned}
\longrightarrow \mathrm{f} & =\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{3 / 2} \sin \left(3 \phi_{\mathbf{i}}\right) / 8 \\
\mathrm{~g} & =\boldsymbol{l} \cdot \mathrm{k}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{i}} \cdot \beta^{3 / 2} \cos \left(3 \phi_{\mathbf{i}}\right) / 8
\end{aligned}
$$

\longrightarrow linearized map around fixed points:

$$
\binom{r_{i+1}}{\phi_{i+1}}=\left(\begin{array}{ll}
\frac{\partial r_{i+1}}{\partial r_{i}} & \frac{\partial r_{i+1}}{\partial \phi_{i}} \\
\frac{\partial \phi_{i+1}}{\partial r_{i}} & \frac{\partial \phi_{i+1}}{\partial \phi_{i}}
\end{array}\right)| |_{\text {fixed point }} \cdot\binom{r_{i}}{\phi_{i}}
$$

Perturbation XII

Jacobin matrix for single sextupole kick:

Jacobian matrix

$\frac{\partial r_{i+1}}{\partial r_{i}}=1 ; \quad \frac{\partial r_{i+1}}{\partial \phi_{i}}=-3 \boldsymbol{l} \cdot \mathrm{k}_{\boldsymbol{2}} \beta^{3 / 2} \cdot \mathrm{r}_{\text {fixed point }}^{2} / 8$
$\frac{\partial \phi_{i+1}}{\partial r_{i}}=-\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2} / 8 ; \quad \frac{\partial \phi_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}=1$
$\phi_{\text {fixed point }}=\pi / 3 ; \pi ; 5 \pi / 3 ; \quad$ and $\mathrm{r}_{\text {fixed point }} \neq 0$
$\longrightarrow \Delta \mathrm{r}_{\mathrm{i}+1}=-3 \boldsymbol{l} \cdot \mathrm{k}_{2} \beta^{3 / 2} \cdot \stackrel{\mathrm{r}}{\text { fixed point }}_{2} / 8 \cdot \Delta \phi_{\mathrm{i}}$

$$
\Delta \phi_{\mathrm{i}+1}=-l \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2} / 8 \cdot \Delta \mathrm{r}_{\mathrm{i}}
$$

hyperbolic fixed point

Perturbation XIII

Poincare Section for 'r' and ϕ ':

unstable
hyperbolic fixed points

Poincare section in normalized coordinates:

Perturbation XIV

slow extraction:

fixed point position:
$16 \pi\left(\mathrm{Q}-\frac{\mathrm{p}}{3}\right)$
$r_{\text {fixed point }}^{\overline{\overline{1}}} \underset{\sim \cdot \beta^{3 / 2}}{ }$ $\boldsymbol{l} \cdot \mathrm{k}_{2} \cdot \beta^{3 / 2}$
\longrightarrow changing the tune during extraction!
octupole perturbation:

$$
\Delta \mathrm{r}_{\mathrm{i}}=l \cdot \mathrm{k}_{3} \cdot \mathrm{x}_{\mathrm{i}}^{3} \cdot \sqrt{\beta \cdot} \sin \left(\phi_{\mathrm{i}}\right) / 6
$$

with: $\mathrm{x}_{\mathrm{i}}=\sqrt{\beta \cdot r} \cdot \cos \left(\phi_{\mathbf{i}}\right)$

$$
\Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{3}} \cdot \mathrm{r}_{\mathrm{i}}^{3} \cdot \beta^{2} \cdot\left[4 \sin \left(2 \phi_{\mathbf{i}}\right)+\sin \left(4 \phi_{\mathbf{i}}\right)\right] / 48
$$

sum over many turns: $\quad \phi_{\mathrm{i}}=2 \pi \mathrm{Q} \cdot \mathrm{i}+\phi_{0}$

$$
\rightarrow \quad \mathrm{r}=0 \quad \text { unless: } \mathrm{Q}=\mathrm{p}, \mathrm{p} / 2, \mathrm{p} / 4
$$

tune change (first order in the perturbation):

$$
\begin{aligned}
2 \pi \Delta \mathrm{Q}_{\mathrm{i}}=l \cdot \mathrm{k}_{3} \mathrm{r}_{\mathrm{i}}^{2} \beta^{2} \cdot & {\left[4 \cos \left(4 \pi \mathrm{Q} i+2 \phi_{\mathbf{0}}\right)\right.} \\
& \left.+3+\cos \left(8 \pi \mathrm{Q} \mathrm{i}+4 \phi_{\mathbf{0}}\right)\right] / 48
\end{aligned}
$$

sum over many turns (unless: $\mathrm{Q}=\mathrm{p}$ or $\mathrm{Q}=\mathrm{p} / 4$):

$$
\rightarrow\langle\Delta \mathrm{Q}\rangle=l \cdot \mathrm{k}_{3} \cdot \mathrm{r}^{2} \cdot \beta^{2} / 16 / 2 \pi
$$

Perturbation XVI

detuning with amplitude:
particle tune depends on particle amplitude
\rightarrow tune spread for particle distribution \longrightarrow stabilization of collective instabilities
\longrightarrow install octupoles in the storage ring

\rightarrow distribution covers more resonances in the tune diagram

$\longrightarrow \quad$ avoid octupoles in the storage ring
\longrightarrow requires a delicate compromise

Poincare section topology:
$\mathrm{Q}=\mathrm{p} / 4$ and apply method of averaging

$$
\begin{aligned}
& \Delta \mathrm{r}_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{\mathrm{i}}^{3} \cdot \beta^{2} \cdot \sin \left(4 \phi_{\mathbf{i}}\right) / 48 \\
& \Delta \phi_{\mathrm{i}}=\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{3}} \cdot \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{2} \cdot\left[3+\cos \left(4 \phi_{\mathbf{i}}\right)\right] / 48+2 \pi \mathrm{Q}
\end{aligned}
$$

Perturbation XVII

fixed point conditions: $\mathrm{Q}_{0} \curvearrowright \mathrm{p} / 4 ; \mathrm{k}_{3}>0$
$\Delta \mathrm{r} /$ turn $=0 \quad$ and $\quad \Delta \phi /$ turn $=2 \pi \mathrm{p} / 4$
with:
$\Delta r_{i}=\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{j}} \mathrm{r}_{\mathrm{i}}^{3} \cdot \beta^{2} \cdot \sin \left(4 \phi_{\mathbf{i}}\right) / 48$
$\Delta \phi_{\mathrm{i}}=2 \pi \mathrm{Q}_{0}+\boldsymbol{l} \cdot \mathrm{k}_{\mathbf{3}} \mathrm{r}_{\mathrm{i}}^{2} \cdot \beta^{2} \cdot\left[3+\cos \left(4 \phi_{\mathbf{i}}\right)\right] / 48$
$\phi_{\text {fixed point }}=\pi / 2 ; \pi ; 3 \pi / 2 ; 2 \pi$
$\mathrm{r}_{\text {fixed point }}=\sqrt{\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3+1)}}$
$\phi_{\text {fixed point }}=\pi / 4 ; 3 \pi / 4 ; 5 \pi / 4 ; 7 \pi / 4$
$\mathrm{r}_{\text {fixed point }}=\sqrt{\frac{96 \pi\left(\mathrm{p} / 4-\mathrm{Q}_{0}\right)}{l \mathrm{k}_{3} \beta^{2}(3-1)}}$

Perturbation XVIII

fixed point stability for single octupole kick:
Jacobian matrix

$$
\begin{aligned}
& \frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=1 ; \quad \frac{\partial \mathrm{r}_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}= \pm 4 \boldsymbol{l} \cdot \mathrm{k}_{\overrightarrow{3}} \cdot \beta^{2} \cdot \mathrm{r}_{\text {fixed point }}^{3} / 48 \\
& \frac{\partial \phi_{\mathrm{i}+1}}{\partial \mathrm{r}_{\mathrm{i}}}=+\boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \beta^{2} \cdot \mathrm{r}(3 \pm 1) / 24 ; \quad \frac{\partial \phi_{\mathrm{i}+1}}{\partial \phi_{\mathrm{i}}}=1
\end{aligned}
$$

$\longrightarrow \Delta \mathrm{r}_{\mathrm{i}+1}= \pm 4 \boldsymbol{l} \cdot \mathrm{k}_{3} \cdot \beta^{2} \cdot \mathrm{r}_{\text {fixed point }}^{3} / 48^{\bullet} \cdot \Delta \phi_{\mathrm{i}}$

$$
\Delta \phi_{\mathrm{i}+1}=l \cdot \mathrm{k}_{3} \cdot \beta^{2}(3 \pm 1) / 24 \cdot \Delta \mathrm{r}_{\mathrm{i}}
$$

Stability for ' - ' sign and $k>0$?

Perturbation XIX

Poincare Section for 'r' and ϕ ':

unstable
hyperbolic
fixed points
stable
elliptical
fixed points

island structure

Poincare section in normalized coordinates:

Perturbation XX

generic signature of non-linear resonances:
\rightarrow chain of resonance islands
pendulum dynamics:
expand equation of motion around resonance amplitude

$$
\frac{\mathrm{dr}}{\mathrm{ds}}=-\mathrm{F} \cdot \sin (\phi) \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\mathrm{G} \cdot \mathrm{r}
$$

$\rightarrow \quad$ generic equation of motion near resonances
\longrightarrow resonance width:

$$
\Delta \mathrm{r}_{\mathrm{res} / \max }=4 \sqrt{\mathrm{~F} / \mathrm{nG}}
$$

island oscillation frequency: $\omega_{\text {island }}=\sqrt{\mathrm{F} \cdot \mathrm{G} / \mathrm{n}}$
pendulum motion:
libration: oscillation around stable fixed point rotation: continous increase of phase variable separatrix: separation between the two types

Integrable Systems

trajectories in phase space do not intersect

deterministic system

integrable systems:
all trajectories lie on invariant surfaces
n degrees of freedom

$\longrightarrow \mathrm{n}$ dimensional surfaces

two degrees of freedom:

$$
\mathrm{x}, \mathrm{~s} \longrightarrow \text { motion lies on a torus }
$$

Poincare section for two degrees of freedom:
\qquad motion lies on closed curves
$\longrightarrow \quad$ indication of integrability

Perturbation XXI

'chaos' and non-integrability:
so far we removed all but one resonance (method of averaging)
\longrightarrow dynamics is integrable and therefore predictable
re-introduction of the other resonances 'perturbs' the separatrix motion
\rightarrow motion can 'change' from libration to rotation
\rightarrow generation of a layer of 'chaotic motion'

no hope for exact deterministic solution in this area!

Perturbation XXII

slow particle loss:
particles can stream along the 'stochastic layer'
for 1 degree of freedom (plus 's' dependence)
the particle amplitude is bound by neighboring integrable lines
not true for more than one degree of freedom
global 'chaos' and fast particle losses:
if more than one resonance are present their resonance islands can overlap
\longrightarrow the particle motion can jump from one resonance to the other
\longrightarrow 'global chaos'
\longrightarrow fast particle losses and dynamic aperture

Long Term Stability

Non-linear Perturbation:

\square amplitude growth
\square detuning with amplitude

\square coupling

Complex dynamics:

3 degrees of freedom
+1 invariant of the motion

+ non-linear dynamics
\longrightarrow no global analytical sol ution!
\longrightarrow analytical analysis relies on perturbation theory

Perturbation XXIII

why did we not find islands for a sextupole?

\rightarrow the pendulum approximation requires an amplitude dependent tune!

$$
\longrightarrow \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\mathrm{G} \cdot \mathrm{r}
$$

unstable
hyperbolic fixed points

the sextupole detuning term appears only in second order of the kick strength

Perturbation XXIV

so far we assumed on the right-hand side:

$$
\phi_{\mathrm{i}}=2 \pi \mathrm{Q}_{0} \cdot \mathrm{i}+\phi_{0}
$$

this provides only first order solutions
second order perturbation:

$$
\begin{gathered}
\mathrm{r}(\mathrm{~s})=\mathrm{r}_{0}(\mathrm{~s})+\varepsilon \mathrm{r}_{1}(\mathrm{~s})+\varepsilon^{2} \mathrm{r}_{2}(\mathrm{~s})+\mathrm{O}\left(\varepsilon^{3}\right) \\
\phi(\mathrm{s})=\phi_{0}(\mathrm{~s})+\varepsilon \phi_{1}(\mathrm{~s})+\varepsilon^{2} \phi_{2}(\mathrm{~s})+\mathrm{O}\left(\varepsilon^{3}\right) \\
\text { with: } \quad \varepsilon=\beta^{3 / 2} \cdot l \cdot \mathrm{r}_{0} \cdot \mathrm{k}_{2}
\end{gathered}
$$

smooth approximation:

$$
\frac{\mathrm{dr}}{\mathrm{ds}}=\frac{\Delta \mathrm{r}}{\mathrm{~L}} \quad \text { and } \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\frac{\Delta \phi}{\mathrm{L}}
$$

Perturbation XXV

expand equation of motion into a Taylor series around zero order solution

$$
\frac{\mathrm{dr}}{\mathrm{ds}}=\mathrm{f}(\mathrm{r}, \phi) \quad \frac{\mathrm{d} \phi}{\mathrm{ds}}=\mathrm{g}(\mathrm{r}, \phi)
$$

\longrightarrow single sextupole kick:

$$
\begin{aligned}
& \mathrm{f}=\frac{\mathrm{r}^{2}}{\mathrm{r}_{0}} \cdot[\sin (3 \phi)+3 \sin (\phi)] / 8 \\
& \mathrm{~g}=\frac{\mathrm{r}}{\mathrm{r}_{0}} \cdot[\cos (3 \phi)+3 \cos (\phi)] / 8 \\
& \frac{\mathrm{dr}}{\mathrm{ds}}=\varepsilon \cdot \mathrm{f}+\left[\frac{\partial \mathrm{f}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{f}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2}+\mathrm{O}\left(\varepsilon^{3}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d} \phi}{\mathrm{ds}}=\frac{2 \pi \mathrm{Q}}{\mathrm{~L}}+\varepsilon \cdot \mathrm{g}+\left[\frac{\partial \mathrm{g}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{g}}{\partial \phi} \cdot \phi_{1}\right] \cdot \varepsilon^{2}+\mathrm{O}\left(\varepsilon^{3}\right)
$$

Perturbation XXVI

match powers of ε and solve equation of motion in ascending order of ε :
zero order: $\quad \phi_{0}(s)=\frac{2 \pi p}{3 L} \cdot s+\frac{2 \pi \nu}{3 L} \cdot s+\phi_{0}$

$$
\mathrm{r}_{0}(\mathrm{~s})=\mathrm{r}_{0}
$$

$$
(Q=p+v)
$$

\longrightarrow substitute into equation of motion and solve for $\phi_{1}(\mathrm{~s})$ and $\mathrm{r}_{1}(\mathrm{~s})$
first order:

$$
\begin{aligned}
& \phi_{1}(s)=\frac{1}{2 \pi v} \cdot \frac{1}{8} \cdot[\sin \left(\frac{6 \pi \nu}{\mathrm{~L}} \cdot \mathrm{~s}+\phi_{0}\right) / 3+ \\
&\left.\sin \left(\frac{2 \pi \nu}{\mathrm{~L}} \cdot \mathrm{~s}+\phi_{0}\right)\right] \\
& \mathrm{r}_{1}(\mathrm{~s})=\frac{-\mathrm{r}_{0}}{2 \pi \nu} \cdot \frac{1}{8} \cdot\left[\cos \left(\frac{6 \pi \nu}{\mathrm{~L}} \cdot \mathrm{~s}+\phi_{0}\right) / 3+\right. \\
&\left.\cos \left(\frac{3 \pi \nu}{\mathrm{~L}} \cdot \mathrm{~s}+\phi_{0}\right)\right]
\end{aligned}
$$

Perturbation XXVII

second order:
\longrightarrow substitute $\phi_{1}(\mathrm{~s})$ and $\mathrm{r}_{1}(\mathrm{~s})$ into equation

of motion and order powers of ε^{2}

you get terms of the form: $\frac{\mathrm{dr}_{2}}{\mathrm{ds}}=\left[\frac{\partial \mathrm{f}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{f}}{\partial \phi} \cdot \phi_{1}\right]$

$$
\frac{\mathrm{d} \phi}{\mathrm{ds}}=\left[\frac{\partial \mathrm{g}}{\partial \mathrm{r}} \cdot \mathrm{r}_{1}+\frac{\partial \mathrm{g}}{\partial \phi} \cdot \phi_{1}\right]
$$

$\cos (3 \phi) \cdot \cos (3 \phi) ; \cos (3 \phi) \cdot \cos (\phi) ; \cos (\phi) \cdot \cos (\phi)$
$\rightarrow \quad \frac{\mathrm{dr}}{\mathrm{ds}} \propto \cos (6 \phi) ; \cos (4 \phi) ; \cos (2 \phi) ; 1$
higher order resonances: ε^{n}
a single perturbation generates ALL resonances
driving term strength and resonance width decrease with increasing order!

