CERN ACCELERATOR SCHOOL Intermediate Level Course Zeuthen 2003

Insertion Devices

Johannes Bahrdt, 25.9.2003

Outline

•Overview

•Insertion Device e-Beam Interaction

•Radiation Properties of Insertion Devices

•Insertion Device Technology

History of Insertion Devices

- **1947** First discussion of undulator radiation by Ginzburg
- **1951 / 1953** First production of undulator light in the mm and visible regime by Motz et al.
- **1976** FEL radiation from a superconducting helical undulator at Stanford: Madey et al.
- **1979 / 1980** first operation of insertion devices in storage rings (SSRL, LURE, VEPP3)
- **1980...** first operation of wavelength shifters in storage rings (VEPP3, SRS, VEPP2M)
- todayabout a dozen of 3rd generation synchrotron radiation light sources;SASE FELs in the visible and UV (80nm) regime

future SASE-FELs for the energy regime up to 10 keV

Synchrotron Radiation Integrals

 $I_1 = \int \frac{\eta(s)}{\rho} ds$ $I_2 = \int \frac{1}{\rho^2} ds$ $I_3 = \int \frac{1}{|\rho|^3} ds$ $I_{3a} = \int \frac{1}{a^3} ds$ $I_4 = \int \frac{(1-2n(s))\eta(s)}{\rho^3} ds$ $I_5 = \int \frac{H(s)}{|\rho(s)|^3} ds$ $H(s) = \frac{1}{\beta} [\eta^2 + \langle \beta \eta' - 0.5 \ \beta' \ \eta \rangle]$ $n(s) = \rho^2 \frac{\partial}{\partial r} (1/\rho)$

Beam Parameter Dependence on SR-Integrals

energy loss per revolution $\Delta E = \frac{2}{3} r_e \frac{E^4}{3(mc^2)^3} I_2$

energy spread $(\frac{\sigma_E}{E})^2 = C_q \gamma^2 \frac{I_3}{2I_2 + I_4}$

emittance

 $\epsilon = C_q \gamma^2 \frac{I_5}{I_2 - I_4}$

damping times

 $\tau_i = 3T_0/r_0\gamma^3 J_i I_2$ $i = x, z, \epsilon$

damping partition numbers $J_x = 1 - I_4/I_2$ $J_z = 1$ $J_{\epsilon} = 2 + I_4/I_2$

polarization time $1/\tau_p = \frac{5\sqrt{3}}{8} \frac{\hbar r_e}{m} (\frac{E_0}{mc^2})^5 \frac{I_3}{2\pi R}$

degree of polarization $P_{max} = \frac{8}{5\sqrt{3}} \frac{I_{3a}}{I_3}$

Fokussing of Insertion Devices

Equation of motions in linear optics

$$x''(s) + (1/\rho^{2}(s) - \kappa(s)) \cdot x(s) = 0$$

$$y''(s) + \kappa(s) \cdot y(s) = 0$$

averaged focussing terms

$$< K_x(s) > = < (1/\rho^2(s) - \kappa(s)) >$$

 $< K_y(s) > = < \kappa(s) >$

evaluate & along curved trajectory

using Halbach magnetic fields

$$\kappa = \frac{e}{\gamma m c} \frac{\partial B_y}{\partial \xi}$$

$$= \frac{e}{\gamma m c} \frac{\partial B_{\xi}}{\partial y}$$

$$= \frac{e}{\gamma m c} \left[\frac{\partial B_y}{\partial x} \cdot \frac{\partial x}{\partial \xi} + \frac{\partial B_y}{\partial s} \cdot \frac{\partial s}{\partial \xi} \right]$$

$$\approx \frac{e}{\gamma m c} \left[\frac{\partial B_y}{\partial x} - \frac{\partial B_y}{\partial s} \cdot x' \right]$$

$$B_{x} = \frac{k_{x}}{k_{y}}B_{0} \cdot \sinh(k_{x}x) \cdot \sinh(k_{y}y) \cdot \cos(ks)$$

$$B_{y} = B_{0} \cdot \cosh(k_{x}x) \cdot \cosh(k_{y}y) \cdot \cos(ks)$$

$$B_{s} = -\frac{k}{k_{y}}B_{0} \cdot \cosh(k_{x}x) \cdot \sinh(k_{y}y) \cdot \sin(ks)$$

with $k_x^2 + k_y^2 = k^2$ (Maxwell)

focussing strength:

$$< K_x > = \frac{k_x^2}{2\rho_0^2 k^2}$$

 $< K_y > = \frac{k_y^2}{2\rho_0^2 k^2}$

Tracking of Particles in Undulator Fields

1: Expand x(s), y(s) and B with respect to initial coordinates and $1/\Box$ (=x3)

$$\begin{aligned} x(s) &= x_i + s \cdot x'_i + \sum_{k,l,m} a_{klm}(x_i, y_i, s) \cdot x'^k_i \cdot y'^l_i \cdot x_3^m \\ y(s) &= y_i + s \cdot y'_i + \sum_{k,l,m} b_{klm}(x_i, y_i, s) \cdot x'^k_i \cdot y'^l_i \cdot x_3^m \end{aligned}$$

$$B(x(s), y(s), s) = B(x_i, y_i, s) + \sum_{kl} \frac{1}{k!l!} \frac{\partial^2 B(x_i, y_i, s)}{\partial^k x \partial^l y} \cdot \Delta x^k \cdot \Delta y^l$$

2: Insert x(s), y(s) and B into equations of motion and determine a_klm and b_klm3: change to canonical coordinates and modify transformation

$$\begin{array}{lll} q_x &= x & & \text{old} \\ p_x &= A^x/(B\rho) + x'/\sqrt{1 + x'^2 + y'^2} & & \left(qx_i, px'_i, qy_i, py'_i\right) \xrightarrow{} \left(qx_f, px'_f, qy_f, py'_f\right) \\ q_y &= y & & & \\ p_y &= A^y/(B\rho) + y'/\sqrt{1 + x'^2 + y'^2} & & \left(qx_i, px'_f, qy_i, py'_f\right) \xrightarrow{} \left(qx_f, px'_i, qy_f, py'_i\right) \end{array}$$

4: set up generating function and get canonical transformation from derivatives

$$F = F_{00} + F_{10} \cdot px_f + F_{01} \cdot py_f + F_{20} \cdot px_f^2 + F_{11} \cdot px_f \cdot py_f + F_{02} \cdot py_f^2$$
$$qx_f = \frac{\partial F}{\partial px_f}$$
$$px_i = \frac{\partial F}{\partial qx_i}$$

Radiation Emitted by Accelerated Charged Particles

acceleration fields as derived from the Lienard Wiechert potentials:

$$E(t) = \frac{e}{4\pi\epsilon_0 c} \cdot \frac{1}{R} \cdot \left[\frac{\vec{n} \times [(\vec{n} - \vec{\beta}) \times \vec{\beta}]}{(1 - \vec{\beta} \cdot \vec{n})^3}\right]_{ret}$$

retarded time t' = t - R(t')/c.

$$\frac{\partial^2 I}{\partial \omega \partial \Omega} = \frac{e^2}{16\pi^3 \epsilon_0 c} \left| \int_{-\infty}^{\infty} \left[\frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^3} \right]_{ret} e^{i\omega t} dt \right|^2$$

far field approximation:

$$\begin{array}{ll}
R(t') \approx R_0(t') - \vec{n}_0 \cdot \vec{r}(t') & \frac{\partial^2 I}{\partial \omega \partial \Omega} &= \frac{e^2}{16\pi^3 \epsilon_0 c} \left| \int_{-\infty}^{\infty} \left[\frac{\vec{n} \times \left[(\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}} \right]}{(1 - \vec{\beta} \cdot \vec{n})^2} \right] e^{i\omega(t - \vec{n}\vec{r})} dt \right|^2
\end{array}$$

Bending Magnets

ү*өу

Undulator Radiation

electric field at observer spectrum tinx 10¹¹ 2000 1500 2 electric field / a.u. 1.5 K=0.5 1 0.5 1000 -0.5 -1 500 -1.5 -2 0 0.3 = 0.4time / $10^{(-16) \text{ s}}$ 0.1 0.2 500 1000 1500 2000 x 10 ¹¹ energy / eV flux density 2 electric field / a.u. 1.5 È K=2.0 1 0.5 3000 0 -0.5 2000 -1 1000 -1.5 -2 0 0.25 0.5 0.75 500 1500 2000 1000 0 1 0 time / 10^{(-16) s} energy / eV

resonance condition

$$\lambda = \frac{\lambda_0}{2\gamma^2} (1 + K^2/2 + \gamma^2 \theta^2)$$

$$K = 93.4 \cdot \lambda_0 \cdot B_0$$

figure 8 motion in moving frame produces higher harmonics

$$\begin{aligned} x(t) &= \frac{Kc}{\gamma\omega_u} sin(\omega_u t) \\ s(t) &= \bar{\beta}ct - \frac{K^2c}{8\gamma^2\omega_u} sin(2\omega_u t) \end{aligned}$$

Analytical Approach for Undulator Radiation

$$\frac{\partial^2 I}{\partial \omega \partial \Omega} = \frac{e^2 \gamma^2 N^2}{4\pi \epsilon_0 c} \cdot F_n(K_x, K_y, \gamma \theta, \phi) \cdot \frac{\sin^2(N\pi \frac{\Delta \omega}{\omega_1(\theta)})}{N^2 \sin^2(\pi \frac{\Delta \omega}{\omega_1(\theta)})}$$

Fn represents an infinite sum over BESSEL functions. The last term is called the line shape function and describes the interference effects.

Fn

line shape function

The angular divergence and the spectral width can be derived from the line shape function

divergence

spectral width

$$\sigma_{r'} = \sqrt{\lambda/2I}$$

$$\frac{\Delta\omega}{\omega_n} = \frac{1}{nN}$$

Useful Equations in Practical Units

on axis flux density

$$\frac{\partial^2 \tilde{F}}{\partial (\Delta \omega / \omega) \partial \Omega} = 1.744 \cdot 10^{14} \cdot N^2 \cdot E^2 (GeV) \cdot I(A) \cdot F_n(K)$$

flux over the central cone

$$\frac{\partial \tilde{F}}{\partial (\Delta \omega / \omega)} = 1.431 \cdot 10^{14} \cdot N \cdot Q_n \cdot I(A)$$
$$Q_n = (1 + K^2/2) \cdot F_n/n$$

Brightness (Wigner, K.-J. Kim)

$$B_{0}(\vec{x},\vec{\Phi}) = c \cdot \int d^{2}\xi \cdot A(\vec{x},\vec{\xi}) \cdot exp(i \cdot \frac{2\pi}{\lambda} \cdot \vec{\Phi} \cdot \vec{\xi}),$$

$$A(\vec{x},\vec{\xi}) = E_{y}^{*}(\vec{x}+\vec{\xi}/2) \cdot E_{y}(\vec{x}-\vec{\xi}/2) + E_{z}^{*}(\vec{x}+\vec{\xi}/2) \cdot E_{z}(\vec{x}-\vec{\xi}/2).$$

The brightness is not positive definite.

Physical quantities are the angular or spatial flux density, which are derived via integration of the brightness in space or solid angle. The electron beam emittance can be convoluted with the 4D-brightness.

Assuming a angular and spatial Gaussian distribution of the photon beam the brightness can be evaluated from:

$$\frac{\partial^{3}\tilde{F}_{e}}{\partial(\Delta\omega/\omega)\partial\vec{x}\partial\Omega} = \frac{\frac{\partial^{2}\tilde{F}}{\partial(\Delta\omega/\omega)\partial\Omega}\sigma_{r'}^{2}}{\sqrt{\sigma_{r}^{2} + \sigma_{x}^{2}}\sqrt{\sigma_{r}^{2} + \sigma_{y}^{2}}\sqrt{\sigma_{r'}^{2} + \sigma_{x'}^{2}}\sqrt{\sigma_{r'}^{2} + \sigma_{y'}^{2}}}$$

The beam size can be approximated with:

$$\sigma_r = \frac{1}{\pi\sqrt{2}}\sqrt{\lambda L}$$

Polarization

$$F_n(K_x, K_y, \gamma \theta, \gamma \phi) = \frac{n^2}{(K_x^2/2 + K_y^2/2 + (\gamma \theta^2))^2} |A_x, A_y|^2 = a \cdot (A_x^2 + A_y^2)$$

Planar Undulator, K=1

Polarization Properties

Helical Devices

rel. polarized flux

degree of pol.

Sources of Brightness Degradation

Undulator errors

Beam parameters

Angular Flux Density of Insertion Devices

$$\begin{aligned} \frac{\partial P}{\partial \Omega}(W/mrad^2) &= 0.01344 \cdot E(GeV)^2 \cdot I(A) \cdot N \cdot \\ & \int_{-\lambda_0/2}^{\lambda_0/2} \left[\frac{v_x'^2 + v_y'^2}{D^3} - \frac{((v_x^2)' + (v_y^2)')^2}{D^5} \right] ds \\ D &= 1 + v_x^2 + v_y^2 \\ v_{x/y} &= \gamma(\beta_{x/y} - \theta_{x/y}) \end{aligned}$$

energy=1.7GeV, current=0.1A, N=100, ●=50mm

angular flux density Kx/Ky=0, 0.25, 0.5, 0.75, 1.0

Devices with low on axis power:

helical device, Keff=4 figure-8 undulator

Asymmetric Wiggler

Elliptical Wiggler

S. Yamamoto et al., Phys. Rev. Lett., 62 (1989) 2672-2675

X. M. Marechal et al., Rev. Sci. Instr. 66 (1995) 1937-1939

J. Pflüger, G. Heintze, Nucl. Instr. and Meth. 289 (1990) 300-306 J. Goulon et al. Nucl. Instr. and. Meth. 254 (1987) 192-201

Elliptical / Helical Undulators

Permanent magnet devices

electromagnetic devices

- + fast helicity switching
- + mechanically simple
- limited to long periods
- weak fields

APPLE II provides highest fields

Advanced Photon Source

Fast Helicity Switching with Double Undulators

SPRING-8 dynamic electron orbit bump, angular separation

SLS

static displacement, separation in focal plane

BESSY static angle, angular separation

BESSY UE56 Double Undulator for fast Helicity Switching

IDs with different states of polarization at different harmonics

- + polarization switching without complicated mechanics
- + suitabe for in vacuum applications
- less flux
- slow switching frequency

period length of vert. field half the value of hor. field relative phase = 0 deg. ② parabolic undulator relative phase = 90 deg. ③ figure-8 undulator asymetric figure-8 und.

T. Tanaka, H. Kitamura, NIM 467-468 (2001) 153-156 T. Tanaka, H. Kitamura, NIM 364 (1995) 368-373

figure-8 undulator

alternatively horizontal and vertical polarization at successive harmonics

asymmetric figure-8 undulator up to 80% circular polarization in certain harmonics

parabolic undulator off axis circularly polarized light

Quasiperiodic Undulators

ESRF / ELETTRA design

BESSY design

spectra derived from measured magn. fields

Small Period Devices

in vacuum undulators

Complicated but mature technique

⇒ special shimming techniques

in vacuum revolver (SPRING 8)

superconducting undulators

under development

NUS-ID B = 1.3 Tesla $\bullet = 14$ mm gap = 5mm 50 periods $@ @ = 5.7^{\circ}$ (nach Dipolkorr.)

High Field Devices

non superconducting

superconducting

HMI Multipole wiggler (BESSY)

Hybrid wiggler

B "2 Tesla (many SR-facilities)

Asymmetric wiggler

3.1 Tesla 11m gap, ●=378mm (ESRF)

5 T WLS Perm. magn. + coils (Budker Institute)

10 Tesla WLS (SPRING8)

3.5 Tesla wiggler 46 poles, ●=61mm, gap=10.2mm (MAX-Lab, ELETTRA)

Superbends

ALS, 2 years of operation

Long Undulators

spontaneous emission

SPRING-8 25 m ID in vacuum

stimulated emission (SASE)

saturation demonstrated:	
VISA	800 nm
LEUTL	300 nm
TTF	80nm

projects:	
TESLA	0.1 nm
LCLC	0.15 nm
SCSS SPRING8	3.6 nm
BESSY	1.2 nm