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Introduction
Mechanism of Landau damping
A single oscillator with resonant frequency w, reacts to a pulse exci-
tation with an free oscillation lasting for a long time or being slightly
damped. A lasting harmonic excitation with frequency w results in
a forced oscillation at the same frequency w but a phase which de-
pends on the difference w—w,. For w = w, the oscillation amplitude
grows linear with time.
We consider a set of oscillators having different resonant frequencies
wy; with distribution f(w;;). A pulse excitation results in an oscilla-
tion of each oscillator with the same initial velocity #(0) followed by
a free oscillation with individual frequencies w,;. For instabilities or
beam observation the center-of-mass motion of the particles
is relevant. Due to their different w,; the freely oscillating particles
change their phase with respect to each other and the center-of-
mass motion is slowly reduced. In case of a harmonic excitation
the phases of the individual particle oscillations are different and the
center-of-mass motion has a smaller amplitude than the individual
particles.
This represents a kind of damping where the coherent center-of-
mass motion is reduced compared to the incoherent motion of
the particles. This damping is usually not exponential and differs in
many respect from other damping mechanism. It depends on the
form of the resonant frequency distribution f(w;;) but mainly on its
width, i.e. the frequency spread. For a frequency distribution given
by an external parameter the damping is proportional to f(w) itself.
If this distribution is determined by the amplitude dependence of w;;

it is affected by the excitation giving a damping proportional to the
derivative df (w,)/dw;.
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Treatment of Landau damping

Landau damping can be understood from different points of view
and presented in different ways. We treat it here in a manner close
to beam observation and experiment.

We calculate the center-of-mass response of a beam with resonant
frequency distribution f(w,) to a pulse or harmonic excitation and
compare it with experiments.

This center-of-mass motion induces fields in the beam surround-
ings which act back on the beam and can enhance the excitation.
The electrical properties of the components surrounding the beam,
relevant for this effect, can be expressed by an impedance. The
fields induced in this impedance can be sufficiently large to keep
this process going leading to a self excitation. This leads to an
instability having a threshold determined by beam response and im-
pedance. Below this threshold the frequency spread eliminates any
coherent motion at infinitesimal small amplitudes before it
can grow, we have stability. Above, the voltage induced in the re-
sistive part of the impedance leads to an increase of initial coherent
motion and we have an instability.

The amount of Landau damping is proportional to the frequency
distribution f(w) or its derivative at the frequency w at which the
instability occurs. It can happen that the coherent (center-of-mass)
motion has a different frequency than the incoherent individual parti-
cle frequencies. In this case Landau damping might become ineffec-
tive and we can get an instability for a very small resistive impedance.
We will calculate the beam response and Landau damping for trans-
verse and longitudinal oscillation of a coasting (un-bunched) beam.
From this we can determine the maximum transverse and longitudi-
nal impedance which still does not create an instability and represent
this in the so-called stability diagram.
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Response of an oscillator set to excitation
Response of an oscillator set to a pulse excitation

A set of oscillators j of different resonant frequencies w,; receive
at t = 0 a kick giving each the same velocity z;(07) = &,. Each
performs a harmonic oscillation of the form

. . Ty .

Ti(t) = @ cos(wyjt) , x; = —sin(wy;t)

Wrj

The observer measures only the center-of-mass motion (x;(t)) =
% > xj(t) of particles which is '"damped’ but each particles still has its
original amplitude 2 ;(t) = 2o/w,;. Many particles with normalized,
narrow distribution f(w;), around w,o with | f(w,)dw, = 1, Aw, =
W, — wyg < w,o have a center-of- mass motion

(z(t)) = :i:o/f(wr) cos(w,t)dw,
(w(t)) = o[ / (“j“) [ Flw,) sin(w,t)dw,

W
Expressing the velocity response by the difference frequency Aw,

Z0

sin(w,t)dw, ~ -
g(t) = <x£z)> = cos(w,not)/f(Aw,n) cos(Aw,t)dw,
— sin(wyot) / f(Aw,)) sin(Aw,t)dw,

9(t) = Fuul(F(Bewr)) cos(wrat) — Forl(f(Aewr) sinfewrat)
= F U (w))e

The center-of-mass velocity response ¢(t) of an oscillator set with

resonance frequency distribution f(Aw,) to a pulse excitation (Green
function) is the inverse Fourier transform of this distribution times
an oscillation with the central frequency w;.
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Response of an oscillator set to a harmonic excitation

' () | Fwr)
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Wro L:)r
We assume oscillators having a very small damping and excite them

at the time t = ty. The resulting velocity response of a single particle
IS

i5(t) = e~ 0 cos(w,(t — to))
A harmonic excitation with frequency w starting at ¢, = —oo, last-

ing until observation time ¢ is treated as infinitesimal kicks with
harmonic modulation

dtg = ;l—j; cos(wtp)dty = Gdty = G cos(wtp)dtg

where (5 is an acceleration. The velocity obtained at the time ¢ is
e /_too cos(wtp)e~ U0 cos(w, (t — to))dtg

substituting 7' = t — ¢ and developing cos(wty) = cos(w(t —T'))

©(t) = G/ cos(wt) cos(wT') + sin(wt) sin(wT)) e~ cos(w,T)dT

— G (I cos(wt) + Iysin(wt)) with the two integrals
a/2 a/2
/0 T cos(wT) cos(w,T)dT = <a2 o —w) + 2t (wa wr)2)

w— wy)/2 w+ w,)/2
/ e “Isin(wT) cos(w, T)dT = (a2<+ - —)(,/UT)Z + a2(+J(rw +>£T)2)

We assume w =~ w,o and weak damping a < w.
a W — wr

[ ~ Iy ~
! 2% + (w — wy)?)’ 2 2(a®> + (w — w;,)?)

1 ,— w\[®
with [7 Idw, = - arctan (w w)‘ _ g

cas031d05



a j W — W
2a2+ (w—w,)?2) " 7 2a2+ (w—w,)?)

with [ L, = 50

]1%

For a — 0 the first expression vanishes except for the point w—w, —
0 where it becomes infinite. We approximate it with the Dirac §-
function. The second integral can be simplified, for vanishing a it
jumps from —oo to +00 when w goes through w,

1 1

Ilziwé(w—wr) fora — 0, I = fora — 0, w—w, #0

2w — wy)
We get for the single particle response to a harmonic excitation
G 1
PR sin(wt))

T = 5 (7‘(’(5(&} — wr) cos(wi) + (W — w,

and for the set of oscillators with resonant frequency distribution

f(Aw;)
(@) = [ if(Aw)dw,

sin(wt))

This response to a harmonic excitation is often called transfer

0 W — Wy

— % (Wf(w) cos(wt) + PV /OO f(Bwy)dw,

function.
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Short derivation using complex notation
Taking oscillators with symmetric resonant frequency distribution,
no damping and complex notation with positive and negative fre-

quencies
G . e
f<w7’) — f(_w’r’) ) T+ ng — §GJWt ) (_WQ + W?)m = §GJWt
we have a displacement response
—Glelvt —Gel*! —G&M( Lo, )
TrT = = jr—
20w? —w?) 2w —wr)(w+ w) v \w—w, wWHw

_éej(*)t 00 A pe A r —GAejwt o0 A r
dw T\ Nw—w, wWHw, 2w T w—w,

If the exciting frequency w is within the distribution f(w;,) the inte-

gral contains a pole leading to a residue and principle value integral

—Gelwt Aw,
(x) = » (j:jwf(w) + PV/ i:(—u:uz dwr)
with
f(Aw,) T w—e f(Aw,) oo f(Awy)

The velocity response is () = jw(x)

() = %ejwt (jzwf(w) - jPV/

The real (resistive) part of the velocity response is in phase with the

f(AwT)dwT)
W — Wy

excitation and can absorb energy. The imaginary (reactive) part is

out of phase with the excitation and does not absorb energy. There

is an ambiguity in the sign of the resistive part because the initial

condition is not specified. If there is no oscillation to begin with,

the exciter gives energy to the oscillators (+ sign), however, there

could already exist a coherent oscillation at an early time giving now

energy to the exciter (- sign).

Caution: Sometimes for the oscillation in complex notation exp(—iwt)
is used instead of exp(jwt). The corresponding results can be con-

verted by exchanging j = —i.
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Relation between pulse and harmonic excitation
The center of mass velocity response of an oscillator set with reso-
nant frequency distribution f(w,) to a pulse excitation is

g(t) = <CZE§)> = Cos(w,not)/f(Aw,n) cos(Aw,t)dw,
— sin(wyot) / f(Aw,) sin(Aw,t)dw,

The response to a harmonic excitation C'cos(wt) has a resistive
and reactive term and is related to the pulse response by a Fourier

transform
B S rtwin() = 5 (wf(w) confwt) = jPV [ 4 (_wﬁfrdwr Sin(w”)

This represents actually the response after a harmonic excitation
for a sufficiently long time. This can be illustrated by exposing a
flat frequency distribution to a harmonic of excitation at a central
frequency w starting at ¢ = 0 and observing the development. As
time goes on the band of responding oscillators are concentrated

around w with decreasing band width and increasing amplitudes.
—4 -2 0 2 4 —4 =2 0 2 4

| 1 | 1 | | 1 | 1 |
resistive reactive
17r t =2 T
57 - b
0 —:-~<::::>-<<::>< e T ____::=-—< _~>><<\_;>>-—-=::::::— 0
5 5
177 t=4 Tif
57 )
O —:><::=<:><><><)QQ(><><}<:>< ""<::>‘< <><>—< >—‘:_ O
5 =
17y / t=28 Ti [
] / C
> | ‘g }/ﬂi fl\‘\ -
. NERTS YRR r
0 Feecoccco() \/\ Kj{\)oooocxxxxx><><>o<><\/\l X !><\i>ooo<>.<__ 0
] W W g
—57 \/ V \v/ -5
] Y W — Wy W — Wy [
[ [ [ [ [ [ [ [ [ [
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Response of oscillators with a Gaussian distribution

1 00
f(Aw,) = Jono o~ (Bwr/owl/2 with /_Oo f(Aw, )dw, =1

Pulse response ¢(t) and its envelope E(t) are

1 %
g(t) = / o~ Awr /20 cos(Aw,t)dw, cos(wyo)

V2mo, ' T

—02t?/2

= e cos(wyot)
E(t) = e %!/2,
The transfer function is obtained by a Fourier transform of E(t)

rr(w) = /me_03t2/2cos(Awt)dt: T w20}

0 V2mo,

0 2 w Ow /
m(w) _ /0 e—cn%t?/Z sin(Awt)dt — Z_w_e(Aw/aw)Z/Q OA /(V2 )etht/

The integral on the right is called Dawson integral.

FREQUENCY DISTRIBUTION TRANSFER FUNCTION
| | | | |
f(Aw,) i
] - i
_ = | :
Awr/aw L B e I B O A
PULSE RESPONSE —4 -2 0 2 4 Aw/o,
1 ' ' | | ' | | 1 | 1 | 1 | 1 |
39(0) F 1.5 phase | o
1.0 3 2 J~--F-200 s(W)E 90
os  MhyeEe Al *
i g ”!Mjl %HNJ“EMMN\ . g 1.0
oo ot 3 -
—0.57 /Jf t}' ‘lj i{}ii;’w%’m = 0.5
] Tl o .
3] | T | T T T T | T T T T | - 0.0
0 1 2 t3
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Landau damping of oscillator set
an?plifier

kicker detector

Based on the center of mass response of a set of oscillators we
illustrate how the frequency spread leads to Landau damping of co-
herent oscillation which would otherwise grow.

The velocity of center of mass motion of a set of oscillators is mea-
sured by a detector, the signal is amplified and fed to a kicker to
produce an acceleration G4 in phase with the velocity which should
lead to a growing oscillation, i.e. a negative feed-back system. The
center of mass velocity response to an acceleration G = G exp(jwt)
is in general and for a Gaussian distribution

() = Glrp+jr] = G% (Wf(w) — jPV/deT)

w_wfr’

- G n e—AwQ/ZJ(% —|—j£e_(Aw/U‘”)2/2 Aw/(v200) et/th/ .
V2rmo, Oy 0

We assume now that the excitation happens at the central frequency

for the Gaussian distribution Aw = 0 for which r; =0

) = G\/ﬁ%

We replace the external excitation G by the one of the feed-back
Gs = k(&) and assume a gain k just sufficient to keep the oscillation

going. This is the limit of stability since a slightly larger gain would
increase the oscillation leading to an exponential growth

(i) = k<¢>¢21m k< gaw.

This maximum gain £ still giving stability is proportional to the

frequency spread. Landau damping works by making an accidental
coherent oscillation incoherent at infinitesimal levels without having
first a growth reaching finite amplitudes. It does not lead to a growth
of the incoherent oscillations.
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Transverse coasting beam instability
Oscillation modes

A uniform coasting beam of N particles circulates with revolution
frequency wy, current I = eNwy/(27) in a ring of uniform focusing.
Each particle executes a betatron oscillation of frequency Quwy

0; = 0o +wot , y;(t) = ycos(Quo(t — t;)).

Depending on the phases (Qwyt; between adjacent particle we have
different modes. We choose a set of modes having a form as seen
at a fixed location ¢

y(t) = ycos(nf — wt) , y(0) = ycos(nb).

Frozen in time t = 0 we have a closed wave with n periods. Follow-
ing a particle 0,(t) = 6y + wyt give us the betatron oscillation with
frequency Quy.

ys = 1y cos(nby — (w — nwy)t) = g cos(nbs — Qut)
giving for the frequency w seen by a stationary observer
w=(n+Qw) =ws with —oo <n < 0.

We divide modes into fast and slow waves according to the sign of
the phase difference between adjacent particle

wsr = (nr+Q)wy, ny > —Q
Wps = (ns — Q)Wo , Mg > Q
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Effect of momentum spread
The betatron frequencies of a beam with nominal momentum are:

way = (nf+ Qwo , wgs = (ns — Q)wo.

AFE A ZA A
Through — = 52—p = —B—ﬂ cand AQ = Q’—p
L p Ne Wo p
they are affected by a momentum deviation
Ap
Awgr = (@ —nelny + Q))wo7

A
Awge = (Q —nelns — @))wof.

resulting in two frequency distributions f(wss), f(wgs)-

() /TN Jeosy

TN /i!\\
s / \ / |\

S~ o S A NN B

Awﬁs wo Aw[;f
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All particle have the same momentum forming uniform ring. We
excite them

i+ wo@Q%y = G cos(w)
and seek a solution y(t) = ycos(nf — w). To excite such a mode
n each particle has to be driven by the proper phase corresponding
to its longitudinal position 6. Therefore, we expect to find a excita-
tion frequency which is not wy() but close to the fast or slow wave
frequencies wgy = (ny + Q)wp or wgs = (ns — Q)wy.
Substituting the desired solution form in the differential equation
form gives

(—(nwo —w)*+ QQwS) j cos(nd — wt) = G cos(wt).

We assume excitation and observation is done at the location 8 = 0

A

~ G — _é
PTG — (= wp T (@ —wi(n+ Qw—wn—Q)

B -G G ( 1 1 )
(W —wgr)(w—wps)  2wQ \w—wgs  w—wgr)
to excite the fast wave we use w ~ (ny + @)wp and the first term
is much smaller than the second one. Correspondingly for the slow
wave we use w = (ns; — (Q)wy and the second term is much smaller
than the first one. We approximate for the two waves

(&), malosy) (8).~ma o=
Gy 2woQ \w —wsr) T \G)s  2wQ \w —wgs )

The two responses have opposite sign, this will be discussed later.
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Response of the whole beam
The whole beam has frequency distribution f(wss) and f(wss) The
center of mass responses in displacement and velocity are related

() = jw<y>

f(wsy) G flwsy)
2Qw0 /wgf —w _QQwo (ﬂf( ) _]Pv/w wgf) ss

Was Gw
U)s = QQWO/wj;S_ﬂw 55 = 3 0m (wf( ) —J Pv/w_wﬂl) dws.
The term 7 f(w) is real, exciting acceleration and responding ve-
locity are in phase resulting in an absorption of energy and damp-
ing, called Landau damping. It is only present if the excitation
frequency w is within the frequency distribution of the individual
particles. The second term is imaginary and gives the out-of-phase

response being of less interest.

The spread in betatron frequencies is given by the momentum
spread and the dependence of revolution frequency wy and betatron
tune () on momentum deviation Ap/p. It is therefore determined
by an external parameter which is not affected by the excita-
tion of betatron oscillations.
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Measuring the beam response

A
out - NA
Q !k ¢ /\ \
T ./
il |—J ln / ) AN
¥ — ~ , =
S e S e i 0

_______ beam
|

kicker monitor

network analyzer

The center of mass displacement response can directly be measured
with a network analyzer. Here, we derived the velocity response
which is more transparent for understanding the resistive and re-
active behavior of the beam. In measurements the displacement
is observed and our equation have to be converted to analyze the
results. Due to cable delays the real and imaginary part of the
response are often mixed. It is easier to measure amplitude and
phase response and correct the latter off-line.
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Measurement of the transverse beam response
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network analyzer

Vertical TF of an unbunched beam in the ISR
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Measurement of upper and lower side-band

)
Q=15 frequency
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Longitudinal impedance

-
<~ Es
________ - I
e +

Iw) — w

The longitudinal impedance is defined as the ratio between the in-
tegrated longitudinal field to the current which excites it. It has a
real (resistive) part for which voltage and current are in phase and
an imaginary (reactive) part for which they are out of phase. It is

measured in Ohm=V/A.
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Transverse impedance
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The transverse impedance is defined as the ratio between a longi-
tudinal integral over the transverse deflecting fields and the dipole
moment of the current which excites it

E(w+ [v x B(w ds
s = BB

—wJ (E(w + [v X B(w)])T ds
Ii(w) '

|t is illustrated by a cavity mode having a transverse electric field with

a gradient OF/0x which is first induced by the dipole moment of
the current. After 1/4 oscillation this is converted into a transverse
magnetic field B, which produces a deflection in the x-direction.
The 'j" in front of the first definition indicates that the exciting di-
pole moment and the deflecting field are out of phase. However,
the second definition relates the transverse deflection to the trans-
verse velocity is real indicating the transfer of energy. Like in the
longitudinal case the transverse impedance has a real (resistive) and
an imaginary (reactive) part, furthermore it has a horizontal and
vertical component. It is measured in units of Ohm/m=V /(A m).
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Stability limit
The oscillating beam can induce a voltage in a transverse impedance
which in turn applies a self acceleration G4 to the beam

w = = = A BZT]<y>
m%(E(w) +[3x Bw)]),.ds , Gy=—

If G, = G we can have a steady self sustained oscillation without
external excitation, i.e. a threshold of an instability. Introducing
this into the response we get for this threshold

Z = —
r(w) Ymo2m Rw

B jecl Zr(w f(wss) B _ecIZT(w) B fwgy)
b=- 47TQE /w —ng B 47TQE (Wf( ) Pv/w wgfdw )
jec]ZT fwgs) _eclZp(w) f(w
1mQF /Wﬁs_w S__47TQE ( f( + PV/ —Wﬁs ﬂs).

These equations represent relations between the complex impedance
and the complex beam response to an excitation. We plot this
as a stability diagram shown for a Gaussian distribution. If the
impedances lies inside the central curve we have stability, outside
an instability. The curve itself represents the threshold. Its shape is
determined by the frequency distribution of the particles.

2- flt- :
The stability diagram is the in- : /1A '
verse response of the beam plot- ] / |\

. . . 1 upper Z; %2 lower
ted the |rTverse amp.lltuc.le.agalr?st 1] sideband sidoband |-
the negative phase, i.e. it is anin- ]
verse Nyquist diagram.
lower sideband Y \ 7.

jecl Zp(w) 1 10\ | )
—  flwgs) ] !
ATQE I w——cfﬁsdwﬂs : | 1
upper sideband _1__ AN, i
ArQE — [ \sr) 7 \
TR J w—wﬁfdwﬁf _ 9 k:ﬁ i
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Response in the presence of an impedance
The response of a beam to an external acceleration is for the lower

side band A
U Guw f(wgs)
s = 2Qwy / Wgs — W

dwgs

The oscillating beam can induce a voltage in a transverse impedance
which in turn applies a self acceleration G to the beam

eZrl(y)
ymo2m Rw

Zrw) = ~ o § (Bw) + (3 Be))yds . Gz =

This self excitation has to be added to the external one. We take

the inverse response (stability diagram) due to both

(G + Gz) _ w
<y>s QQwo / %%dwgs

However, we know only the external excitation and would like the
relation of the response to it. The inverse of this response is

G W Gy W eZrl
() QQwof%i%dwﬁs (Y)s QQwof%i%dwﬁs Ymo2m Rw

The presence of an impedance shifts the stability diagram by a vector
which is proportional to the negative complex impedance.
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Measurement of transverse beam response in the presence
of impedance
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Longitudinal coasting beam instability
The longitudinal dynamics of a coasting beam is governed by the
relation between the deviations in momentum and revolution fre-
quency

AE Ap 3% Awy 1

2 .
g/ p e wy T T
The beam has an equilibrium energy distribution which translates
into a distribution in revolution frequency
1 d®N 1 d&’°N
Fo(Awy) = —
= ol Aen) = N ipd,

fo(AE) =

N dOdE

L——d——@ Up exp(iwt)
A stable beam has a continuous current [, however, exciting it with
Up exp(jwt) close to nwy give a current perturbation

—jN€2UJ8UO dFo(wO)/dt NGQUJS)UO dF() .
W) = ~5 / _ <7rdw0 () — jPV /) |

This current I; can induce a voltage in an impedance Z. If it is

W — nwy duwo = 2132 F)

as large or larger than Uj it can replace the external excitation and
keep the current modulation going or increase it. We get for this

stability limit
Ne*winZ(w) (ndF, dFy(wo)/dt
1= — PV dwy | -
2w 32E dwy @)= / W — nwy 0

This equation is a complex mapping which can be represented in
form of a stability diagram which depends on the energy or revolution
frequency distribution of the particles
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Development of an initial energy modulation.

AE L %E
= 27N 2 ZE =0

f(AE,T)

=k

Q‘

%

e b
LB 27N 25 ZE=0.3

f(AE,T)

=k

f(AE,x)

sk

®\

%\

>
S

T f(AEm)

\

%\

)
[

f(AE,T)

\

Development of an initial energy perturbation AE = AFEj cos(26).
This modulation of energy is converted into one of revolution fre-
quency wy. Due to the dependence of wy on AE the modulation
smears out resulting after some time again in a stationary beam but
with increased momentum spread.
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Longitudinal response of a coasting beam
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Gaussian distribution, longitudinal response in real and imaginary part and in
amplitude and phase to a harmonic and a pulse excitation of a coasting beam
and stability diagram.
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Stability diagrams for different distributions, (A. Ruggiero, V. Vaccaro)

(W) — PV/

dwy — nwy

2w 32E

To separate the dependence on the form of the distribution from
the one on physical parameters like E, Iy, Ap/p and 7. the stability
diagram is normalized with the width the momentum spread. Taking

many such diagrams and approximating them with a circle gives the
(Keil-Schnell) stability criterion

’5’ _ 2n8°En.( Ap/p)’
n|— el '

Important is the strong dependence on the momentum spread, or the
connected frequency spread, which gives rise to Landau damping.

Ne*winZ(w) (ﬂ'dFo dFy( wo)/dt )
pu— O .

cas031d26



Measurement of longitudinal and transverse beam response

in the ISR
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REPRESENTATIONS OF MEASURED TRANSFER FUNCTIONS
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Simple demonstration of frequency spread and shift
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