Beam Diagnostics

Ulrich Raich
CERN AB - BDI
(Beam Diagnostics and Instrumentation)
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Introduction

An accelerator can never be better than the mstruments measurlng its
performance!
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Course Overview

Generalities

Intensity measurements

— Faraday Cup

— AC current transformer
— DC current transformer
Profile measurements

— TV screens

— SEMgrids

— Wire scanners
Emittance

— Phase space scans

— Pepperpot

Position measurements
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_j Different uses of beam diagnostics

@ Regular crude checks of accelerator performance
— Beam Intensity
— Radiation levels
@ Standard regular measurements
— Emittance measurement
— Trajectories
— Tune

@ Sophisticated measurements e.g. during machine
development sessions

— May require offline evaluation
— May be less comfortable
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Diagnostic devices and quantity

measured
Instrument Physical Effect Measured Quantity Effect on beam
Faraday Cup Charge collection Intensity Destructive
Current Magnetic field Intensity Non destructive
Transformer
Wall current Image Current Intensity Non destructive
monitor Longitudinal beam shape
Pick-up Electric/magnetic Position Non destructive
field
Secondary Secondary electron Transverse size/shape, Disturbing, can be
emission monitor emission emittance destructive at low
energies
Wire Scanner Secondary particle Transverse size/shape Slightly disturbing
creation
Scintillator screen | Atomic excitation Transverse size/shape Destructive
with light emission (position)
Residual Gas lonization Transverse size/shape Non destructive
monitor
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Intensity measurements

e TS Aware mpLtes aﬂd*tntew'_‘far;'—*

Computer
network

Sensor + amplifier/shape
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Required Competence in a beam
diagnostics group

« Some beam physics in order to understand the beam
parameters to be measured and to distinguish beam effects
from sensor effects

« Detector physics to understand the interaction of the beam
with the sensor

* Mechanics
* Analogue signal treatment
— Low noise amplifiers
— High frequency analogue electronics
 Digital signal processing
 Digital electronics for data readout
* Front-end and Application Software
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Gl Layout of a Faraday Cup

S

 Electrode: 1 mm stainless steel

« Only low energy particles can be e
me a Sure d Bride Adaptation Flrt‘lmlsaﬂ?ﬂ}ﬁ-ﬂll"i - | -

* Very low intensities (down to 1 ),;; 7

Systime TNAOUT
Traversée Lineaire.

pA) can be measured

« Creation of secondary electrons of
low energy (below 20 eV)

* Repelling electrode with some
100 V polarisation voltage pushes
secondary electrons back onto the

electrode : ]
[EXT7 G N N || N SN |
— i )
l /){){E/plhmr!mm
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Faraday Cup

Systime TNAOUT
Traversée Lineaire.
(Course 101mm)

A o
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BEAM a
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In order to keep secondary
electrons with the cup a repelling
voltage is applied to the polarization
electrode

Since the electrons have energies of
less than 20 eV some 100V
repelling voltage is sufficient
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S

With increasing repelling voltage
the electrons do not escape the
Faraday Cup any more and the
current measured stays stable.

At 40V and above no decrease in
the Cup current is observed any
more

I(WA)
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Faraday Cup application
Testing the decelerating RFQ

Antiproton decelerator
@ Accelerate protons to 24 GeV and eject them onto a target
@ Produce antiprotons at 2 GeV
@ Collect the antiprotons and cool them
@ Decelerate them and cool them
@ Output energy: 100 MeV
In order to get even lower energies:
@ Pass them through a moderator

« High losses

« Large energy distribution
=> Build a decelerating RFQ
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Waiting for Godot

Proton beam

,_
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| i} : f f S AoV
|- < . . . : 1Az 54us
|- - : - : : {@: Z108mv

Testing the
decelerating RFQ

RFQ
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G Toomv STTTUM S0ps TRt 7 —22mv

...... :[ ...... ...... . | Spectrometer

27 Jul 1999
16:15:32
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\

S

Spectrometer
Magnet

(——

Setup for charge state measurement
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Faraday Cup

Slit

Spectrometer
2" magnets

\ { "
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@ Charge state distribution measured with
< a Faraday Cup on a heavy ion source

Scan of Bending magnet Current with extraction voltage 20.5kV -
11/04/03 -JCh
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—
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Average Current from
Fararday cup 2 (mA)
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Bending Magnet Current (A)
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Faraday Cup with water cooling

For higher intensities
water cooling may be needed
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Current Transformers

Magnetic field
Fields are very low

Capture magnetic field
lines with cores of high
relative permeability

(CoFe based amorphous
alloy Vitrovac: p.= 109)

Beam current

_qeN _qeNpe = Fobr app o
beam _T_ 1 272' 7.

I

1
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Inductance L of the winding
Lise™ l{ch Transformer output signal -
Beam signal A
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Y Principle of a fast current transformer

Wall current bypass

Ei__,-.l‘u‘u‘u‘u‘u‘u‘u‘u ] h JUUUL / ) ‘

Ceramic gap

YWacuum tube

Beam

o

F—\'—\Un'. i'nun |j nuri Jn r'i ﬁJ 'lun Li'\ ﬂul’ ~u ! ‘

=
x Transfarmer

Wall current bypass
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@ The transformer installed in the machine

Needs
Magnetic Shielding
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Magnetic shielding

@ Shield should extend along the vacuum chamber
length > diameter of opening

@ Shield should be symmetrical to the beam axis
@ Air gaps must be avoided especially along the beam axis
@ Shield should have highest u possible but should not saturate

] In

7 monitor |
gl
/ \ Permalloy (u3)

Soft iron (u1) Transformer steel (p2)
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m Calibration of AC current transformers

@ The transformer is
calibrated with a very
iy i precise current source

CALIBRATION
7 100 : - @ The calibration signal is
& ITH.MTR25 { - .
; Injected into a separate

. | calibration winding
O 0 b i SOOI ) ' @ A calibration procedure

| agn executed before the

El S et / % 20 4 | running period
;e s - @ A calibration pulse before
P | gt the beam pulse
L R measured with the beam
signal
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Y Current transformer and its electronics

u-Ds100

F428.005.010

" 4

Photo: GSI| Darmstatt THE CERN ACCELERATOR SCHOOL
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@ Transformers in
a transfer line

@ Calculated losses
trigger a watchdog

@ Display distributed
via video signal

®)| Display of transformer readings

~i Trajectory ultimate |- | =

File WView Confrol

Trajector ‘LIH:TR]&J |ISOGPS LR |Bpr 19 09:29:28

LI,TRAOZ | Int, 292.075 mA||Mb Part, 6279, 605 10E10

Transnission
200 .
u- T

in

-10

T T T T
LTSN LTE10 LTB 20 LTRIN

Update| iinsreeze| Freeze| CulP.U.| Cul TRAFO

|Message Area
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The DC current transformer

@ AC current transformer can be extended to very long droop
times but not to DC

@ Measuring DC currents is needed in storage rings
@ Must provide a modulation frequency
@ Takes advantage of non/linear magnetisation curve

B A

/s
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o) Principle of DCCT

) V., +V,
o ' Synchronous
V, _‘ detector
| Vb
modulator
2N\ ‘ «— — TN ‘
(( ‘( beam
2 =
\ \ A —’
NV
Compensatio
V= Rlbeam current Ifeedback:'lbeam
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Modulation of a DCCT without beam

B=f(t)

U= na 98
dt
jUdt
B= + B,
NA

Modulation current
has only odd
harmonic
frequencies since
the signal is
symmetric
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@V Modulation of a DCCT with beam

>
B=f(t)

A A C e e g mmmmmmmm—o o
I

4

____________________________________________

Sum signal becomes non-zero
Even harmonics appear

M.ﬂ-_n_.

4 5
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7 Modulation current difference signal with
v, beam

+ Difference signal has 2w,
* W, typically 200 Hz — 10 kHz
« Use low pass filter with
wc<< wm
* Provide a 3rd core, normal

AC transformer to extend to
higher frequencies

i

v

U. Raich CERN Accelerator School 2005 30

THE CERN ACCELERATOR SCHOOL



1954-2004

Photo of DCCT internals
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M Interaction of particles with matter

S

@ Coulomb interaction

@ Average force in s-direction=0 Beam particle
. > >
@ Average force in transverse S
direction <> 0 b

@ Mostly large impact parameter
=> |ow energy of ejected
electron v

@ Electron mostly ejection
transversely to the particle
motion

F

Atomic shell electron
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@ Bethe Bloch formula

S

7 7?2 7 2,2 n2
_d_E:47zNArezmec2 ~p—=[In mey P
dx A, p I/

p]

« with the following constants:
NA: Avogadro’s number
m, and r,: electron rest mass and classical electron radius
c: speed of light
» the following target material properties:
p: material density
A; and Z;: the atomic mass and nuclear charge
« and the particle properties:
Z,: particle charge

B: the particle velocity and y =+/1- >

Dependance on Z,
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@)1 High energy loss alow energies

S

50 T dE = MeV

dx [ g/cm’ ]
20 7
10
s L gas
, L _— solid
i ; ; ; _ Biin| GeV]

0.01 0.1 1 10 100 1000

Heavy ions at low energy are stopped within a few micro-meters
All energy is deposited in a very small volume
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Scintillating Screens

Method already applied in cosmic ray

experiments
* Very simple
* Very convincing

Needed: ___
« Scintillating Material I TE lins.
« TV camera Feum A

* In/out mechanism

Problems:
 Radiation resistance oD samera

ITFE lme

Tamparaiurs proos

Wasuum valve

Wasuurm Tank

» Heating of screen (absorption of
beam energy)

« Evacuation of electric charges
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Frame grabber

20000

15000 -

10000

* For further evaluation
the video signal is
digitized, read-out and
treated by program

Intensity (u.a.)

5000
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@ Test for resistance against heat-shock

P c,ar20°C | kat 100°C Tonax R at 400
Material J/gK W/mK C
glem’ o Q.cm
AlLO, 3.9 0.9 30 1600 o2 >
Zro, 6 0.4 2 1200 10—  Better for electrical conductivity (>400°C)
BN 2 1.6 2400 T — Better for thermal properties
(higher conductivity, higher heat capacity)
50000 : . . : T T T T T
Start 10000 E
40000 90uC (30min)
————450uC (2h30min)
—_ 585uC (3h15min) _ 1000 E
S o000 L | 720uC (4h) ©
= 2
-‘é = 100 E
% 20000 ;é;
5 £ 1l Test start i
- 10000 |- jg’ :22:: Yy, !
e +1h30 \ 3
. }\ / o +3h \
10 20 30 o1l W\ ]
10 . 0 . 10 . 20 . 30 . 40
Y (mm)
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Degradation of screen

Degradation clearly visible
However sensitivity stays essentially
the same
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Screen mechanism

U. Raich CERN Accelerator School 2005
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In/out mechanisms

Rotary mechanism driven by

electric motor Mechanism driven pneumatically
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When the beam passes
secondary electrons are
ejected from the ribbons

The current flowing back
onto the ribbons is
Measured

Electrons are taken away
by polarisation voltage

One amplifier/ADC chain
channel per ribbon
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" 10CM
Ll bbbttt
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File Controls Options Wigw Fie fmbrony tgmerrairel

Pls: MESPS BT.(QNO40DMP-IS0 206.8 Awmp.BTMI.AMSG 20200 -
BT.(QNOSODMP-IS0 115.4 fAwp.
BTIM.QNODDSDMP  -30.6 Amp.
BIM.QNOLODMP  -62.2 Amp.
BTM.QNDZODMP  -130.5 Amp.

g2 Z.57 mum Ap/p : 1.000 E-3

Jul 9 20:07:10 2003

BTM.MSFO1 spline fit
A 10.0 4023 3.84num
Gain D 8.0 0.85mm
1[: 6.0 .35 mm
Plane p 4.0 .30
HOR , 33 67
lilie L 15 10 05 0 05 _0.11
No E Baseline Vire Nbs Step: 1.000 ym 7.0% ADC Range
BTM.MSFO2 spline fit
A 20.0 4023 1.91mum
Gain g 15.0 . 1.45mm
17 10.0 g _ 0.83mm
Plane p 50 T 57.51
R, = 1.35
calib. n U- = 0.36
No¥ paseLine Vire Nbs Step: 0.500 rm  14.6% ADG Range
BTM.MSFO3 Spline fit
A 20.0 4g2/[ 2.66T pm
Bain g 15.0 0.12mm

Plane p 5.0 50.29

HOE a 0.0 -, ﬁ

Erlbli i 15 10 05 20 _ -0.42
No 9 gaseline Wire Mbs Step: 1.000 wm  11.4% ADC Range

. 96 mm

Simgle Shob HFame Fabl

hrlaitinq for new measurement timing !!!

U. Raich CERN Accelerator School 2005
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Projection of charge density
projected to x or y axis is
Measured

One amplifier/ADC per wire
Large dynamic range

Resolution is given by wire
distance

Used only in transfer lines
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Q) Wire Scanners

7

A thin wire is quickly moved across the beam

Secondary particle shower is detected outside the vacuum chamber
on a scintillator/photo-multiplier assembly

Position and photo-multiplier signal are recorded simultaneously

U. Raich CERN Accelerator School 2005
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Problems at low energy

« Secondary particle shower intensity in dependence of primary

800

700 | SEM mode Pion threshold

/
600 +
500

]

5400 +
300 +

200 +

L

100 +

0

-40 -30 -20 -10 0 10 20 30
Position (mm)

200 400 600 800
Kinetic energy (MeV)
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File Plot Views Option

Wire scanner profile

Help

Oct 6 13:54:36 2003

Measurement modei; Photomultiplier Plot.

Prepare Heas. Paraneters

start Measuremeni

Requested Parameters

Device H6d

Occurrence - Any

e {2z} (mm.mrad)

Wire Hed ( Mon Oct & 13:54:30 2003% » MD3

Results for Hed
At C Pulse : 710

1.41

Expected Ip - lel3

e (2s)(normalised) 21.11

ds measured (mm) 11.23

Velocity - 20 mfs

Centre of Mass jmm) -4.09

Single Sweep

Measurement Parameters
At C Pulse : 710

C Timing - 710

B Pulse (1G Train) 6668

P (GeVie) 13,99
dp/p for C710 - 1.61 Ip (E10) 750,00
PM Voltage H64 - 580 _
Device @ Hod
Scint. Trans. Hé4 - 100% PM Voltage (V) 579
b m) 12.6
Dispersion (m.) 2.30

-20 -¥0 4]
He4 Position (mm)

Scint. Transmission 100%

WARMING The graphs displayed may not correspond to the reguested settings,

U. Raich CERN Accelerator School 2005
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High speed needed
because of heating.

Adiabatic damping

Current increase due to
Speed increase

Speeds of up to 20m/s
=> 200g acceleration
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Problems at low energy

« Secondary particle shower intensity in dependence of primary

800

700 | SEM mode Pion threshold

/
600 +
500

]

5400 +
300 +

200 +

L

100 +

0

-40 -30 -20 -10 0 10 20 30
Position (mm)

200 400 600 800
Kinetic energy (MeV)
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@ Wire scanners and partially stripped ions

S

Partially stripped ions loose electrons

when interacting with the wire g
:E, Beam centered
_e' reached at to

H ©

The beam is lost = | Beam edge
% reached

Can measure amplitude distribution c

however o

i
N
o
N
N

time [ms]
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Emittance measurements

A beam is made of many many particles,
cach one of these particles 1s moving with
a given velocity. Most of the velocity
vector of a single particle 1s parallel to the
direction of the beam as a whole (s).
There 1s however a smaller component of
the particles velocity which i1s

Particles beam

. L}
’ _ 1
’ -7 T - L

-7 -

ot AT perpendicular to 1t (x or y).
L 08 Vere
\th._.:"_.?}ﬁ“’,
vpam'cle o Vsus T qux T Vyuy
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Emittance measurements

 |If for each beam particle we o]
plot its position and its /\
transverse angle we get a Bea%
particle distribution who's
boundary is an usually ellipse. B

» The projection onto the x axis
IS the beam size

v

U. Raich CERN Accelerator School 2005 50
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The slit method

 If we place a slit into the beam we cut X’
out a small vertical slice of phase
space

« Converting the angles into position »
through a drift space allows to

reconstruct the angular distribution at /
the position defined by the slit -

v

slit

U. Raich CERN Accelerator School 2005 51
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@ Transforming angular distribution to
< profile

Influence of a drift space

A ] A
X’ o /

F

v

«  When moving through a 7
drift space the angles X X
don’t change (horizontal
move in phase space)

« When moving through a
quadrupole the position Influence of a quadrupole
does not change but the

angle does (vertical
move in phase space)

v

slit slit
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The Slit Method

3-dim plot:
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The Slit Method

3-dim plot:
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7 Moving slit emittance measurement

S

« Position resolution given by slit size and displacement

* Angle resolution depends on resolution of profile measurement
device and drift distance

« High position resolution — many slit positions — slow
 Shot to shot differences result in measurement errors
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@ Single pulse emittance measurement
S

SEMgrid

Every 100 ns
a new profile

Kickers
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Result of single pulse emittance
measurement

File Control View  Options

LEE. 5PEM Gain -  |LT.BHZ200UMP | 192 8Amp. LEEX MEHZ10 [ =ii1ps | LBE. sLu10Ar FRF | AT
B LTE.EHZ40  [N0C1Amp. LBEX. FKHZ10 =100 ms LBE. SLY10AP IO200mm
LT TRAGO [116Z2@ma LBE. GFWW10 [[I=6.0Amp. LBEX. SMEASKHZIO0 [1=0idus
LBE TRAGS 2 6ma LEBE. 0DWVZ0 [NA0C2Amp. | LEEX. MEVT10 -0.1ps
LEE.¥HZ10 | 3955 LEEX. FENT10 -1.0ms
LBE_KVT10 380 9)' LBEX. SMERSKVT10 -0_1ps
LEE.DHZ10 8 iamp. |LX.TCL-CPS -1_0ms
LEBE.DVT10 5 1Amp. |LX. TCL-PSE -0.1ps
LBE ¥HZ10A FE32000mv LX. TCL-LIHD -0.1p=
LBE.¥¥T10R [ =183 mv LX.TCL-EXTCON -0_1ps
LX. TCL-MERS Enaps
LX_WEHZ10 -1.0ms
LX. SEHZHEL-SURY | -0 1ps
LX. SEHZHOSL-SUBRY -0.1ps
LX_ SEHZHMPSB-SBV  -0.1ps=
Emittance Sarface 11. 5mm. mrad
0. Snun
0. &mrad
8. Gmm
1.5mrad
-0.5
.4
o2
9.0
a1l 5

d -6.0 Measured Fllinse centered
-288 -144 0.0 144 288 -288 -144 0.0 144 28.%
HORIZONTAL Position mm HORIZONTAL Position mm

FREEEZE| |CANCEL BEAM

Waiting for new acqtiisition...
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7 Single Shot Emittance Measurement

S

@ Advantage:

¢ Full scan takes 20 us

¢ Shot by shot comparison possible
@ Disadvantage:

¢ VVery costly

¢ Needs dedicated measurement line

¢ Needs a fast sampling ADC + memory for each wire
@ Cheaper alternative:

¢ Multi-slit measurement
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Multi-slit measurement

. @ Needs high resolution profile detector

@ Must make sure /
~ that profiles I/
. dont overlap L///////////////*
|
|
|
|
Scintillator + TV + frame grabber
often used as profile detector

Very old idea, was used with photographic plates

\-----1:-Raich - CERN Accelerator-Schoot 2005 -~~~ §Q---n-mnesnremren s

----------------
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Pepperpot

Uses small holes instead of slits
Measures horizontal and vertical emittance in a single shot

U. Raich CERN Accelerator School 2005 60
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Adiabatic damping

« Change of emittance with acceleration

Transverse
displacement
A
acceleration
before
after
>
Longitudinal

displacement
U. Raich CERN Accelerator School 2005

gnorm =& physical IB 7/

B: speed
y: Lorentz factor
1
7/ =
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Position measurements

A
v

If the beam is much smaller than w, all field lines are captured and
U is a linear function with displacement
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Shoebox pick-up

//ﬁ R

Linear cut through a shoebox

U. Raich CERN Accelerator School 2005 63

THE CERN ACCELERATOR SCHOOL



1954-2004

\ Doubly cut shoebox

S

« Can measure horizontal and vertical position at once
* Has 4 electrodes

V&
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7 Simulatenous horizontal and vertical
/) measurement

horizontal ﬂ vertical

a

) &

U, +u)-U,+U0,)
U >U

(U, +U) - (U, +U,)

X
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The cuts can be made by photo
chemical means of mechanically

Here done with a sand-blasting
device

A cylindrical pick-up with its connections

U. Raich CERN Accelerator School 2005 66
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Building a cylindrical paper pick-up

* Alinear cut in a cylinder:

U. Raich CERN Accelerator School 2005 67
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\ Unfolding the cylinder

~f”

« When unfolded the cut becomes a sine curve
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Flipping the sine curve

What happens if we flip use abs (sin(x)) instead?
Mirror the negative sine part?
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The cylinder Is cut twice!

 Horizontal
and
vertical cut
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Y Flipping half the sin curve upside down
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Cut In the same direction
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@ Using all the electrode surface

S
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Calibration of the pick-up

PICK-UP SEMI AUTOMATED CALIBRATION BENCH -- GRAPHS RESULTS|

Author's name Pick-Up name Front end name Comments
| EFE | Buffer hybrid
Date Pick-Up number Pick-Up diameter {mm}) Front end number
26 09 2003 2 i 46 1
1.00 = 1.0000 by
0.50 0.8000-

0.5000-

0.4000-

0.2000 \\
.00- 0.0000 P o

-0.20- /“ = 52000 \\
0,40~ ,e”) -0.4000

Delta / Sigma
=
=

Error = Encoder position - Encoder position calculated

-0.60- < -0.6000-
-0.80- -0.8000-
1005 b vna ] et eee s el s st saluay B B e R R i R e B
-23.0-200 150 -100 5.0 0.0 5.0 .0 150 200 230 -23.0-20.0 -150 -10.0 50 0.0 5.0 0.0 150 2000230

GENERAL GRAPH Encoder position (mm) B am| ERROR GRAPH Encoder position (mm) )

Genetral Curve fitting
Palynomial Coefficients
Mumber Max Efrar DS b 1.027E-1 Equation of fitted curve Delta [ Sigma
D of points  Offset (mm) Polynomial order | 0.5289 bl:  2.970E41 Delta | Sigma = +102.661E-3 + 29.200E+0 Pos
z 17 0.00 1 Ma Error 5 (W)
0.0003
IMechanical zero {mm) Scanned
0.00 FE installed ? (coef.)  Impedance (Ohms)
@ 0 0.000E+0
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Wall Current Monitor (WCM)
principle

« The BEAM current is accompanied by its

* A voltage proportional to the beam current develops on the RESISTORS in the beam pipe gap

« The gap must be closed by a box to avoid floating sections of the beam pipe

* The box is filled with the FERRITE to force the image current to go over the resistors

«  The ferrite works up to a given frequency and lower frequency components flow over the box wall
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WCM as a Beam Position Monitor

1 R
IA —
2n L,
= For a centered BEAM the current IS € circumference

» The image current distribution on the circumference changes with the beam position

» Intensity signal () = resistor voltages summed

» Position dependent signal (A) = voltages from opposite resistors subtracted

= The A signal is also proportional to the intensity, so the position is calculated according to A/X
= Low cut-offs depend on the gap resistance and box wall (for X) and the pipe wall (for A) ingsag
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Measurement with pick-ups

« Trajectory measurements in transfer lines
« Control beam steering

= Trajectory ultimate |- | J

File View Control

Trajectory LIN:TRAJ |ISOGPS *** |Apr 19 09:29:28

LI,TRADZ | Int, 292.075 mA||Nb Part, 6279.605% 10E10

Transmission

2010

T T T T T T
LTin LTi0 LTaN0 LT41 LTES0 LTBEN

Trajectory HHv
m Hezizembal
o Mertigal

n . & n a n ] o (=]
- T L} L]

T T T T T T T
LTin LT20 LTi0 LT40 LTSN LTE1D LTR20 LTRAN

Update| iinfreeze| Freeze| CulP.U.| Ctl TRAFO

|Message Area
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@ Trajectory measurements in circular
v machines

Needs integration gate N
Can be rather tricky 4
Distance between bunches uof F I -
changes with acceleration

00 - -
Number of bunches
may change e ]
urj-uw:;wwmﬁf ol Ll
w " L|| Iu. L v/ LI
-loa = L“M‘J”U,J_
- 1Im ?Im 3&0&&05&05&07&03&9&01@
sm ples
Raw data from pick-ups
double batch injection
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\ Changing bunch frequency

~f”

* Bunch splitting or recombination

° One RF frequency iS gradua”y ?;miiz:pegmn — LEC | 9 13:49:30:(::4
decrease while the other one | S

Time Span 24,96 ns

IS iIncreased
« Batch compression

For all these cases the gate
generator must be synchronized

0 100 200 300 400 500
na
H, Scale 1 — | ns/pt N Samples 500 — | ptsstrace Tielay 2504 ns ¥, Scale 0.5 _l| Widiv
Updatel UnFreezel ?r@e?el Tnnngranl
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Gl Batch compression

7

File ¥iew Option Control Help

Tomoscope BD May 17 14:51:39 2004

C Timing &7

Delta Turns .iéé
M Traces 500
[ime Span 200,93 ms

i i

0 200 400 600 800 1000
n=

H, Scale 2 — | na/pt N Samples GO0 — | ptastrace Delay 362 ns Y, Scale & — | Wediv

Updatel UnFreezel ?';‘{-}{-}zel Tunugr‘anl

F ¥ 3
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Tune measurements

 When the beam is displaced (e.g. at injection or with a

deliberate kick, it starts to oscillate around its nominal orbit
(betatron oscillations)

* Measure the trajectory kicier
* Fita sine curve to it
* Follow it during one revolution

U. Raich CERN Accelerator School 2005 81

THE CERN ACCELERATOR SCHOOL



1954-2004

@ Tune measurements with a single PU

displacement
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Kicker + 1 pick-up

« Measures only non-integral part of Q
 Measure a beam position at each revolution

_3 1 1 1
0 0 a0 & 3 0 120l Is0 130 00 0 o005 Ol 015 0@ 015 03 035 04 045 05
q

Tuths

Fourier transform of pick-up signal
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Further Reading

P. Forck, Joint Universities Accelerator School (JUAS)
Archamps, France
Course notes:http://www-bd.gsi.de/conf/juas/juas.html

Previous CERN Accelerator Courses
(H. Koziol, Beam Diagnostics Jyvaskyla )

CAS on Beam Measurement 1998 Montreux (Switzerland)

Proceedings of Diagnostics and Instrumentation for Particle
Accelerators DIPAC (Europe) and Beam Instrumentation
Workshop BIW (USA)
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