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Introduction

An accelerator can never be better than the instruments measuring its 
performance!
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Course Overview

• Generalities
• Intensity measurements

– Faraday Cup
– AC current transformer
– DC current transformer

• Profile measurements
– TV screens
– SEMgrids
– Wire scanners

• Emittance
– Phase space scans
– Pepperpot

• Position measurements
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Different uses of beam diagnostics

Regular crude checks of accelerator performance
– Beam Intensity 
– Radiation levels

Standard regular measurements
– Emittance measurement
– Trajectories
– Tune

Sophisticated measurements e.g. during machine 
development sessions
– May require offline evaluation
– May be less comfortable
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Diagnostic devices and quantity 
measured

Instrument Physical Effect Measured Quantity Effect on beam

Wall current 
monitor

Image Current Intensity
Longitudinal beam shape

Non destructive

Secondary 
emission monitor

Secondary electron 
emission

Transverse size/shape, 
emittance

Disturbing, can be 
destructive at low 
energies

Wire Scanner Secondary particle 
creation

Transverse size/shape Slightly disturbing

Scintillator screen Atomic excitation 
with light emission

Transverse size/shape 
(position)

Destructive 

Pick-up Electric/magnetic 
field

Position Non destructive

Residual Gas 
monitor

Ionization Transverse size/shape Non destructive

Faraday Cup Charge collection Intensity Destructive
Current 
Transformer

Magnetic field Intensity Non destructive
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Intensity measurements
Faraday Cups

Cable from ring to equipment room

Computer
network

Sensor + amplifier/shaper
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Required Competence in a beam 
diagnostics group

• Some beam physics in order to understand the beam 
parameters to be measured and to distinguish beam effects 
from sensor effects

• Detector physics to understand the interaction of the beam 
with the sensor

• Mechanics
• Analogue signal treatment

– Low noise amplifiers
– High frequency analogue electronics

• Digital signal processing
• Digital electronics for data readout
• Front-end and Application Software
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Layout of a Faraday Cup

• Electrode: 1 mm stainless steel
• Only low energy particles can be 

measured
• Very low intensities (down to 1 

pA) can be measured
• Creation of secondary electrons of 

low energy (below 20 eV) 
• Repelling electrode with some 

100 V polarisation voltage pushes 
secondary electrons back onto the 
electrode

Schema: V. Prieto
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Faraday Cup
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Electro-static Field in Faraday Cup

In order to keep secondary 
electrons with the cup a repelling 
voltage is applied to the polarization 
electrode

Since the electrons have energies of 
less than 20 eV some 100V
repelling voltage is sufficient
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Energy of secondary emission electrons

• With increasing repelling voltage 
the electrons do not escape the 
Faraday Cup any more and the 
current measured stays stable.

• At 40V and above no decrease in 
the Cup current is observed any 
more 
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Faraday Cup application
Testing the decelerating RFQ

Antiproton decelerator
Accelerate protons to 24 GeV and eject them onto a target
Produce antiprotons at 2 GeV
Collect the antiprotons and cool them
Decelerate them and cool them
Output energy: 100 MeV

In order to get even lower energies:
Pass them through a moderator
• High losses
• Large energy distribution

=> Build a decelerating RFQ
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Waiting for Godot

R
FQ

Proton beam

FC
FC

Spectrometer
magnet

Testing the 
decelerating RFQ
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Setup for charge state measurement

• The spectrometer 
magnet is swept 
and the current 
passing the slit is 
measured
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Measuring charge state distribution

Faraday Cup

Slit

Spectrometer
magnets
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Charge state distribution measured with 
a Faraday Cup on a heavy ion source

Scan of Bending magnet Current with extraction voltage 20.5kV -
11/04/03 -JCh
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Histogram contributed by R. Scrivens
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Faraday Cup with water cooling

For higher intensities 
water cooling may be needed
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Current Transformers

Beam current
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(CoFe based amorphous 
alloy Vitrovac: μr= 105)
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The ideal transformer

Beam signal
Transformer output signal
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Principle of a fast current transformer

Diagram by H. Jakob
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The transformer installed in the machine

Needs
Magnetic Shielding
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Magnetic shielding

Shield should extend along the vacuum chamber 
length > diameter of opening
Shield should be symmetrical to the beam axis
Air gaps must be avoided especially along the beam axis
Shield should have highest μ possible but should not saturate

monitor

Soft iron (μ1) Transformer steel (μ2)

Permalloy (μ3)
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Calibration of AC current transformers

The transformer is 
calibrated with a very 
precise current source
The calibration signal is 
injected into a separate 
calibration winding
A calibration procedure 
executed before the 
running period
A calibration pulse before 
the beam pulse 
measured with the beam 
signal
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Current transformer and its electronics

Photo: GSI Darmstatt
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Display of transformer readings

Transformers in
a transfer line
Calculated losses
trigger a watchdog
Display distributed 
via video signal
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The DC current transformer

AC current transformer can be extended to very long droop 
times but not to DC
Measuring DC currents is needed in storage rings
Must provide a modulation frequency
Takes advantage of non/linear magnetisation curve

B

H
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Principle of DCCT

beam

Compensation
current Ifeedback=-Ibeam

modulator

V=RIbeam

Power supply

R

Synchronous
detector

Va+Vb

Vb

Va
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Modulation of a DCCT  without beam

1 2

B=f(t)
B

H

53 4

Modulation current 
has only odd 
harmonic 
frequencies since 
the signal is 
symmetric

dt
dBNAU =

0B
NA

Udt
B += ∫



U. Raich  CERN Accelerator School 2005 29

Modulation of a DCCT with beam

1

B=f(t)

B

H

1 2 53 4

Sum signal becomes non-zero
Even harmonics appear
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Modulation current difference signal with 
beam

• Difference signal has 2ωm

• ωm typically 200 Hz – 10 kHz
• Use low pass filter with

ωc<<ωm

• Provide a 3rd core, normal 
AC transformer to extend to 
higher frequencies
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Photo of DCCT internals
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Interaction of particles with matter

Coulomb interaction
Average force in s-direction=0
Average force in transverse 
direction <> 0
Mostly large impact parameter 
=> low energy of ejected 
electron
Electron mostly ejection 
transversely to the particle 
motion

 

s

Atomic shell electron

b

F 

Beam particle
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• with the following constants:
NA: Avogadro’s number
me and re: electron rest mass and classical electron radius
c: speed of light

• the following target material properties:
ρ: material density
AT and ZT: the atomic mass and nuclear charge

• and the particle properties:
Zp: particle charge
β: the particle velocity and 

Dependance on

Bethe Bloch formula
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High energy loss a low energies
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Heavy ions at low energy are stopped within a few micro-meters
All energy is deposited in a very small volume 
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Scintillating Screens

Method already applied in cosmic ray 
experiments

• Very simple
• Very convincing
Needed: 
• Scintillating Material 
• TV camera 
• In/out mechanism
Problems:
• Radiation resistance of TV camera
• Heating of screen (absorption of

beam energy)
• Evacuation of electric charges

Transparencies on screens by T. Lefevre
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Frame grabber

• For further evaluation 
the video signal is 
digitized, read-out and 
treated by program 
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Test for resistance against heat-shock
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Degradation of screen

 

Degradation clearly visible
However sensitivity stays essentially 
the same
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Screen mechanism

• Screen with graticule
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In/out mechanisms

Rotary mechanism driven by
electric motor Mechanism driven pneumatically
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Profile measurements

• Secondary emission grids (SEMgrids)

When the beam passes
secondary electrons are
ejected from the ribbons

The current flowing back 
onto the ribbons is 
Measured

Electrons are taken away
by polarisation voltage

One amplifier/ADC chain
channel per ribbon
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SEMgrids with wires

Photos received from C. Dutriat
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Profiles from SEMgrids

Projection of charge density
projected to x or y axis is 
Measured

One amplifier/ADC per wire
Large dynamic range

Resolution is given by wire 
distance

Used only in transfer lines
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Wire Scanners

A thin wire is quickly moved across the beam
Secondary particle shower is detected outside the vacuum chamber
on a scintillator/photo-multiplier assembly 
Position and photo-multiplier signal are recorded simultaneously
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Problems at low energy

• Secondary particle shower intensity in dependence of primary 
beam energy
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Wire scanner profile

High speed needed
because of heating.

Adiabatic damping

Current increase due to
Speed increase

Speeds of up to 20m/s
=> 200g acceleration
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Problems at low energy

• Secondary particle shower intensity in dependence of primary 
beam energy 
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Wire scanners and partially stripped ions
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when interacting with the wire

The beam is lost

Can measure amplitude distribution
however
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Emittance measurements

A beam is made of many many particles,
each one of these particles is moving with
a given velocity. Most of the velocity
vector of a single particle is parallel to the
direction of the beam as a whole (s).
There is however a smaller component of
the particles velocity which is
perpendicular to it (x or y).

yyxxssparticle uvuvuvv ˆˆˆ ++=
r

Design by E. Bravin
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Emittance measurements

• If for each beam particle we 
plot its position and its 
transverse angle we get a 
particle distribution who’s 
boundary is an usually ellipse.  

• The projection onto the x axis 
is the beam size

x’

x

Beam size
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The slit method

• If we place a slit into the beam we cut 
out a small vertical slice of phase 
space

• Converting the angles into position 
through a drift space allows to 
reconstruct the angular distribution at 
the position defined by the slit

x’

x

slit
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Transforming angular distribution to 
profile

• When moving through a 
drift space the angles 
don’t change (horizontal 
move in phase space)

• When moving through a 
quadrupole the position 
does not change but the 
angle does (vertical 
move in phase space)

x’

x

slit

x’

x

slit

x’

xslit

Influence of a drift space

Influence of a quadrupole
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The Slit Method

3d plot from P. Forck
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The Slit Method
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Moving slit emittance measurement

• Position resolution given by slit size and displacement
• Angle resolution depends on resolution of profile measurement 

device and drift distance
• High position resolution → many slit positions → slow
• Shot to shot differences result in measurement errors
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Single pulse emittance measurement

 Kickers slit
SEMgrid

Every 100 ns
a new profile
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Result of single pulse emittance
measurement
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Single Shot Emittance Measurement

Advantage: 
Full scan takes 20 μs
Shot by shot comparison possible

Disadvantage:
Very costly
Needs dedicated measurement line
Needs a fast sampling ADC + memory for each wire

Cheaper alternative:
Multi-slit measurement
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Multi-slit measurement

Needs high resolution profile detector
Must make sure
that profiles
dont overlap

beam

Scintillator + TV + frame grabber
often used as profile detector

Very old idea, was used with photographic plates
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Pepperpot

Uses small holes instead of slits
Measures horizontal and vertical emittance in a single shot

Photo P. Forck
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Adiabatic damping

• Change of emittance with acceleration
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before 

βγεε physicalnorm =

21
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γ
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acceleration

Transverse
displacement
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displacement

β: speed
γ: Lorentz factor



U. Raich  CERN Accelerator School 2005 62

Position measurements

U

If the beam is much smaller than w, all field lines are captured and
U is a linear function with displacement
else: Linear cut (projection to measurement plane must be linear)

w
U

d

d
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Shoebox pick-up
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Doubly cut shoebox

• Can measure horizontal and vertical position at once
• Has 4 electrodes

a
b

c
d
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Simulatenous horizontal and vertical 
measurement
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Photo of a cylindrical pick-up

A cylindrical pick-up with its connections

The cuts can be made by photo
chemical means of mechanically

Here done with a sand-blasting
device

Photo by L. Søby
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Building a cylindrical paper pick-up

• A linear cut in a cylinder:



U. Raich  CERN Accelerator School 2005 68

Unfolding the cylinder

• When unfolded the cut becomes a sine curve
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Flipping the sine curve

What happens if we flip use abs (sin(x)) instead?
Mirror the negative sine part?
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The cylinder is cut twice!

• Horizontal
and
vertical cut
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Flipping half the sin curve upside down
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Cut in the same direction
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Using all the electrode surface
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Calibration of the pick-up
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• The BEAMBEAM current is accompanied by its IMAGEIMAGE
• A voltage proportional to the beam current develops on the RESISTORSRESISTORS in the beam pipe gap
• The gap must be closed by a box to avoid floating sections of the beam pipe
• The box is filled with the FERRITEFERRITE to force the image current to go over the resistors
• The ferrite works up to a given frequency and lower frequency components flow over the box wall

Wall Current Monitor (WCM) 
principle

Slide by M. Gasior
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Δ
Δ = L

RfL π2

Σ
Σ = L

RfL π2

WCM as a Beam Position Monitor

For a centered BEAMBEAM the IMAGEIMAGE current is evenly distributed on the circumference
The image current distribution on the circumference changes with the beam position
Intensity signal (Σ) = resistor voltages summed
Position dependent signal (Δ) = voltages from opposite resistors subtracted
The Δ signal is also proportional to the intensity, so the position is calculated according to Δ/Σ
Low cut-offs depend on the gap resistance and box wall (for Σ) and the pipe wall (for Δ) inductances

Slide by M. Gasior



U. Raich  CERN Accelerator School 2005 77

Measurement with pick-ups

• Trajectory measurements in transfer lines
• Control beam steering
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Trajectory measurements in circular 
machines

Needs integration gate
Can be rather tricky
Distance between bunches
changes with acceleration
Number of bunches 
may change

Raw data from pick-ups
double batch injection

Histograms by J. Belleman



U. Raich  CERN Accelerator School 2005 79

Changing bunch frequency

• Bunch splitting or recombination
• One RF frequency is gradually 

decrease while the other one 
is increased

• Batch compression

For all these cases the gate 
generator must be synchronized
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Batch compression
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Tune measurements

• When the beam is displaced (e.g. at injection or with a 
deliberate kick, it starts to oscillate around its nominal orbit
(betatron oscillations) 

• Measure the trajectory
• Fit a sine curve to it
• Follow it during one revolution

kicker
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Tune measurements with a single PU

Design by P. Forck
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Kicker + 1 pick-up

• Measures only non-integral part of Q
• Measure a beam position at each revolution

Fourier transform of pick-up signal

Histograms by J. Belleman
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Further Reading

• P. Forck, Joint Universities Accelerator School (JUAS) 
Archamps, France
Course notes:http://www-bd.gsi.de/conf/juas/juas.html

• Previous CERN Accelerator Courses
(H. Koziol, Beam Diagnostics Jyväskylä )

• CAS on Beam Measurement 1998 Montreux (Switzerland)
• Proceedings of Diagnostics and Instrumentation for Particle

Accelerators DIPAC (Europe) and Beam Instrumentation 
Workshop BIW (USA)

http://www-bd.gsi.de/conf/juas/juas.html
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