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Why do we need computations and simulations 7 |

Bl To explore new fields

Bl To answer scientific or technical

questions

Bl To make design choices

People did that in the past without

computers, but:



Why do we need computations and simulations 7 |

Bl Early days of accelerators:
Bl Mainly for nuclear and particle physics

Bl Design and operation by trial and error

Bl Nowadays:
Bl Larger equipment, more people, more money
Bl Many more applications
Bl Safety issues

Bl Complex control and operation




‘Where are computational methods needed 7 I

Studies of Beam Dynamics

#® Design and simulation of an accelerator

& Control and operation

( Bl Design of accelerator equipment \

® Magnets, RF cavities ...

K © Vacuum components, cryogenics )



Steps of accelerator design

Define basic parameters —

v

Design machine layout and optics

Y

Analysis of local and global properties

Evaluation of performance

Y

Stability of beams

v

Geometry and construction




Accelerator physics program needed'

Bl Initial parameter calculation
Bl Optics design program
Bl Single particle dynamics modelling

Bl Multi particle dynamics modelling
Bl Geometry

-»> Probably several programs needed

—» Have to understand what they are doing
(algorithms and technicalities)




Accelerator design with an optics program

Bl It needs: Description of machine in standard
format
Bl It does: Optics calculations
—» Linear and non-linear optics computations
—» Linear corrections

=» Non-linear and chromatic corrections

Bl Parameter matching



‘How does an accelerator look like to a computer ? I

Not like: ,
d*x
@ + K(S) xr = O
Bl The challenge:
=P Pescribe a machine with several thousand elements

=p Describe a complicated structure



‘How does an accelerator look like to a computer ? I

Bl Additional complications:

=P Common elements



‘How does an accelerator look like to a computer ? I

Bl Additional complications:
=p Common elements

=» Changing energy



How does an accelerator look like to a computer ?

—> Bending and focusing is (in general) not a
continuous function of s

-»> A computer sees it like a particle sees it !

—> A (finite) sequence of machine elements M at
longitudinal positions s;,s5,s3,...:




How does an element look like to a computer 7

Bl Each element M acts on the beam locally in a
deterministic way

~ ,
M TSes
-y

Bl In general: 25 # 7

=» This sounds rather abstract, but:




What is M 7 It can represent:

Bl Single machine elements:
Bl magnet: dipole, quadrupole
Bl RF cavity

Bl Single machine elements (not only magnets):
Bl collimators, targets, obstacles

Bl vacuum chamber
B drift

Bl Important to integrate in the design !




Example (CNGS)

target p ring

e

focusing

decay tube

detector

s
Grand Sasso (730 km)



Example (collimation systems)

Bl needed to control beam size and for protection
Bl may constrain the optics and layout

Bl when particles hit a collimator:
-» what happens to them 7
—»> where do they go ?

—» can they damage the machine ?



The map M can also represent:

Bl Several machine elements combined, (i.e. part
of a ring made of m elements: M,,,,)

Bl The whole machine (e.g. complete turn in a
ring with N elements, M,;,,)

Bl Many turns in a ring (M = M,;,,")



How is an element described to a computer ?

Bl Let 2|, 2 describe a quantity (coordinates, beam
sizes ...) before and after the element

Bl Take an machine element (e.g. magnet) and
build a mathematical object M for this quantity

=» N describes the element in terms of this
quantity

=> In general: 2z = M o 23
—» M is a so-called M AP

Bl The complete sequence of MAPS connects the
pieces together to make a ring (or beam line)



MAPS transform coordinates through an element

Bl 4 coordinates needed for 2 dimensions
(off-momentum effects ignored)

Bl Coordinate vector: 7 = (z, 2’ = g—‘:, Yy, Y = f;—i)

Bl )\ transforms the coordinates zi(s;) at position
s1 to new coordinates z5(sy) at position s;:

[z ) [« )

Z5(89) = =M o =M o z(s)
Y Y

\v' /., \v'/,,




. or OPTICAL functions

Bl 6 optical functions used for 2 dimensions:

[ B, ) [ B, )

Oy Oy

V3(s2) = ;x =M o ;E =M o
y y
Qy Qy

\7:9) \%)

S92 S1



How does M look like ?

The map M describes local properties of a
machine element and can be:

Bl A simple linear matrix or transformation
Bl High order integration algorithm

Bl Derived from local Hamiltonian

Bl A computer program, subroutine etc.

Bl Any ”description” to go from z; to 2z

Bl Can in principle be VERY abstract !




Simple examples (linear, one dimensional)
(Matrix formulation for linear* elements)

i mi1 mi9 ZT
— @)
SL‘, mo1 Mmoo SU,
So S1
2 2
p mi; —2mi11miz mis
— —MmM11M921 M11M22 + M12M21 —1M121M29 >
2 2
v ms5q —2ma1Ma2 M3 g

52 S1

=»>The maps become so-called transport matrices

* The changes depend on x or z' only




(Interlude I: X-matrix)

The transformation of the optical functions can

also be written using the >-matrix formalism:

17-
Y, = M o, o M
i.e. for example in the linear case:
B —Q _ mir a2 . B —Q . mi1  Ma21
— Y oy ma21 122 —Q Y o mi2 22
=»> Allows formal extension to higher order effects

(e.g. synchrotron radiation)

=»> Prove that it is equivalent to previous formula



Transformation of coordinates (one dimension)
Drift space of length L = sy — s;:

P X(S,)X(S,)

X(s,)X'(sy)

S sFEs,+L



Transformation of beam ellipse

Drift space of length L. = s, — st

5 1 —-2L L2 5 60 — 2LOJO + L2’)/0
o = 0 1 —L o «Q = oo — Ly
v/, 0 0 1 v/, Y0 .



Simple examples (one dimensional)

Focusing quadrupole of length L. and strength K:

T B cos(L-K) % -sin(L-K) ] T
'’ -\ K- sin(L- K)  cos(L- K) '’

S92 S1

Quadrupole with short length L (i.e.: 1> L? - K?)

(), ety ) ()

S$2 $1



Initial steps for optics calculation

Bl The optics program reads the sequence of
elements of a machine (their order, their
positions ..)

Bl It reads properties of the elements, i.e. type
(dipole, quadrupole, drift ...)

Bl It reads strength of the elements
Bl It sets up the maps (matrices)

=» A ”standard” for the input language exists,
plus converters (do not forget this issue !)




Simplest machine description (M ADX format)

// description of elements and their strengths
// dipoles and quadrupoles only ...

mb: dipole, 1=6.0, angle=0.03570;

qf: quadrupole, 1=3.0, kil= 0.013426;

qd: quadrupole, 1=3.0, k1=-0.013426;

// centre position of elements in the ring

start: at=0;

qf.1: gqf, at=1.5000e+00;
mb: mb, at=9.0000e+00;
mb: mb, at=1.9000e+01;
qd.1: qd, at=2.6500e+01;
mb: mb, at=3.4000e+01;
mb: mb, at=4.4000e+01;
qf.2: qf, at=5.1500e+01;

end: at=2.2000e+03;



Putting the ”pieces” together

Starting from a position s; and applying all maps
(for N elements) in sequence around a ring with
circumference C to get the One-Turn-Map (OTM)
for the position s, (for one dimension only):

b b
( ,) — ./\/ll O ./\/lQ o ... O ./\/lN O ( ,>
b b
so + C
b b
— ( , ) — Mm'ng(SO) O ( , )
€T T
so + C

S0

S0



Composition of elements (FODO cell)

(here: simple matrix multiplications)

L/2 L/2
f —f f
10 1 L/2 10 1 L/2
Mcell: 1 O O . O
—7 1 0 1 7 1 0 1



Composition of elements (FODO cell)

(here: simple matrix multiplications)

L/2 L/2
f —f f
L L2
./\/lll:<1+2f bt )
“ _ L 1L _ L?
272 2f ~ ip?



What can we do with M, 7

The map M,;,, is extremely important:
Bl It describes the global behaviour
Bl A computer does not know Hill’s equation

Bl Courant-Snyder ansatz (formalism) assumes
motion is linearly stable, periodic, confined,
and has a closed orbit.

Bl The OTM M,,;,, contains all information
about global behaviour in the ring, i.e.
stability, tune, 3, closed orbit etc.

No need for assumptions



What else can we do with M,;,, 7

Ming or M, allow the analysis of
imperfections (and their correction !)

?Straightforward” to formally extend it to
complicated (e.g. non-linear) problems -
additional tools and concepts needed
(invariants, fixpoints, normal forms etc.)



(Interlude II: Fixed Points)

Certain points in phase space z; repeat itself
after n completed turns

,/\/l;"mg 0 21 = zZo = 2
Defines a Fixed Point of order n
Fixed Point of order 1 is the closed orbit

Stability requires existence of such a fixed point

Closed orbit is found (or not !) in optics
programs by searching for the first order fixed
point



Analysis of the results

Bl If all maps are matrices (i.e. only linear
elements)

Bl Usually the case for initial design
=» The One-Turn-Map is a MATRIX:

L ( mi1r Mi2 ) ( XL )
— O
CE’ 50 + C ™Mot1 1TN99 CIZ"
=» After all multiplications we get the

One-Turn-Matrix which depends on the
starting point s.




Find the tune Q I

We can find the tune Q from the One-Turn-Matrix
M .ing(s0) by computing the eigenvalues of M,.;,,(s0):

det(Ming(so) —A) =0

gives

A = cos(2mQ)) + 7 - sin(27Q))
(verify with the One-Turn-Matrix you know from
previous lecture !)



The analysis of the results

What else can we do with the One-Turn-Matrix ?

We can express the One-Turn-Matrix M,;,,(so) in
terms of Courant-Snyder parameters:

We know that M,;,,(so) for one dimension must be:

Mring(s()) = (

cos 1t + a(sg) sin p B(sg) sin )

—(s0) sin p cos it — a(Sg) sin

and we also know that (for a ring):

a(so+C) = alsy), B(so+C)=pB(se), v(so+C)=(so)



The analysis of the results

Comparison of:

(m11 m12>—./\/11 o My o ... o My

a1 M2

and :

Mm’ng(so) — (

cos it + a(sg) sin p B(sg) sin
—(s0) sin p cos it — a(Sp) sin
gives optical functions at position sj:

= ((s0), a(sg), v(sp) (depend on position sg)
—> , is independent of sy:  (27Q)



We have now:

Bl Values for 3., 38,, a,, ... etc. at the position s
Bl Tunes for both planes, closed orbit

The next step:

Bl Starting from initial optical (Twiss) functions
at sy, transforming f,, 8,, a,, ... through the
lattice gives functions at all positions s.

Bl Question: what are the g-functions etc. of a
linear accelerator or a beam line 777



Computation of optical functions around the ring

2 2

3 miy —2mi11ma2 mis p

87 — —M11Ma1  M11Mao2 + M12M21 —1M121M22 > 87
2 2

g myq —2mo1mag M9 Y

Successive application of matrices give Twiss
functions at each element around the ring and at
each position s =»
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Optical functions (vertical j3):

©. s . . \Vertical betafunction
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Extension to two dimensions

Bl Can be written as separate equations, or:

Bl Extend vectors for coordinates or optical

parameters

Bl Extend transfer maps/matrices

(o)

X

\ V')

52

( mi1 Mi2

ma1 122
0 0
\ 0 0

0 0 )
0 0
ma33 134

43 TNyg )

(@)

xl

Y

\ V')

S1



Extension to two dimensions (coupling)

Bl The horizontal and vertical motion can be
coupled:

=» Additional elements in matrix

( T \ / mi1 Mq2 M1z MMy \ ( XL \
' ma1 Mg 123 TN24 . '
Y g1 gz 133 134 Y
\ Y’ ) \ Mg Mg Mgz TTyy ) K Y )
S92 S1



Off momentum effects

Bl Introduces longitudinal motion and off
momentum trajectories

Strength £ of element modified by non-zero %:

2P
p

Bl Closed orbit and tune are usually different for

non-zero %

k= k/(1 +

=»> Dispersion

=» (Chromatic effects



Going to three dimensions
Bl Formally extended by adding two new variables:

=» As = cAt: longitudinal displacement with respect to
reference particle

— %: relative momentum difference with respect to
reference particle

( L \ (mll miz2 M3 Mi4 M5 m16\ ( L \
' m21  M22 123 124 125 126 '
Y | Mms2 Mm32 Mm33 M34 M35 M36 Y
y' My42 My M43 TN44  TN45  TN46 y'
cAt ms32 M32 M33 M34 Ms5 Mse cAt

Ap Ap
\ D ) . \ mMe2 mMe2 mes mMeq mMes Mee ) \ D
2



(Interlude ITI: Symplecticity)

Bl Not all possible maps are allowed !
Bl Requires for a matrix M = M? .S - M =S

with:

(0 1 )
—1 0
0 0 1
\ 0 0 —1 O)

0 O
0 0
0

Bl It basically means: M is area preserving and

lim M" = finite

n—oo



Introducing non-linear elements

Effect of a (short) quadrupole depends linearly on
amplitude (re-written from the matrix form):

T ' ki - xg,

Y Y 0

\v /), \¥V /), \hw)

= Z(s9) = M - Z(s1)

=» [\ 1s a matrix



Non-linear elements (e.g. sextupole)

Effect of a (thin) sextupole with strength £, is:

L ' kQ ) (21331 ) y81)

Yy Y 0
v, \¥ /), \zh Gl =)
w—p> 5(82) = M o 2(81)

=»> M is not a matrix, i.e. cannot be expressed by

matrix multiplication



Non-linear elements

Cannot be written in linear matrix form !
We need something like:

r = Rp-x +Rio-2 +Ris-y+..
+T111 - 2% 4 Thiz - 22’ + Thag - 27+
+Thig - 2y + Thia - vy + ...
+Uq111 - 2° 4 U119 - 222" + ...

and the equivalent for all other variables ...




Higher order MAPS:

Definition of a second order map A, (Taylor
expansion):

Let's call it : Ay = [R,T], defined as (for:j=1...4):

4 4 4
Zj(Sg) = ZRJka(Sl) + ZZTJkle 81 2] 81)
k=1

k=11=1

Higher orders can be defined as needed ...

As = [R, T, U] = Y Y N Uspimzn(51)21(51) 20 (51)

k=11=1 m=1




Second order MAPS composition:

Assume now 2 maps of second order:
Ay = [RA,T4] and By = [RP,T5]

the combined second order map
Cg — ./42 o BQ 1S CQ — [RC,TC] with:

RC’ _ RA' RB

and (after truncation of higher order terms !!):

ngjk = ZR Tlgk + ZZ RéRék




Symplecticity for higher order MAPS

Bl Truncated Taylor expansions are not matrices !!

Bl It is the associated Jacobian matrix 7 which
must fulfil the symplecticity condition:

i
024

k
027

J  must fulfil: J'-5.7=S8

Tik =

Bl In general: J;, # const =—> for truncated
Taylor map can be difficult to fulfil for all 2



(Interlude IV: Other higher order MAPS)

There are other types of higher order maps:

® Lie transformations (always symplectic for any
order, ideal for tracking, easy to analyse)

© Symplectic or canonical integration algorithms

&® whatever ...

=» [ntermediate level school ... !



Matching optical functions

Bl Modify machine optics to get desired properties
around the machine or in specific places

Bl For example you may want special conditions
& for equipment: RF, collimators, diagnostics

® for experiments: in colliding beam machines
Bl Algorithms to adjust parameters and layout
=» This process is called MATCHING !

—> Available in most optics programs (for lines and
circular machines)



Matching optical functions
In general: 7(8,(s),az(s)...) = f(Mi, Ms,..M,,)

optical functions depend on all maps, i.e.
strengths and layout.

Bl Matching can change all parameters (strengths,
positions ...)

Bl Additional constraints may be:
®© Tunes, chromaticities
© Hardware parameters

© ﬁAx, etc.



Example: matching of tunes Q
(MAD language)

match;
vary,name=kqf, step=0.00001;
vary,name=kqd, step=0.00001;
global,QX=7.420;
global,QY=7.380;

endmatch;

Bl The strengths of main quadrupoles are varied

Bl Computes the new strengths



Local adjustment of optical functions

Bl Small 5, needed for an experiment

90 s ' ' ' ' ' Periodic; hori'zontal' beta'functi'on

s5. - _
80. 4 ]
75, ]
70. 4 il
65. - 1
60. -
55. -
50. -
45. -
40. -
35.
30. -
1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momentum offset = 0.00 %o

s (m)



Example: matching of S-functions
(MAD language - simplified !)

Bl Allow a few quadrupoles to be changed

match;
vary,name=kql.l, step=0.00001;
vary,name=kq2.1l, step=0.00001;
vary,name=kq3.1l, step=0.00001;
vary,name=kq4.1l, step=0.00001;
constraint,place=IP,betx= 2.0, alfx=0.0;

endmatch;

Bl The strengths of a small number of additional
quadrupoles are varied



Optical functions (reduced g-function)

900.
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Optical functions (reduced dispersion)

. 150 Missing magnet dispersion suppressor

] DX i
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General purpose optics programs

Bl Always allow to:

© Compute optical parameters (Twiss
functions)

© Match the required properties
Bl But also:

«© Simulate machine imperfections

© Correct imperfections



Popular Optics Programs

Bl BeamOptics (based on Mathematica)
Bl TURTLE (Beam lines)

Bl WINAGILE (WINDOWS, interactive,
originally for teaching)

Bl TRANSPORT (General purpose, third-order
matrix)

Bl DIMAD (Second-order matrix, tracking)

Bl TEAPOT (General purpose, thin element
approximation)




Popular Optics Programs (cont.)

Bl COSY (Multi purpose, high order maps,
differential algebra)

Bl SYNCH (General purpose)

Bl MAD (versions: 8,9,X) (Multi purpose optics
and tracking)

Bl SAD (Multi purpose optics and tracking)
Bl MARYLIE (Lie algebra, tracking)

Bl PTC (MAP based, object oriented, exact !)
Bl MADX-PTC (combined MADX-PTC)




Which Optics Program should I use ?

Very application dependent, you have:
= Beam line
=» Large ring
=» Small ring

=» Large momentum offset or changing momentum (e.g.
FFAG, acceleration)

=» Linear accelerator
=» Unconventional geometry

=» Collider (one or more rings/lines)



Which Optics Program should I use ?

Very application dependent, you want to do:
=» Design linear optics

=» Linear optical matching

= Introduce and correct imperfections

=» Non-linear optical matching

=» Particle tracking

= Evaluate the dynamic aperture

=» Study collective effects



”Comparison” of some programs

-
@
2 MADX-PTC
7 PTC
9 COSY
= MARYLIE SAD
¥ MAD9 DIMAD  MADX
i MADS SYNCH
TEAPOT
TRANSPORT
BEAMOPTICS
TURTLE
WINAGILE

COMPLEXITY AND COMPLETENESS

=» Very difficult to quantify, Strongly biased



(Interlude V: Course on optics design)

—> Intermediate level CAS 2005 (and 2007) offers a
course on optics design

Purpose is to develop a realistic accelerator
optics

Includes correction elements, optical
matching, dispersion suppressors ...

MAD is used for practical implementation

—> The course is available on CD-ROM (on
request) or from the web



Simulation of an accelerator

Bl Purpose is to imitate the behaviour of a
particle or a beam in an accelerator

Bl Use local properties of the machine element to
describe its interaction with a particle

Bl The aim is to derive the global behaviour
Stability

Lifetime



Evaluation by simulation (1)

Bl Single particle behaviour

Bl Usually concerns long term behaviour such as
beam loss

Bl The effect of the accelerator components on a
single particle
=»> Non-linear elements
—»> Machine imperfections (e.g. field errors)

—> External distortions (e.g. scattering)



Evaluation by simulation (2)

Bl Multi particle behaviour

Bl Usually concerns collective behaviour: coherent
motion, emittance increase, damping etc.

=»> The effect of the accelerator components on
an ensemble of particles (e.g. impedances)

=» Interactions of particles between each other.
These are usually dictated by the properties
of the accelerator (e.g. space charge,
beam-beam effects ...)



Single particle tracking

=»> The motion of a test particle through the
elements of a machine i1s simulated for a defined

number of turns — ”tracking”

Bl Use appropriate coordinates, start with z;.

Bl In each element (or part of the machine), the
coordinates are transformed by z,,;1 = M o Zz,

Bl /\{ must be symplectic
Bl We must distinguish thick and thin elements



Tracking through thin elements

Bl Thin "magnet”: let the length go to zero, but
keep field integral finite (constant)

Bl No change of amplitudes x and y
- r - rzandy — vy

Bl The momenta z' and ¢y’ receive an amplitude
dependent deflection (kick)

= ' — 2 + Ax'andy — ¢ + Ay



Bl No change of amplitudes = and y

Bl The momenta ' and ¢ receive an amplitude
dependent deflection (kick)

= ' — 2 4+ Arx'and ¢y — ¢ + AY



Tracking through thin elements

Bl So-called kick-codes (thin lens tracking)
B Always symplectic ! (homework)

Bl Kick can be non-linear

Bl Usually rather fast on computers

-» A ”thick” element can be sliced into

several thin elements



Analysis tools

Bl Fourier analysis, diffusion coefficients, chaos
detection ...

Bl Phase space plots (simple example):

® Start with a ”particle” with initial
coordinates =z and z’ at a position s

© Pass through the One-Turn-Map (for
position s; !)

© Plot the new 2 and 2’ coordinates at position
so after every turn



A simple example

Linear transformation plus a constant deflection
(i.e. orbit kick from displaced quadrupole)

(:1:) :(COS(/L) sin(,u)) .<x)+<0
' - —sin(p) cos(u) ' b

S0 n

= 21Q, = 27-0.19,
constant b is a free parameter

—>Find the fixed point(s) (closed orbit)




A simple example ..

Example on non—linear One Turn Map
a = 0.00
L ’ eooe
E e et e
..
..........
.............
| | | | Ll | | | |
-10 756 -5 -2.5 0 25 5 7.5 10
Transverse phase space X

-10 -75 -5 -25 0 2.5 5

Start at different amplitudes and ”observe” x

and x’ at position s




A (still) simple example

Linear transformation plus a quadratic
non-linearity (e.g. (thin) sextupole) plus a
constant deflection

) ) )M
7’ - —sin(p) cos(p) 7’ ax? b

S0 n

o= 2mQ, = 27-0.19,
constants a and b are free parameters

—>Find the fixed points (how many do you see 7)



A (still) simple example ..

Example on non—linear One Turn Map Example on non—linear One Turn Map
X 10 = X 10 —
a a = 0.00 o a=0.12
L. [ b =0.00 s b =0.30
|- o® . I~
................
..
5 5 p o
L abmind
25 — 2.5 — " ‘\ 0
4
4 |
q ] ]
o o b \ !
J
\ /
\\ v /
- — - — ’
2.5 2.5 Sao”
5L 5L AN
..........
.............
-7.5 -75
-10 -10 =
| | | | | | | Ll Ll | | | | | | | [
-10 756 -5 -2.5 0 2.5 5 7.5 10 -10 -75 -5 -2.5 0 2.5 5 7.5 10
Transverse phase space X Transverse phase space X

Bl Motion at different amplitudes distorted
Bl Stability region reduced by non-linear effect



Tracking through thick elements

Bl Real magnets are NOT thin !

Bl Consequence: they are not always linear
elements (also not dipoles, quadrupoles ..)

Bl Especially important for ”small” machines (e.g.
large deflections, fringe fields etc.)

Bl Constructing a MAP for a thick element is
more involved



MAPS for thick elements

Bl Non-linear, i.e. not matrices (even for
quadrupoles)

Bl Need integration of equation of motion

Bl Special techniques have been developped, some
keywords:
— Lie transforms
— Symplectic integration

— Differential Algebra ...

Bl In the end: we get again a One-Turn-Map



‘Single particle dynamics in a nutshell'

Bl Try to compute a (one turn) MAP

Bl It contains everything

Bl Its analysis will tell you what you need to know
Bl It doesn’t matter how you got it !

Bl Use the Lorentz force (or equivalent) for the
construction of maps (no need to ”apply”
accelerator physics concepts !)



You can derive: I

Bl Tunes (we already did)

Bl Betatron functions (we already did)

Bl Stability borders, dynamic aperture

Bl Detuning with amplitudes

Bl Fixpoints, closed orbit, resonance strength

Bl ... and much more !



‘You do not get: I

Bl Rules of thumb for simple calculations
Bl "Handy” formulae

Bl Scaling laws for estimates (indirectly)



‘Complications: light particles'

Bl Light particles (e”, et etc.) emit synchrotron
radiation and motion is damped

=» Stochastic component

—> No symplecticity, no invariants (but
equilibrium parameters, e.g. emittance)

Bl Synchrotron motion must be simulated

Bl Computation of damping properties



‘Single particle tracking codes I

Bl Most optics programs can perform single
particle tracking

Bl Some specialized programs exist (e.g.
SIXTRACK)

Bl Some codes have analysis tools (normal forms,
chaos detection etc.)



Simulation of multi particle effects

Bl Often requires the simulation of a beam:
simulate many (up to 10°) particles
simultaneously and study their behaviour:

— Beam shape (density distribution)
— Centre of mass motion of all particles

Bl Must be self-consistent: changes of the beams
must be taken into account

Bl Fields generated by the beam need to be
computed




‘Complicationsz many particles'

Bl Particles have different amplitudes
Bl Particles have different tunes
Bl Particles have different momenta !

Bl Definition of emittance becomes more
complicated



Strategy for multi-particle simulations (1)'

Bl Generate and simulate many particles
(10* — 10® per beam) simultaneously

Bl Every particle interacts with the machine
elements individually

Bl The whole ensemble interacts with the machine
elements

Bl Every particle interacts with other particles !

=» Feed back into motion of individual particles



Strategy for multi-particle simulations (2)'

Bl All particles must be treated in parallel

—> For realistic LHC: 107 to 10% particles to
simulate

=»> Already for storage requires ~ 10 Gb memory

—» Parallel processing needed for reasonable
computing time

Bl Often requires (intelligent) simplifications



Simulation of interactions with environment'

This means: interaction of the individual particles
and the whole beam with:

Bl Machine elements (e.g. magnets, RF, ...)
Bl Wake fields

Bl Impedances

Bl Electron cloud

Bl Intercepting elements (e.g. collimators, ...)

-» Strategies have changed with fast computers ...



Simulation of interactions with itself

Particles inside a beam interact with other
particles from the same beam:

Bl Space charge effects

Bl Intra-beam scattering

Bl Multi-bunch effects



Simulation of interactions with other beams

So-called beam-beam effects

Bl Other beam acts like a (very) non-linear lens

Bl Incoherent beam-beam effects (on each
individual particle)

Bl Coherent beam-beam effects (on ensemble of
particles)

=»> Requires the knowledge of fields generated by
the other beam




Matrix formulation (linear models)

Bl One-Turn-Maps can be written for two bunches
or two beams (e.g. 1 and 2)

—»> Here only 1 dimension for illustration
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Matrix formulation (linear models)

Bl One-Turn-Maps can be written for two bunches
or two beams (e.g. 1 and 2)

=» Additional elements couple two beams

( X1 \ / mi1 Mi2 M1z T4 \ ( X1 \
/ /
L1 o mMa1 Mg TN23 1124 . Lq
o, 31 Mgz 133 134 X2
/ /
x \ Ma1 Mao Maz M ) \ X
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=»> Allows computation of eigenmodes,
eigenfrequencies of multi bunch systems



Field computation

Bl Some simulations require the computation of
fields (or forces) produced by a beam from
Poisson equation (here 2-dimensional):

—> The density of the beam is p(z,y)

—> For simple distributions (Gaussian, uniform ...)
can be solved analytically

—> In general (i.e. in the interesting cases !) it is
done numerically



Some basic methods

Particle - particle methods: compute field between
each particle pair and add up (not practical for
large number of particles, sometimes used in
celestial mechanics)

Particle - mesh methods: distribute particles on a
mesh (grid) and solve the Poisson equation for
discrete points

Multipole methods: develope potentials/fields as
multipole expansion

=» Choice depends on application and parameters



Example: Centre of mass motion as function of tim
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=» From beam-beam simulations: Bunch
oscillations and frequency spectrum



Example: Beam size as function of time
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=% From electron-cloud simulation (courtesy: E. Benedetto)



\ Alternatives I

Bl Sometimes multi-particle simulations are too
time consuming

Bl Numerical solution of the Vlasov-equation
—> E.g. finite difference methods

=» Intermediate level school



Example: Beam size as function of time
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=P Beam-beam simulation: numerical solution of Vlasov
equation gives evolution of beam sizes



‘Multi particle simulation codes I

Bl Many codes exist, always specialized:
—» (Collective instabilities
—»> Beam-beam effects
=»> Electron cloud effects

-» otc. ...

Bl Often compact and linked to optics codes



‘(Personal) Comments on Simulationszl

Bl Here I gave only a selective overview of what
can be done

Bl Techniques and tools in dedicated schools and
courses (some in Intermediate CAS Course)

Bl What can be done has changed a lot in the last
decade

Bl It is easy to write a program !

Bl Analysis and interpretation is usually the
difficult part



What can go wrong ?I

Bl Wrong or missing physics in the program
Bl Numerical problems

Bl Different results on different computers
Bl Programming bugs ...

Bl Biased analysis

—»> Be aware of the limitations of the program

=» Make sure it is reproducible




‘Control and operation I

Bl Basic aim: optimize performance

As operator or accelerator physicist:

Bl Provide and improve model of machine
Bl Measure and interprete beam parameters
Bl Correct and control beam parameters

Bl Conduct machine experiments



‘Control and operation of an accelerator'

Basic problem: measure and control beam
parameters

Bl Control (orbit, chromaticities ..) depend on
machine model which may be incomplete

Bl Feedback from measurements improves the
model and simulations

Bl Should use the same strategies and methods as
during design (Remember: matching !)

-» May be an iterative process



‘Control and operation of an accelerator'

Bl Very similar to simulation or design of a
machine except:

—> Interface to hardware and control (e.g. power
converters)

—> Beam instrumentation !
—> Communication (networks, etc.)

=»> Issues such as: timing, alarms, interlocks,

Bl Treated in dedicated workshops and schools



