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B Books on non-linear dynamical systems

M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An
Introduction, Willey, 1989.

A.J Lichtenbergand M.A. Lieberman, Regular and Chaotic
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B Books on beam dynamics

E. Forest, Beam Dynamics - A New Attitude and Framework,
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A. Wolski, Beam Dynamics in High Energy Particle Accelerators,
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B [ectures on non-linear beam dynamics
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W. Herr, Lectures on Mathematical and Numerical Methods for
Non-linear Beam Dynamics in Rings, CAS 2013.

L. Nadolski, Lectures on Non-linear beam dynamics, Master
NPAC, LAL, Orsay 2013.

Y. Papaphilippou, Lectures on Non-linear dynamics in particles
accelerators, Cockroft Institute, October 2013. 5
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B Introduce “historical” approaches of non-linear
dynamics (i.e. classical perturbation theory)

Show their usefulness

Demonstrate their practical limitation especially in
beam dynamics

Connect naturally with the lectures of W.Herr on
“Mathematical and Numerical methods”, providing
concrete examples
B Describe the phenomenology of non-linear
dynamics (resonance, chaos, diffusion)

B Describe some tools for studying non-linear
dynamics and detecting chaos (especially
Frequency Map Analysis)

B Give a number of application examples

Non-linear dynamics, CERN Accelerator School, October2015

2



The CERN Accelerator Schoo m

B Non-linear magnets, such as
chromaticity sextupoles
(especially in low emittance
rings), octupoles,...

B Magnet imperfectionsand
misalignments

B Insertion devices (wigglers,

= undulators) for synchrotron
2 radiation storage rings

§ B Injection elements

2 W Magnet fringe fields

5 (especially in high-intensity
b machines)

< m Power supply ripple

% B Ground motion (for e+/e-)
£ W Electron (Ion) cloud

% B Beam-beam effect (for

: colliders)

E B Space-charge effect (especially

in high-intensity machines) 4
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B Performance impact

Reduced injection efficiency
(especially in low emittance rings)
Particle losses causing
B Reduced intensity and /or beam
lifetime

B Radio-activation (hands-on
maintenance, equipment lifetime,
super- Conductmg magnet quench)

B Reduced machine availability
Emittance increase

Reduced number of bunches and / or
increased crossing angle, affecting
luminosity (for co olliders)

Allow to damp instabilities (see
W.Herr lecture on “Landau
damping”)

Can be used for beam extraction
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B Performance impact

Reduced injection efficiency
(especially in low emittance rings)
Particle losses causing

B Reduced intensity and /or beam
lifetime

B Radio-activation (hands-on
maintenance, equipment lifetime,
super-conducting magnet quench)

B Reduced machine availability
Emittance increase

Reduced number of bunches and / or
increased c1rossi1r1gl angle, affecting
luminosity (for colliders)

Allow to damp instabilities (see
W.Herr lecture on “Landau
damping”)

Can be used for beam extraction

B (Cost issues

Magnetic field quality and
alignment tolerances

Number of magnet correctors and
families (power convertors)

Design of collimation system (for
colliders and high-intensity
machines)
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Hamiltonian formalism
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[ The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

' OL
g
[ The generalised velocities can be expressed as a function of

the generalised momenta, if the previous equation is
invertible, and thereby defme the Hamiltonian of the system

where the generalised momenta are P; —

J Example: consider L(q,q Zmlq% Vigi,...,qn)

OL
04
which can be trivially inverted to provide the Hamiltonian
2

H(q,p)zzzﬁ

(

A From this the momentum can be determined as p; = = mg;
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1 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

1 These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (¢;,---,qn,P1,---,Pn,t, —H)

A oL OL OL
0 dH = szdq@' + q;dp; dqz p .dq — Edt
A
S or .
ﬂ | | OH  OH
: dH = Z qidp; — pidq; — —d Z . dpz o ——dg; + 8—dt
2 4 By equating terms, Hamilton’s equatlons are derived
__OH . 0H 0L _ OH
g qd; — api y Pi — aq , By, = o

9
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A The variables (¢, ..., qn,p1,...,pn, t,—H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

1 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

The variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
z=4J-VH(z) withz=1(¢,...,qn,D1,--.,Pn)
and V = (aQ’La SRR 8Qn7 8pla SRR apn)

OThe 2n x 2n matrix y— ( © I) is called the
symplectic matrix — 0
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dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

0 Consider a time dependent function of phase space.
Its time evolution is given by

«“\
N

d dgi0f | {dpiof f
%f(pq,)—Z( B H >+—

dt Iaqz \dt 'apz 81‘;
" NS SORNDS | O o
B ; (829; ‘0q; '_\ngap) T H, fl+ En

where [H, f] is the Poisson bracket of / with H

dIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.
commutes with the H), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself)
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Canonical
tranformations
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variable (q, p)to (Q,P) so system becomes simpler to study

[ Find a function for transforming the Hamiltonian from

[ This transformation should be canonical (or symplectic), so
that the Hamiltonian properties of the system are preserved

[ These “mixed variable” generating functions are derived by

OF OF OF; 0F3
F - Pi — 9 P’L — = F: ’ -4 — — 9 Pz —
(9F2 5’F2 8F4 0F4
d A general non-autonomous Hamiltonian is transtormed to
H(QP.1)= Hlq.p.t) + 50 . j=123.4

ot
[ One generating function can be constructed by the other

through Legendre transformations, e.g.

FQ(qv:P):Fl(an)_QP’ F3(Q7p):F1(q7Q)_qp7
with the inner product define as q-p=) g

1

Non-linear dynamics, CERN Accelerator School, October2015

13



2

d A fundamental property of canonical transformations is the
preservation of phase space volume

[ This volume preservation in phase space can be represented
in the old and new variables as

/Hdpquz = /HdP dQ;

O The volume element in old and new variables are related
through the ]acoblan

O(Py,.... Py, Q1. ... O
Hdpquz— 17 9 Q]. Q HdeQZ
(p17'°°7pn7Q17°°°7Q’n i1

d These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to 1

a(Plv"'apnanaﬂ'aQn) _ a(p17°°'7pn7QI7---7Qn)
a(pl;---ypn7q17---7Qn) 8(P17'°'7PH7Q17"'7Q71)

=1

14
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orP  9Q
oPQ) _ |op Ip
d(p,q) ~— |OP 9Q
dq dq

since

d(q,p) __
o0Q,P)
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d(q,p) __
2(Q,P)

[ There are actually “polar” coordinates that are canonical,

givenby qg=—V2PcosQ), p=+vV2Psin() for which

cos ()

V2P sin Q

cos
V2P

)

A The transformation () = —p, P = g, which interchanges
conjugate variables is area preserving, as the Jacobian is

0 —1

1 o=t

1 On the other hand the transformation from polar to
Cartesian coordinates ¢ = Pcos(), p = Psin( isnot,

—Psin@ PcosQ|

sin@ | —F

V2P cos ()
sin ) =1
V2P s




The Relativistic
Hamiltonian for
electromagnetic fields

16



=
C

2

dNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

H(x,p,t) = cy/ (p — £A(x, 1)) +m2e2 + ed(x, 1)

J x = (z,y,2)
d p = (p., DysDz) conjugate momenta

Cartesian positions

Q A=(4,,A,, A,) magneticvector potential

Qo electric scalar potential

[ The ordinary kinetic momentum vector is written
— — _ £
P=ymv=p—-ZA

with v the velocity vector and v = (1 — v?/c?)~ /2 the
relativistic factor

Non-linear dynamics, CERN Accelerator School, October2015
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d It is generally a 3 degrees of freedom one plus time
(i.e. 4 degrees of freedom)

0 The Hamiltonian represents the total energy
H=FE =~ymc* + ed
Q The total kinetic momentum is

2 1/2
P = <H m262>
d Using Hamilton's equations
(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz
equations 18
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2

dMaking a series of canonical transformations and
approximations (see appendix)

From Cartesian to Frenet-Serret (rotating) coordinate
system (bending in the horizontal plane)

Changing the independent variable from time to the path
length S

Electric field set to zero, as longitudinal (synchrotron)
motion is much slower then transverse (betatron) one

Consider static and transverse magnetic fields
Rescale the momentum and move the origin to the

periodic orbit 1
For the ultra-relativistic limit S0 > 1, —5— —0
the Hamiltonian becomes Bo

W lpospy8) = (14) = edo = (1405 ) 1402 =52 = 33

S
PP p(s)
PO T 19
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1 Note that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)!

L Last approximation: transverse momenta (rescaled
to the reference momentum) are considered to be
much smaller than 1, i.e. the square root can be
expanded. Considering also the large machine
approximation z << p, (dropping cubic terms), the
Hamiltonian is simplified to

p2 + pz (14 9) .
eA,
2(14+0)  p(s)
L This expansion may not be a good idea, especially
for low energy, small size rings

H:
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B From Gauss law of magnetostatics, a vector potential exist

V:-B=0 — dJA: B=VxA
B Assuming transverse 2D field, vector potential has only one
component A,. The Ampere’ s law in vacuum (inside the

beampipe) Yy x B=0 — JV: B=-VV
B Using the previous equations, the relations between field
components and potentials are

IV DA, oV DA,

I B, = —— — _
Ox oy ' Y Oy oz
i.e. Riemann conditions of an analytic function |

Exists complex potential of z = x + 7y with / e

power series expansion convergent in a circle X
with radius |z| = . (distance from iron yoke)
oo

A(x +1y) = As(x,y) + iV (x,y) = Zlﬁln —Z n+ ) (x4 1y)"

n=1

B, = —

Non-linear dynamics, CERN Accelerator School, October2015
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B From the complex potential we can derive the fields

. 0 .
B, +1iB, = — &U(A (x,y) + 1V (x,y)) Zn n+ iy (T + 1Y)
B Setting b, = —n)\,, a,=nu,
O
: : : 1
B, +1B, = E (b, — tayn)(x 4+ 1y)"
n=1
B Define normalized coefficients
b a
b/ _ n n—1 I _ n n—1
"T1071B, 0 YT 1071B, 0

on a reference radius r,, 10 of the main field to get
: _ x+1
B, +iB, =107 By (b, — ial,)(— yn
0
n=1

B Note: n' = n — 1 is the US convention

)"

2

n—1



f1e1ds, B;U — bg( )
B, = —bi(s) + ba(s)x

2

main bending field —B =b1(s) = GI; © T
normalized quadrupole [ (g) = py(s)-2- e b2(8) 1/m?]
gradient Pyc °

magnetic rigidity Bp = . T - m]

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

— 1 OAs _ 1 0As
ST T o Py T T o

B Jt can be integrated to give

2
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B The Hamiltonian for linear fields can be finally written as

2, .2
Y 0 > K(s) (.2 2
=517 ~ o) T 27 T 2 (" =y7)
dr  p dps 0 B o) o
ds 1+67 ds  p(s) <p2(8) L ))

B Hamilton’s equation are
dy _ py  dpy _

) ds 1+90 cg

and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations

K,
\
1 1 5
'+ ( 2+K(5)>x:
: Jlr A pLs) with the usual solution for
Yy ——1+5K(3)y20 5 =0 and U=,
K u(s) = v/eB(s) cos(y(s) + o)
Yy €

u'(s) =

5057 (SI((s) + ) +as) costi(s) +vo))
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B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = 7{ pdq
over closed paths in phase space.
B An integrable Hamiltonian is written as a function of only

the actions, i.e. Hy = Hy(J). Hamilton’s equations give

0i = 5'[;(()](‘.]) = w;(J) = ¢ = wi(I)t + ¢io
jz-: agzbi ) = 0 = J; = const.

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of n circles 2

Non-linear dynamics, CERN Accelerator School, October2015
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B Considering on-momentum motion, the Hamiltonian can

be written as .
g PatPy | Ke(9)e? =K, (s)y?

2 | 2
B The generating function from the original to action angle

variables is
Fi(2,y, 00, 003 5) = =35 [tan 6x(s) + ax(s)] — 5 BZ 57 [tan dy(5) + ay s)]

B The old variables with respect to actions and angles are

\/2/6’& J COS Qbu( ) ? pu(s) Y ﬁu( ) (Sln¢u( )+au(3) COS¢u(S))

and the Hamiltonian takes the form

Jy
HQ(ngJyaS) 5;3](8) | By(s)

B The “time” (path length) dependence can be eliminated by
the transformation to normalized coordinates

2

U\ (7 0 \/u\or (UY\ _ cos(ve)\ with , _ 1
Ul>_ (% ﬂ) (U/) (Lﬂ) _\/ﬁ(Sin(ugb)) 2 J B(s)
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B Considering the general expression of the the longitudinal
component of the vector potential is

In curvilinear coordinates (curved elements)

A, =(1+ —)B _— "
( + p(S) ) 0%6 Z n (CU + Zy)

In Cartesian coordinates A, = ByfRe Z

[ < :
g
C
The CERN Accelerator School

n=1 o0

b, + ta,

n

(x + iy)
with the multipole coefficients be?fr:11g written as

— lde and p, — 1QBy
Bon! 0x™ lz=y=0 Bon! 0xz™

(U

z=y=0
B The general non-linear Hamiltonian can be written as

H(2, Y, PasPys 5) = Ho(@,Ys Doy Dys 8) + Y Py i, (8) 2"y
ko ky

with the periodic functions  hy, 1, (5) = hi, x, (s + C)

Non-linear dynamics, CERN Accelerator School, October2015
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. Canonical perturbation

o

theory

28
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B Consider a general Hamiltonian with 7 degrees of freedom
H(J,p,0) = Ho(J) + eHy(J, p,0) + O(€?)
where the non-integrable part H1(J, ¢,0) is 2m-periodic
on the angles ¥ and the “time” 0

B Provided that € is sufficiently small, tori should still exist
but they are distorted

B We seek a canonical transformation that could “straighten
up" the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in ¢) to a function only of
some new actions H (J) plus higher orders in ¢

B This can be performed by a mixed variable close to identity
generating function S(J, p,0) = J - ¢ + €S1(J, ¢, 0) + O(e?)
for transforming old variables to new ones -3
(J; )

B |n principle, this procedure can be carried
to arbitrary powers of the perturbation




B By the canonical transformation equations (slide 12), the
old action and new angle can be also represented by a
power series In €

J=J+ 6851(J,90,(9) + O(€?) J=J+ 6351(J,_g0,9) + O(€?)
O 0P
aSl(j79079) 2 o1 — aSl(jagaae) 2
= _ O — O — -
p=pte— = —+0() p=¢-c 57 o)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert
the equation on the left, so that S (J,®,0) becomes a
function of the new variables

B The new Hamiltonian is then _
7(T A T = T = 851(‘]79070)
H(J,¢,0) = H(J(J, ), (], $),0) + e

B The second term is appearing because of the “time”

dependence through 6

+ O(€?)

Non-linear dynamics, CERN Accelerator School, October2015
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B The question is what is the form of the generating function
that eliminates the angle dependence

B The procedure is cumbersome (see appendix for details),
but here is the final result,

_ _ H o
SJ,g)=J-@+ei » D) i) O(e?)

Zok-v(d)+p
with the frequency vector v(J) = 8}20},])

and the integers k,p # 0

B [f the denominator vanishes, i.e. for the resonance
condition k - v(J) 4+ p = 0, the Fourier series
coefficients (driving terms) become infinite

B [t actually implies that even at first order in the
perturbation parameter and in the vicinity of a resonance,
it is impossible to construct a generating function for
seeking some approximate integrals of motion 31
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B |n principle, the technique works for arbitrary order, but

the disentangling of variables becomes difficult even to 2nd
order!!!

The solution was given in the late 60s by introducing the
Lie transforms (e.g. see Deprit 1969), which are
algorithmic for constructing generating functions and were
adapted to beam dynamics by Dragt and Finn (1976)

The problem of small denominators due to resonances is
not just a mathematical one. The inability to construct
solutions close to a resonance has to do with the un-
predictable nature of motion and the onset of chaos

KAM theory developed the mathematical framework into
which local solutions could be constructed provided some
general conditions on the size of the perturbation and the

distance of the system from resonances are satisfied
32



The CERN Accelerator Schoom

B Original idea of Kolmogorov (1954) (super-convergent series expansion)
later proved by Arnold (1963) and Moser (1962)

B [f a Hamiltonian system is subjected to weak nonlinear perturbation,
some invariant tori are deformed and survive

B Trajectories starting on one of these tori remain on it thereafter,
executing quasi-periodic motion with a fixed frequency vector
depending only on the torus.

B The family of toriis parameterized over a Cantor set of frequency
vectors, while in the gaps of the Cantor set chaotic behavior can occur

B The KAM theorem specifies quantitatively the size of the perturbation
for this to be true.

B The KAM tori that survive are those that have “sufficiently irrational”
frequencies

B The conditions of the KAM theorem become increasingly difficult to
satisfy for systems with more degrees of freedom. As the number of
dimensions of the system increases, the volume occupied by the tori
decreases

B A complement of KAM theory for the stability of dynamical systems
were given by Nekhoroshev (1971) who proved that if the density of tori
is large all solutions will stay close to the tori for exponentially long
times showing practical stability of motion

Non-linear dynamics, CERN Accelerator School, October2015
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perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,2 ,
_ pi+tki(s)x ko(s)x?
H(x,pg,s) = ; -~
where k1 (s) and k2 (s) are periodic functions.

B We proceed to the transformation in action angle variables

to write the Hamiltonian in the form

J V2ks(s) J . V2ky(s)
5(8)+ 3 /i(s)jL 12

B The perturbation procedure implies to split the

(Jﬁ(s))3/2 (cos 3¢ + 3cos @)

H = Hy(J)+ H(p,J) = (JB(5))*? cos® ¢ =

perturbation in an average part over the angles and an
oscillating part
AT 2o \/§k2 (s)
: N 12

Non-linear dynamics, CERN Accelerator School, October2015

(Jﬂ(s))?’/2 (cos3¢ + 3cos @)



2

B |ts derivative with respect to the action should provide the

B The average part should be only a function of the action

frequency shift (tune-shift) due to the non-linearity

B [t can be shown that this quantity vanishes for a sextupole

perturbation
<3H1(¢,J)> _ ka(s)B(s)
0J - 8v/2m

2m
(Jﬁ(s))l/2 /0 (cos3¢ + 3cosp)dp =0

B Sextupoles do not provide any tune-shift at first order

B But we know by experience that this is not true, i.e. first
order perturbation theory fails to give the correct answer

B One has to go to higher order (see appendix)

Non-linear dynamics, CERN Accelerator School, October2015
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B By rescaling the independent variable, the close to identity

generating function is written as

S(J,¢,0) =J -+ 51(J,0,0) + ...
B Following the perturbation steps, the generating function

has to be chosen such that the following relationship is
051(J.6.0)  + 951(].6.0)

satisfied 5 v(J) 5 = —{H\(J,$,0)} with
{H1} = H, = ﬂ]f;(s) (jﬁ(s))3/2 (cos 3¢ + 3 cos ¢)

B Following the canonical perturbation procedure the
generating function is -

_ _ H .
S(J,)=J-¢+i »_ () ithegp0) + ...
oo kov(J) +p

B The only non-zero coefficients are for t = 1,3 and

= N = K(s) , - 32 = [ €!391P0) 3¢ (0-+p0)
SU.0) =T o+ it (T86)7 S (Gt )

nN=——0Q
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eeeeeeeeeeeeeeeeeeeeeeee %

B The previous formula can be generalised for more
sextupoles

B First, expand both perturbation and generating function in
Fourier series of the form

Sl(j7 Qb, 6)) — Z Slk(j, 9)6ik$ and {H1(J_, 0, 6’)} = ZHlk(j, @)e’ikqﬁ
k

B The equationkrelating the amplitudes is now
L kv S+ 951k Hy, and can be solved yielding

06 i 0+2m ' ,
Slk _ . / Hlkezkzl/(e —9—7‘(‘)d9/
2 sin f;ﬂku) 0
B Using these as Fourier coefficients, the generating function

1S

. 0+27
() : /
S, = E Hy . etklotv(0°=0—m)] 19/
! - QSiIl(’]Tk‘V)/Q ke

Non-linear dynamics, CERN Accelerator School, October2015

B For sextupoles, and letting (s) = Biz,) we have
0
P gy [S(@ () —d(s) —mv)  sind(@+u(s) —w(s) )]
51 = 42 /s k() () [ sin(7v) i 3sin(37v) C§7
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B We derived (with a lot of effort) the common result that
sextupoles at first order excite integer and third integer
resonances

B Again this is not generally true! It is known that sextupoles
can drive any resonance (either if they are large enough, or
if the particle is far away from the closed orbit)

B This can be shown again by pursuing the perturbation
approach to second order (as for the tune-shift)

B A useful application is to use the generating function for
computing the correction to the original invariant, as the
new one should be an integral of motion (at first order)

J%j | aSl(ngpa(g)
Oy

38
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2

B For small perturbations, the new action variable is almost
an invariant but for larger ones phase space gets deformed

B Close to the integer or third integer resonance, canonical
perturbation theory cannot be applied

B The solution is provided by secular perturbation theory
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B The general accelerator Hamiltonian is written as

H(x, s Do Py 8) = Ho(@, Y, Doy Dys 8) + > Ty i, (8)2F g™
B The transverse coordinated can be expressed in action-angle

variables as

u(s) = /Juﬂ;(S) (ei(qﬁu(s)—l—eu(s)) +€—i(qﬁu(s)+9u(s)))
B The Hamiltonian in action-angle variables is

%/(Jwa Jy7 ¢a?7 ¢y) — HO(J907 Jy) + Hl(JCU’ Jy’ ¢3’37 ¢y)

2

1
The integrable part Hy(J,, J,) = E(V;,;Jg; + vy, Jy)
The perturbation _—
Hy(Jo, Ty, Gy byis) = 3 JE2TEZNTNT g5 g (5)ellU TR G (Emm)ey]
ok i
B The coefficients g;,,.(s) = ’;’f%ﬂ (“;) (k‘ly) 5o 2 5) B2 )il =R) 0 (<)1), ()

depend on the optics, with the indexes k, =j+k, k,=1+m

Non-linear dynamics, CERN Accelerator School, October2015
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B As the coeff1c1ents hi, ., (s) are periodic, the perturbation
can be expanded in Fourier ser1es

Hl(Jx7Jy7¢xa¢y7 Z Jk /2Jl@/2$‘$‘ S‘ 9iklm (] k)pr+(1—m)py,—pb]

@
Jo o Res

kz,ky ' [ p=—o0
with the resonance driving terms

ko (k 11 s (e
ke (j)(ly)z—”kt“m o 74 B, ey () 55212 (5) Bl /2 ()il =R)9 (5) + (1) ():+£0]

W Forn, =7 —k, n,=10—m,resonance conditions
appear for ngv, + nyvy, = p
B Goal of accelerator design and correction systems is to
minimize the resonance driving terms
Change magnet design so that Ay, 1 (s) become smaller

Introduce magnetic elements capable of creating a cancelling effect

Sort magnets or non-linear elementsin a way that phase terms are
minimised

Non-linear dynamics, CERN Accelerator School, October2015
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B The general resonance conditions is 70,V NylVy =P

with order 1, + Ty

BFor all the polynomial field terms of a 2m -pole, the excited
resonances (at first order) satisfy the condition 70y + Ty = T
but there are also sub-resonances for which T, Ty <m
B For normal (erect) multi-poles, the resonances (at first
order) are (n,,n,) = (m,0), (m —2,£2),... whereas for skew
multi-poles (n.,n,) = (m —1,%1), (m — 3,£3),...

B [f perturbation is large, all
resonances can be potentially excited **[ >0

B The resonance conditions form lines .| N
in the frequency space and fillitup =~
as the order grows (the rational P
numbers form a dense set inside the |
real numbers)

Non-linear dynamics, CERN Accelerator School, October2015
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2

B [f lattice is made out of N identical cells, and the

perturbation follows the same periodicity, resulting in
a reduction of the resonance conditions to the ones
satisfying  NMgVy + NyVy = JIN

B These are called
systematic resonances

B Practically, any (linear)
lattice perturbation breaks
super-periodicity and any
random resonance can be

excited
B (Careful choice of the

working point is necessary

Vertical Tune
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B First order correction to the tunes is computed by the
derivatives with respect to the action of the average part of
perturbation. For a given term, hy, 1, (s)z"*y" the leading

order correction to the tunes are
ky/2 ko Ky

vy = = > ZZQM ]{ (G=Fk) ¢t (l=m)¢y]

S1y = 4732 E:E:gﬂ“m]{ (= k)dat(i=m) )

where G; .1.m 1S the average of 9j.k,1,m(S) around the ring.

B In the accelerator jargon if 0V, ,is independent of the
action, it is referred to as tune-shift, whereas, if it depends
on the action, it is called tune-spread (or amplitude
detuning)

Non-linear dynamics, CERN Accelerator School, October2015

B At first order, § Vey =0, for odd normal and all skew
multi-pole (trigonometric functions give zero averages) 44
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. Lie Transformations and

o

normal forms
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B A transformation from the one to the other set can be
constructed through amap M : 7z +— 7Z

B The Jacobian matrix of the map N = M (Z, t) is

composed by the elements M, = %
<]
B The map is symplectic if M? JM = J where j=
B [t can be shown that the variables defined through a
symplectic map  [z;, z;] = [z, z;] = J;; whichisa
known relation satisfied by canonical variables

0 I
-1 0

B In other words, symplectic maps preserve Poisson brackets

Non-linear dynamics, CERN Accelerator School, October2015

B Symplectic maps provide a very usetul framework to
represent and analyze motion through an accelerator

2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

)

46
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2

The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

They can be represented by (Lie) operators of the form

frg=1[fg] and: f:2g=[f[f g]] etc

For a Hamiltonian system H(z,t) there is a formal
solution of the equatlons of motion % =|H,z| = H :z

written as z(t) = Z tk " 70 = et z, with a symplectic

map M = e ¥

The 1-turn accelerator map can be represented by the
composition of the maps of each element

M = ef2i gifst gifar  where f; (called the
generator) is the Hamiltonian for each element, a
polynomial of degree 177 in the variables z1,..., 2y

47
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B Consider two identical sextupoles in a beam line

represented by amap R
B The sextupole map can be represented at second order as
17 ... 7 -H. - 171 I1,-
S, = ¢ 2LS.Hd.6 LS.HS.6 sLs:Hyg:

1
with the sextupole effective Hamiltonian Hs = 61@(1’3 — 3xy°)
and H; the drift Hamiltonian

B The total map can be approximated at 2"4 order by
M =8RS ~ RSQR — 6—%LS:Hd:e—LS:HS:z]ée—LS:Hsze—%LS:Hd;

with the map R — e~ 3Ls:Hafp ,—3Ls:Ha:

B Taking into account that RR™" =7 and the similarity
transformation R~ 'e 'R = 7L Hs' the map can be
rewritten as e

-
-
-
"
-

~

Non-linear dynamics, CERN Accelerator School, October2015
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B If the map R is chosen such that R~ 1H _ [ . then
the sextupole map Lie operators i
_ 1 : N :

e LsR™ HS'@ Ls:Hs: _ 6LS.HS.e Ls:Hg: 7

B In that way, the sextupole non-linearity is getting
eliminated in the final map

M =~ 6__L Hg: RG__L Ha: 6_L Hg: Re~ Lgs:Hyg:
B Inspecting the form of F_ this can be achieved if

Rx = —u, Rpz = —pa, Ry = +y, Rpy = £p,
or in matrix form

-1 0 0 0 COS by + Qg SIN Ly b, sin fi, 0 0
O -1 0 01 —Cy SIN iy COS [by — Qg SIN [y 0 0
0O 0 +1 0| 0 0 COS [Ly + Gy Sin fiy by sin pu,
0O 0 0 =1 0 0 —Cyy SIN [y COS by — Qyy SIN [y

B The horizontal part of the matrix is —Z2 and the vertical
part is £Z2, which is obtained for phase advances

po = (2ng + 1), fy = ThyT

Non-linear dynamics, CERN Accelerator School, October2015
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B Normal forms consists of finding a canonical transformation
of the 1-turn map, so that it becomes simpler to analyze

eeeeeeeeeeeeeeeeeeeeeeee

B [n the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles

B The transformation can be written formally as
z —2 s g

with the originalmap M =® 1o N o ®
‘I)_ll lq’_l and its normal form
u — u’ N:q)OMOq)_l:e:heff:

F

N N nk
B The transformation ® — ¢ ° is better suited in action

angle variables, i.e. ( = e ' h taking the system from
the original action-angle h;—;y = \/2Jy 4 eF%=v to a new set
£ (N) = /2L, eT=s(N)  with the angles being just

Y
simple rotations, Vg (N) = 27NV, + wm,yo and the

new effective Hamiltonian depends only on the new actionss

Non-linear dynamics, CERN Accelerator School, October2015



the new actions, i.e.

§ ’ .k L ._m j+tk l+m i s
1klm

B There are software tools that built this transformation

B Once the “new” effective Hamiltonian is known, all
interesting quantities can be derived

B This Hamiltonian is a function only of the new actions, and
to 37 order it is obtained as

heff —=v,l, + Vyly
1
+ 504052 + Ccp1L50 + cy1ly0 + c30°

+ cmlg + Caylply + cyyls + Cpol 0% + cygly(52c454

Non-linear dynamics, CERN Accelerator School, October2015
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B The correction of the tunes is given by

————————————
~~~~~~~~~

L Oheyy 1 o5 57 2
1 Oh, 1 5'\ " ;
Qy — 9 a].ff — 27_‘_ Vy,_l_\zcyyl + Cajy])%/ \Cy]_5 -+ Cy252)
y AT NS ST s
tunes tune-shlft 1st and Ind order

with amplitude chromaticity

B The correction to the path length is

aheff
)

________________
,— ‘s

>
®n

N —
-~ -
~- ——
i ——— -

lst 2nd and 3rd

momentum compaction

Non-linear dynamics, CERN Accelerator School, October2015
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B Using the BCH formula, one can prove that the composition
of two maps with g small can be written as

of1p10 — exp [3f-|—( :f:. ,)g-l—O(QQ)i]

1 —e—:f:
B Consider a linear map (rotation) followed by a small
perturbation A4 — 63f2361f31
B We are seeking for transformation such that

N = (I)M(I)_l _ 6:l*_’:e:]‘é:e:fg:6—

B This can be written as

-
——————————
- ~

R /3
e I famF F = —
~~~~~~ - =T
ezfgzez(e_'fQ‘—l)F—l—f3:_|_

: B This will transform the new map to a rotation to leading orde5r3

Non-linear dynamics, CERN Accelerator School, October2015
QN
h
\V)
-
D
|
~h
\V)
@
QN
o
N'/
Q)
&
Q)
|



2

B Consider a linear map follovleed by an octupoie

R 2, .x™ . S
M = e 2@ +p .6.4.:€.f2.6.4.
B The generating function has to be chosen such as to

make the following expressﬁon simpler

(e )P4
B The simplest expression is ’?he one that the angles
are eliminated and there is only dependence on the
action

B We pass to the resonance basis variables
ht =V2J eT = & Fip
B The perturbation is
2* = (hy +h )" =h* =~} +4h3h_ +6R2h% +4h k> + 0

54
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we may choose the generating functions such that the other
terms are eliminated. It takes the form

1 ( hi 4h3h_  4h, h? ht )
1—

16 div V] _oziv T ] _oziv T ] i

B The map is now written as

32..
MzeFl/J—I—J - F

B The new effective Hamiltonian is dependmg only on the
actions and contains the tune-shift terms

B The generator in the original variables is written as

5a* + 3p* + 62°p® + 42°p(2 cot(v) + cot(2v)) + 4ap® (2 cot(v) — cot(2v))]

64[

B Constant values of the generator describe the trajectories in
phase space

Non-linear dynamics,’%ERN Accelerator School, October 2015
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M [t is possible by constructing the one turn map to

built the generating (sometimes called
“distortion”) function r ~ Z Firtm Ja

l4+m

J .
2 3 — 1Y jkim
Jy e

B For any resonance av, + bg, = ¢, and setting
wj 11 = (0, the associated part of the functions is

School, October2015

Flap ~

Jtk+l+m<n
j+k=a , l+m=b

Non-linear dynamics, CERN Accelerator
w

fikim J2 J2
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o 0.7 (7,0)
Q
o
C 06-
Q
c
8 0.5 - . “ 12
o o With "warm™ quad. errors
‘.6 0.4 1 . “ »”
5 o Without "warm™ quad. errors
I: 0.3 1
< (2,0)
@ 0.2 6.0 on
S 014
5 0
>
< : 3
(1,0) (1,-1) (1,2) (3,1)
Resonances
DA LHC Version
Phase Type (o) 4 5
Nominal || Target
Warm Quads | Average 91 || g
150 switched ON | Minimum ( ( 74 ) I\ 8.6
) Warm Quads | Average po .
switched OFF | Minimum W (103 ) [|[\11.3 )
Warm Quads Average 11.1 11.3 12.8
450 switched ON Minimum | 9.5 9.2 11.4
Warm Quads Average | 11.4 12.4 13.8
switched OFF | Minimum | 10.1 10.7 12.3

2

B In the LHC at injection (450
GeV), beam stability is
necessary over a very large
number of turns (107)

Stability is reduced from
random multi-pole
imperfections mainly in the
super-conducting magnets

Area of stability (Dynamic
aperture - DA) computed with
particle tracking for a large
number of random magnet
error distributions

Numerical tool based on
normal form analysis (GRR)
permitted identification of DA
reduction reason (errorsin the
“warm” quadrupoles)
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2

Hamiltonian formalism provides the natural framework to
analyse (linear and non-linear) beam dynamics

Canonical (symplectic) transformations enable to move
from variables describing a distorted phase space to
something simpler (ideally circles)

The generating functions passing from the old to the new
variables are bounded to diverge in the vicinity of
resonances (emergence of chaos, see 2" lecture)

Calculating this generating function with canonical
perturbation theory becomes hopeless for higher orders

Representing the accelerator (or beam line) like a
composition of maps (through Lie transformations) enables
derivation of the generating functions in an algorithmic

way, in principle to arbitrary order "
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1 Describe the motion of particles in ¢, coordinates (n
degrees of freedom from time ¢, to time ¢,

1 Describe motion by the Lagrangian function

Lig,...
genera

genera

» dn q.la IR 7Qnat)W1th(C]1, R 7qn) the
ized coordinates and (qi,...,qy) the

ized velocities

[ The Lagrangian function defined as [, =T — V/,
i.e. difference between kinetic and potential energy

dThe integral I = /L(qi,q};,t)dt
defines the action

JdHamilton’s principle: system | /

evolves so as the action becomes

Non-linear dynamics, CERN Accelerator School, October2015

extremum (principle of stationary action) P
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@_\

A The variation of the action can be Written as
t2 OL aL
ty

Q Takmg into account that 55 =

doq

dq (9(]

, the 2nd part of the

integral can be mtegrated by pﬁirts giving

L

SW =
W = B

A

oL

dq

d
dt

OL
8(})) dogdt =0

L The first term is zero because §q(t1) = dq(t2) =0
so the second integrant should also vanish
providing the following differential equations for
each degree of freedom, the Lagrange equations

d 0L

dt 0q;

oL

- 0g;

:OI
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eeeeeeeeeeeeeeeeeeeeeeee 2

JFor a simple force law contained in a potential
function, governing motion among interacting
particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

— 1
L=T-V =Y —mi¢? —Vi(q,...,qn
; Smig; = V(g an)
4 For velocity independent potentials, Lagrange
equations become
oV

0q;

m;{q; =

i.e. Newton’s equations.

Non-linear dynamics, CERN Accelerator School, October2015
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Not uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)
dLagrangian function provides in general 1 second
order differential equations (coordinate space)

dWe already observed the advantage to move to a
system of 2n first order differential equations,
which are more straightforward to solve (phase
space)

[ These equations can be derived by the Hamiltonian
of the system &

Non-linear dynamics, CERN Accelerator School, October2015
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Q It is useful (especially for rings) p g P ecory
to transform the Cartesian "
coordinate system to the O
Frenet-Serret system moving .
to a closed curve, with path length s

dThe position coordinates in the two systems are
connected by r =rq(s) + Xn(s) + Yb(s) = zux + YUy + 22Uy

A The Frenet-Serret unit vectors and their derivatives
. 2
are defined as (t,n,b) = ( d (5), —p(s) d (5),t x n)

1 %TO ﬁro
d t 0 ~o(s) 0 t
el e 0 0 7(s) n
> \b L0  —7(s)) \b

p(s)
with p(s) the radius of curvature and 7(s)the torsion

which vanishes in case of planar motion o4

Non-linear dynamics, CERN Accelerator School, October2015
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2

JdWe are seeking a canonical transformation between

(a,p) — (Q,P) or
(x7y7zapxapy7pz) = (X,Y,S,Px,Py,PS)

L The generating function is

0 : OF: ,

By using the relationship between the coordinates,
the generating function is

F5(p, Q) =-p-r+F3(Q) =—-p-r
and, for planar motion, the momenta are

X
P = (Px,Py,PS) — p-(n,b, (1 + —)t)

L Finally, the new Hamiltonian is given b}e

(Ps R %AS)Q
X \2
1+ 5)

+ m2c?+e®(Q)

H(Q,P,t) = c\/(PX — ZAX)2 + (Py — EAY)2 4




)

[ It is more convenient to use s, instead of the time as
the independent variable

 First, note that the Hamiltonian can be considered
as a 4 degree of freedom, where the 4t coordinate is
time and its conjugate momentum is P; = —H

dIn the same way the new Hamiltonian with the path
length as the independent variable is just
P, = —H(X,Y,t, Px, Py, P,, s) with

H= A ( L) \/<Pt+eq)> - m2¢? — (P, = ~Ax)’ = (Py = —Ay)?

Q1t can be pr%i;ed that this is indeed a canonical

transformation
A Note the existence of the reference orbit for zero
vector potential, for which (x,v,Px, Py, P,) = (0,0,0,0, Py)

Non-linear dynamics, CERN Accelerator School, October2015
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J

2

Due to the fact that longitudinal (synchrotron)
motion is much slower then the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

~ X
H=—A- (1 ¥ —) e e~ — a2 — (B — Ly
C \ C C

J

p(s) ¢ ]

|
P2

The Hamiltonian is then written as

e X e e
— _ _ _ - 2 _ _ _ 2 _ _ _ 2
e (1 XY i
If static magnetic fields are considered, the time
dependence is also dropped, and the system is 2
degrees of freedom + “time” (path length)
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[ Due to the fact that total momentum is much larger
then the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q.P) — (a,p) or
(XaythPXaPY7Pt) = (a_j)z%t_aﬁxaﬁyaﬁt) — (X7Y7 —C tv

Px Py P

P, Py’ Py

(JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

)

- H - T o m2c? _ _
H(T Gt Pas Pys P1) = - = —eAs—(l + —) \/pf - — (P» — €Ag)? — (Dy — eAy)?

Non-linear dynamics, CERN Accelerator School, October2015

p(s) P
with (4,4, A.) = Pl (A, A, A)
0C
m?c? 1
and Py 392 8
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1 Along the reference trajectory p, = 1 and
dt OH 1 o

E‘PzPo = o, \p=p, = —Dio = 5o
[ It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transtormation is performed
(@p) — (§p) or

- T . .- 8—S80 . . _ 1
($7y7t7px7p’y7pt> = ($7y7t7px7py7pt) — ($7y7t+ Wapaﬂp@ﬁpt _ _0)
L The mixed variable generating function is

N OF5(q.p) OF(d.p 1

(4,P) = ( a(g B). 8(:_11 P)) providing
F5(Q,D) = Tp, + ypy + (T + 3 )(ﬁt—'_ﬁ_)

A The Hamiltonian is then 0 0

; i 1.1 i & 1 1
E Hjagataﬁmaﬁ 723 = 5 _+]3 —eA —(1—|——> ﬁ 4+ —)2 -
( ys Dt) 0<50 t) 5 () (Pt /30) e

S — Sp 1

Non-linear dynamics, CERN Accelerator School, October2015

— (Pz — elex)z - (ﬁy - eley)z
69



=

1
d Flrst note that Dy = Pr — B = — Dy — Pro = =
and | = ¢ 0 |
QIn the ultra-relativistic limit gy -1, —— — 0
and the Hamiltonian is written as 0
SH(z,y,l,pz,Dy,0) = (1—|—5)—efls— (1 + %) \/(1 +6)2 — (py — eflx)2 — (py — efly)z

where the “hats” are dropped for simplicity

L 1If we consider only transverse field components, the
vector potential has only a longitudinal component
and the Hamiltonian is written as

— _eA. — e 2 22 2
EH(x,y, 1, pz, Dy, 0) = (1 +§) — A (1—|—p(8)>\/(1—|—5) p: — p;

dNote that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)! o

Non-linear dynamics, CERN Accelerator School, October2015
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2

B Expand term by term the Hamiltonian H (J (j , @), go(f , @), 0)
to leading order in ¢
Ho(J(J,®)) = Ho(J) +

eaﬂo(j) 051(J, ¢,9)
a.J 9P
ey (J(J, @), (T, §),0) = cHi(J, @) + O(?)
B The new Hamiltonian can also be expanded in orders of €

H:H0+€H1—|—...
B Equating the terms of equal orders in €, we obtain
Zero order Hy = HO(J_)

+ O(€?)

First order H, = 951 <gé¢’9) + w(J) - 951 (8(];;0’9) H(J,p)
OH(J)

where the frequency vectoris  (y (j ) —
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B From the first order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be spht In two parts:

Average part: (H1p)g ( ) ?{ Hi(J
2T
Oscillating part: { H1 } = Hy —

B The 1%t order perturbation part of the Hamiltonian then

becomes

i = PHEED  o(5) PR (5. 9)p + (1T 9))

B Thus, the generating function should be chosen such that
the angle dependence is eliminated, for which
() = (1 (T8 and P20 ) OS2 iy, (7 g
B The new Hamiltonian is a function of the néw actions
H(J) = Ho(J) + ¢ (H(J,@))g + O(*)  with the
new frequency vector

o(J) = 8}8{(] /)

0J

Non-linear dynamics, CERN Accelerator School, October2015
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eeeeeeeeeeeeeeeeeeeeeeee

B The questlon that remains to be answered is whether a
generating function can be found that eliminates the angle
dependence

B The oscillating part of the perturbation and the generating
function can be expanded in Fourier series

{Hi(J, @)} =Y Hu(J)e'*F e g, (J 5,0 Z Sy (J)ei k@ Hp0)

with k-®=Fkipr+- -+ knpn
B Following the relationship for the angle elimination, the
Fourier coefficients of the generating function should

satisfy _ Hoo(J
Su(J) = ikl

k-w(J)+p

B Then, the generating function can be written as

N Hic(J)  hepips
S(J,p)=J -p+e = el k- ?+p0) 4 O(?
(J,¢)=J ¢ g:gk-w(-f)ﬂ? (¢?)

with k,p#0
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B [t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written 1 9%H, (831 ) 2 N 0H, 05,

OH, 054

2 0J2 \ 8¢
B This can be simplified to H,(J) = (

S o7 06
N 8j1 = 28\52) JY28(5)%/2(cos 3¢ + 3 cos d)
9S4 J3/2 s+C

o5, _ I gy [0S0+ B —U(s) —mv) | cosB(6+ () — wls) —m)]
0¢ 2v2 Js Ko(5)8(5) [ . SiI.l(WV). i sin(37v) ] d
B The 27 order Hamiltonian is given by the angle-averaged
product of the last two terms.
B [t is quadratic in the sextupole strength and the new action.

The 24 order t_une-shift is the derivative in the action

= OH J C s+C
) =7 )0 = 167 |, R [ KB

X[aw¢+ww»~w@—ww+p%a¢+wwr~MQ—ww ,

d
sin(7v) sin(37v) ° 74

B The two terms are
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B The smgle resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,
1978))

H(Jy, Jyy buy by 8) = = Wade + vy dy) + gn,. J Jy2 coS(Ng Pz + Nydy + Po — pb)

?’LyR

Wlth Inz,n, €
B From the generating function

E(fx, by, jxv jya s) = (NyPz + NyPy — pé’)fx + ¢yjy
the relationships between old and new variables are

AN

¢Efc — (nac¢:1; + ny¢y — p@) , Jr=ngdy
qu:qby, Jy:nij+jy
B The following Hamiltonian is obtained

(NpVy + nyvy — p)jx -+ jy 2
I + Gnpomy, R(
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H( Sy, Iy bs) = nodo)F (nyds + J,) % cos(ds + dors
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B There are two integrals of motion

The Hamiltonian, as it is independent on “time”

The new action j y 35 the Hamiltonian is independent on éy

B The two invariants in the old variables are written as:

I, J,
cCh = —— —
Ny Ny
p p ke Ty
Co = (Vﬂc - T)Jx T (Vy - m)‘] + gnx,nyt] 2 Jy2 Cos(nx¢m + ny¢y + ¢0 —p@)

B Two cases can be distinguished

ng , N, have oppositesign, i.e. difference resonance, the motionis
the one of an ellipse, so bounded

ng , N, have the same sign, i.e. sum resonance, the motionis the one
of an hyperbola, so not bounded

B These are first order perturbation theory considerations

B The distance from the resonance is obtained as

—92 ky—2
A = 9’”2;”'*! To T J, 7T (kungds + kynyJ,)
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lDipole:]{_x5 I 72 I PiJFP?ZJ
o - 2(146)

B Quadrupole:
1
H = 5]@1(332 — y2)
B Sextupole: |
H = gkg(ﬂ?g — 3xy?) -
B Octupole:

1
H = Zkg(CEA — 6332?]2 + y4) |

vy +p;
2(1+0)

vy +p;
2(1+ 0)

vy +p;
2(1+ 0)
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Lie operators f

2

Element Map Lie Operator
Drift space x =29+ Lpo exp(: — 5 Lp*:)
P =Dpo
Thin-lens Quadrupole = = xg exp(: — %xQ:)
P =DPo— %-’Eo
Thin-lens Multipole T =g exp(:Ax™:)
p = po + Anz™ 1
Thin-lens kick r =g exp(: [y f(z)dz":)
p=npo+ f(z)

Thick focusing quad
Thick defocusing quad
Coordinate shift
Coordinate rotation

Scale change

x =xgcoskL + B sinkL

p = —kxgsinkL —I— po cos kL

x = xgcosh kL + B sinh kL

p = kxgsinh kL + pg cosh kL
r=x9—0b

P=Dpota

T = T COS [L + po SIn [

P = —xoSIn it + pg COs 1

r=e rzg

P = 6)‘170

exp[: —

%L(lczar2 + p?):]

exp[:3L (k%22 — p?):]

exp(:ax + bp:)
exp[: — gpu(a?

exp(:Azxp:)

+p?%)]
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eeeeeeeeeeeeeeeeeeeeeeee

a: =0, e* =1
fia=0, el'a=a
Fif =0, ¢lp=]

{:f::9:0 =:1[, gl
eig(X) = g(e?X)

. eNyg(X) =g(X - S0)
- el'G(g)e ™ = Gel g



