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Hamiltonian formalism provides the natural framework to
analyse (linear and non-linear) beam dynamics

Canonical (symplectic) transformations enable to move
from variables describing a distorted phase space to
something simpler (ideally circles)

The generating functions passing from the old to the new
variables are bounded to diverge in the vicinity of
resonances (emergence of chaos)

Calculating this generating function with canonical
perturbation theory becomes hopeless for higher orders

Representing the accelerator (or beam line) like a
composition of maps (through Lie transformations) enables
derivation of the generating functions in an algorithmic
way, in principle to arbitrary order



Phase space dynamics
- Fixed point analysis
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B Valuable description when examining
trajectoriesin phase space (u, P, )

B Existence of integral of motionimposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

1
H_z(pu—l_wQ 2)

phase space curves are ellipses around
the equilibrium point parameterized by
the integral of motion Hamiltonian
(energy)

By simply changing the sign of the
potential in the harmonic oscillator, the
phase trajectoriesbecome hyperbolas,
symmetric around the equilibrium point
where two straight lines cross, moving
towards and away from it
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B Conservative non-linear oscillators have Hamiltonian

1
H=FE=_p,+V(u

with the potential being a general (polynomial) function of positions
B Equilibrium points are associated with extrema of the potential

B Considering three non-linear oscillators
Quartic potential (left): two minima and one maximum
Cubic potential (center): one minimum and one maximum
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Pendulum (right): periodic minima and maxima 5



B Consider a general second order system dt

2

du — fl(uvpu)
% — f2(u7pu)

B Equilibrium or “fixed” points fi(uo,puo) = f2(uo, puo) = Oare
determinant for topology of trajectories at their vicinity
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Jacobian matrix
B Fixed point nature is revealed by eigenvalues of M j, i.e.
solutions of the characteristic polynomial det My —A| =0

|

B The linearized equations of motion at their vicinity are

O
OPu
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B For conservative systems of 1 degree of freedom, the second
order characteristic polynomial for any fixed point has two
possible solutions:

Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise

Two real eigenvalues with opposite sign, corresponding to hyperbolic
(or saddle) fixed points. Flow described by two lines (or manifolds),
incoming (stable) and outcoming (unstable)

---------------------

AN hyperbollc //
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B The Jacobian matrix is [

2

B The “fixed” points for a pendulum can be found at

(Pn,pp) = (Enm,0), n=0,1,2...

0

— cos ¢y,

)

B Two cases can be distinguished:

b = 2n , forwhich \; 5 = +i %
corresponding to elliptic fixed poinits

¢n = (2n + 1)7 , forwhich \; 5 = +, /%

corresponding to hyperbolic fixed points

The separatrix are the stable and unstable

manifolds passing through the hyperbolic
points, separating bounded librations and
unbounded rotations

B The eigenvalues are Ao = ii\/ % cos ¢n,

|- elliptic
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B Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi + w%(t)uz)

B Plotting the evolution in phase space, provides
trajectories that intersect each other (top)

B The phase space has time as extra dimension,

B By rescaling the time to becomeT = wot and
considering every integer interval of the newpu
time variable, the phase space looks like the |

one of the harmonic oscillator (middle)

B This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

B The fixed point in the surface of section is now
a periodic orbit (bottom)
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B Record the particle coordinates at one Poincaré Section:

location (BPM) N
B Unperturbed motion lies on a circle in Y \/QY
normalized coordinates (simple rotation) y

A U o

N B
ML N

B Resonance condition corresponds to a ;
periodic orbit or in fixed points in phase 2”y U
space

B For a nonliner kick, the radius will

change by §(V/2.J) and the particles stop
lying on circles ®

V2J +6(V2J) 10
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Non-linear dynamics, C

Motion close to a
resonance
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studied through secular perturbation theory (see appendix)

B The vicinity of a resonance niwi + nows = Pcan be

B A canonical transformation is applied such that the new
variables are in a frame remaining on top of the resonance

B If one frequency is slow, one can average the motion and
remain only with a 1 degree of freedom Hamiltonian

B Finding the location of the fixed points (.J;q, ¢19) (i.e. periodic
orbits) in phase space (J1,#1) and defining a new action
AJ, = J — Ji0, ghe resonant Hamilto2nian is
0“Ho(J) (AJy)
H.(AJy, 1) =
( Jl ¢1) 8J1 D) 9

B This is a pendulum where the frequency and the resonance
half width are 2

+2eHy, —n,(J) cos

Ji1=J10

0?Ho(J)
OJ; °
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82 Ho (J)
51 2

1/2
AT g =2 | 22HnnalD)
W1 = 25Hn1,—n2('])
Ji1=Jio

12
Ji1=J10
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B We first introduce the distance to the resonance

V:§—|—5, 0 << 1

B [t is convenient then to eliminate the “time” dependence by
passing on a “1-turn” frame, using the generating function

Fy(¢,J1,8) = ¢J1 + J1 (27WS —/ s ) = (¢ + x(s))J1
0

C B(s’
with the new angle ); = ¢ — x(s) provic(iir)lg the Hamiltonian
2
Hy = 204 22K () ()2 cos® (0 + X(9)

B The perturbation can be expanded in a Fourier series, where
only the resonant term is kept or,

[Afl — VJl -+ Jf/QAgp COS(S?ﬂl — p@)

in the rotating frame on top of the resonance

ﬁg — 0Jy + J§/2A3p cos(32) ’
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B By setting the Hamilton’s
equations equal to zero, three

2
fixed points can be found at ,, — g | 337T | 537T Ty = ( 20 )

B For Ai > 0 all three points are
unstabgfe Separatrix
B (Close to the elliptic one at Unstable >
. . fixed points ,
90 = 0the motion in phase .
/ unstable

space is described by circles
that they get more and more
distorted to end up in the
“triangular” separatrix uniting
the unstable fixed points

08
":¢20 — §

The tune separation from the
resonance (stop-band width)is J = 5 20
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B For any polynomial perturbation of the form ¥ the
“resonant” Hamiltonian is written as

2 k/2
Hs =6Js + a(Js) + J2/ Ay cos(kio)
B Note now that in contrast to the sextupole there is a non-
linear detuning term «(.J)

B The conditions for the fixed points are

Oo(J: k _
sin(kig) =0, 0+ C({;?] 2) + §J§/2 1Akp cos(kis) =0
2
B There are £ fixed points for which ¢os(k1)59) = —1 and the

fixed points are stable (elliptic). They are surrounded by

cs, CERN A ccelerator School, October 2015

ellipses

o=

: B There are also f; fixed points for which cos(k99) = 1 and

the fixed points are unstable (hyperbolic). The trajectories are

Non-linear dynam

hyperbolas 15
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B The resonant Hamiltonian close to the 4t order resonance is
written as

& 2 2
Hy = 0Js 4 c¢J3 + J5 Agy cos(41)2)
B The fixed points are found by taking the derivative over the
two variables and setting them to zero, i.e.

sin(4i2) =0, 0+ 2¢cJs 4+ 2J2Agy, cos(41)s) = 0

B The flxed points are at
’I T \‘I 13 T \‘ ’/’ \‘ /
1
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B Regular motion near the
center, with curves getting more
deformed towards a rectangular
shape

UFP

B The separatrix passes through
4 unstable fixed points, but
motion seems well contained

B Four stable fixed points exist
and they are surrounded by
stable motion (islands of
stability)

B(Question: Can the central
fixed point become hyperbolic
(answer 1n the appendix)

Non-linear dynamics, CERN Accelerator School, October2015
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Onset of chaos
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B When perturbation becomes higher, motion around the

separatrix becomes chaotic (producing tongues or splitting
of the separatrix)

B Unstable fixed points are indeed the source of chaos
when a perturbation 1s added
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B Poincare-Birkhoff theorem states that
under perturbation of a resonance only an

even number of fixed points survives (half
stable and the other half unstable)

B Themselves get destroyed when
perturbation gets higher, etc. (self-similar
fixed points)

B Resonance islands grow and resonances
can overlap allowing diffusion of particles

2e-06 - ; . - : 1e-06 s

1.5e-06
9.5¢-07

le-06

9e-07
S5e-07 +

0 r 8.5e-07 r

-5e-07 |
2 8e-07 |

-le-06
7.5e-07

-1.5e-06
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0.8—

0.6~

0.4

0.0

2

When perturbation grows, the resonance island width grows

Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

2 1 . 1
ni+nso nj+nkh

82 Ho(J)
dJ 2

The distance between two resonancesis sj,. ., —

The s1mp1e overlap criterionis
AJn maz T AJn’ maz = 5Jn ,n’
Considering the width of chaoticlayer and secondary islands, the “two
thirds” ruleapply Aj 1 AJ, > 25 J.
= 30Jn,

The main limitation is the geometrical nature of the criterion (difficulty to
be extended for > 2 degrees of freedom)

1.0

j1:j10

p/217t0_\ M/

00 02 04 06 08710 ‘
SN— 2r &
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B Computing / measuring dynamic aperture (DA) or

particle survival

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

B Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B Variance of unperturbed action (a la Chirikov)

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

B Fokker-Planck diffusion coefficient in actions
T. Sen and J.A. Elisson, PRL 77, 1051, 1996

B Frequency map analysis

Non-linear dynamics, CERN Accelerator School, October2015
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Dynamic aperture
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B The most direct way to evaluate the non-linear dynamics
performance of a ring is the computation of Dynamics
Aperture

B Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

B This is not true for all non-linearities (e.g. the beam-beam
force)

B Need a symplectic tracking code to follow particle trajectories
(a lot of initial conditions) for a number of turns (depending
on the given problem) until the particles start getting lost

B As multi-pole errors may not be completely known, one has to
track through several machine models built by random
distribution of these errors

B One could start with 4D (only transverse) tracking but
certainly needs to simulate 5D (constant energy deviation)
and finally 6D (synchrotron motion included)

Non-linear dynamics, CERN Accelerator School, October2015
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B Dynamic aperture plots show the maximum initial
values of stable trajectories in x-y coordinate space at a
particular point in the lattice, for a range of energy
errors.

2 The beam size (injected or equilibrium) can be shown on the
same plot.

2

0 Generally, the goal is to allow some significant margin in the
design - the measured dynamic aperture is often smaller than
the predicted dynamic aperture.

Y (mm)
Y (mm)

-30 -20 -10 0 10 20 30

Non-linear dynamics, CERN Accelerator School, October2015
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| @ox=70.1277 @z=35.4182

-2 Q 2
X, mm

Including radiation damping and
excitation shows that 0.7% of the
particles are lost during the damping

Certain particles seem to damp away
from the beam core, on resonance

1slands
26



B MOGA -Multi
Objective Genetic
Algorithms are being 3
recently used to
optimise linear but also _**
non-linear dynamics of
electron low emittance

storage rings

B Use knobs quadrupole
strengths, chromaticity

no

—
&

—
T

Dynamics aperture area (m2)

sextupoles and 05|
correctors with some et
constraints %5 2 25 8 85 4 45 5
Horizontal emittance £, (mm-mrad)
B Target ultra-low
horizontal emittance,

increased lifetime and
high dynamic aperture

Non-linear dynamics, CERN Accelerator School, October2015
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During LHC design phase,
DA target was 2x higher
than collimator position,
due to statistica
fluctuation, finite mesh,
linear imperfections, short
tracking time, multi-pole
time dependence, ripple
and a 20% safety margin

Better knowledge of the
model led to good
agreement between
measurements and
simulations for actual LHC

Necessity to build an
accurate magnetic model
(from beam based
measurements)

:
g

2

DA inferred from measured loss data -

s Simulations: IC 1=2x1 0:3
ICl=4x10" =

12-

10-

8-

6.

YIRS SRS SR SN SNON SN SO,
2 4 6 8 10 12 14
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Frequency Map Analysis
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B Frequency Map Analysis (FMA) is a numerical method
which springs from the studies of J. Laskar (Paris
Observatory) putting in evidence the

B chaotic motion in the Solar Systems

B FMA was successively applied to several dynamical
systems

Stability of Earth Obliquity and climate stabilization (Laskar,
Robutel, 1993)

4D maps (Laskar 1993)

Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

Accelerator beam dynamics: lepton and hadron rings (Dumas,
Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and
Laskar 2001)

30
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B Consider an integrable Hamiltonian system of the usual form
H(J7 P 9) — HO(J)

. : . : OHo(J)
B Hamilton’s equations give %= ~—5;— =% (J) = @5 = w; (D)t + djo
. 9Ho(J) -
Jj = 96, = (0 = J; = const.

B The actions define the surface of an invariant torus
B |n complex coordinates the motion is described by

Cj (t) _ J] (O)injt _ Zjoeiwjt 2
B For a non-degenerate system det () O Ho(J) 20

5 y 5. E
there is a one-to-one correspondence between the actions and

|=det

the frequency, a frequency map
can be defined parameterizing
the tori in the frequency space

F: (I — (w)

Non-linear dynamics, CERN Accelerator School, October2015
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B If a transformation is made to some new variables
(j =1 = z; + €G(z —zj+eg CmZq 2y %z

B The system is still integrable but the tori are distorted
B The motion is then described by

() = zjoe™ " + ) ame’ !

m
i.e. a quasi-periodic function of time, with

Um = € CmZ210 250 - -+ Zpg" and m - w = miwy + Maws + - -+ + Myuwy,

B For a non-integrable Hamiltonian, H(I,0) = Hy(I) + ¢H'(1;i)
and especially if the perturbation is small, most tori persist
(KAM theory)

B In that case, the motion is still quasi-periodic and a
frequency map can be built

B The regularity (or not) of the map reveals stable (or chaotic)
motion 32

Non-linear dynamics, CERN Accelerator School, October2015
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B When a quasi-periodic function f(¢) = ¢(¢) + ip(t) in
the complex domain is given numerically, it is
possible to recover a quasi-periodic approximation

N
f'(t) =) ape™
k=1

in a very precise way over a finite time span |1, T’
several orders of magnitude more precisely than
simple Fourier techniques

B This approximation is provided by the Numerical
Analysis of Fundamental Frequencies — NAFF
algorithm

: B The frequencies wj and complex amplitudes a;, are
computed through an iterative scheme. 3

Non-linear dynamics, CERN Accelerator School, October2015
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t frequency / is found by the location of the
maximum of

o0) = (0™ = 5 [ f(e oyt

where (¢) is a weight function
B In most of the cases the Hanning window filter is

used yq(t) =1+ cos(wt/T)
B Once the first term "1t is found, its complex
amplitude a’l is obtained and the process is restarted

on the remaining part of the function
At = J(0) — ajei

- @ The procedure is continued for the number of desired
terms, or until a required precision is reached

Non-linear dynamics, CERN Accelerator School, October2015
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B The accuracy of a simple FFT even for a simple |

sinusoidal signal is not better than |y — pp| = =

2

B Calculating the Fourier integral explicitly

. 1 [T .
_ lwt —lwt
o) =<i(t), 7 >= 5 /0 e dt  chows that the
maximum lies in between the main picks of the FFT

T T T T T
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B A more complicated
signal with two
frequencies

f(t) _ alez’wlt 1+ a2€iw2t 0_1

shifts slightly the
maximum with
respect to its real
location

1

0.8

0.6

0.4

0.2

1.05 -

0.95 -

0.9

d
/

—
PR
L
E——
D FR
|

0.9

0.95 1 1.05
36



Non-linear dynamics, CERN Accelerator School, October2015

B A window function like the Hanning filter
x1(t) = 1 4 cos(7t/T) kills side-lobs and
allows a very accurate determination of the

frequency

1 F

08 r

06

04 -

02 r

0

02




2

B For a general window function of order p
() = 2@
X —
’ (2p)!
Laskar (1996) proved a theorem stating that the
solution provided by the NAFF algorithm
converges asymptotically towards the real KAM
quasi-periodic solution with precision
1
T
B [n particular, for no filter (i.e. D = 0) the precision

(1 + cosmt)P

12 , whereas for the Hanning filter (p = 1), the
1
precision is of the order of =i

1S

Non-linear dynamics, CERN Accelerator School, October2015
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2

B In the vicinity of a resonance the system behaves like a

pendulum

B Passing through the elliptic point for a fixed angle, a fixed
frequency (or rotation number) is observed
B Passing through the hyperbolic point, a frequency jump is

oberved
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2

B For a 2 degrees of freedom Hamiltonian system, the

frequency space is a line, the tori are dots on this lines, and
the chaotic zones are confined by the existing KAM tori
For a system with 3 or more

degrees of freedom, KAM il
tori are still represented by *®®® e ¢ ¢ AN
dots but do not prevent 2 /'
chaotic trajectories to diffuse

: : ooy VSV
This topological possibility /M . .

. . . . ~. g

of particles dlffl%Sll’lgOIS o .O::.ﬂ-“_.__;,. :0 .
called Arnold diffusion o ‘o (.80 .
This diffusion is supposed e ¢ ...8. i” ° o oo

b 1 11 * % es IR Y
to be extremely small in ° ‘o g0 °9
their vicinity, as tori act as o ® * o _
effective barriers Vo IV

(Nechoroshev theory) m
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B Choose initial conditions(:lj‘i, yi)with (px;i, py;z’)
B Numerically integrate trajectories for sufficient number of
turns

B Compute through NAFF (Q,.;, ;) after sufficient number
of turns

2

2 h . .
= @ Plot them in the tune diagram
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m Frequency maps for the target error table (left) and an
increased random skew octupole error in the super-
conducting dipoles (right) 2
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" Calculate frequencies for two equal and successive time
spans and compute frequency diffusion vector:

D‘t:’r — V‘tG(O,T/Q] o V|t€(7/277]

" Plot the initial condition space color-coded with the norm
of the diffusion vector

" Compute a diffusion quality factor by averaging all
diffusion coefficients normalized with the initial conditions

radius
D
Dor =
< (]20 L 150)1/2 >R

X

Non-linear dynamics, CERN Accelerator School, October2015
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(V] . . .

£  Diffusion maps for the target error table (left) and an increased random

: . . . .

2  skew octupole errorin the super-conducting dipoles (right) “
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. Numerical Applications
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o)
I|I||II||||||||||||||||| 10° ‘ ‘
@®—@ no correction
Type 0 Typeo 13 ”
10t | @ ®hwel «——m " Chosen scheme
® OTypell
Type II1
Type | s . ®  OTypelV
:§ 10
o
<
>
S
=
S 107 \
o
Type Il = a\e * o
s s = i
10 S
0 5 10 15

Position (o)

m Comparison of correction schemes for b, and bs errors
in the LHC dipoles

m Frequency maps, resonance analysis, tune diffusion
estimates, survival plots and short term tracking,
proved that only half of the correctors are needed

CERN A ccelerator School, October2015
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Variable Symbol Value

Beam energy E 7 TeV
Particle species protons
Full crossing angle 0. 300 urad
rms beam divergence ol 31.7 prad
rms beam size oy 159 um
Normalized transv.

rms emittance ve 3.75 um
IP beta function B 0.5m
Bunch charge N, (1 X 10"=2 x 10'?)
Betatron tune Qo 0.31

PACMAN bunch

long-range
collisions

PACMAN bunch

head-on
collision

long-range
collisions

Ax

Ay

with

A

m [ong range beam-beam interaction
represented by a 4D kick-map

2
2r, Ny | ' +6 A
P b C 202
- npar 92 1 - 6 T,y
Y t
02
1 1 —e 2%y
0.
/ 02
27“pr Yy 29275
nparr- - ]. — € Yy
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0.325 H .d - " " " L 0.325
0.320 0.320 “ :
0 0 .-~ o7 0 Tk
=) = &L~ etae Al N
= jo] - Pie S . |
~ = g -7 %: . ',
T‘v TU ,/ ( ,r : So
< Q /', /@ ’ ’ : I N
= = g 1o \ L
o 0315 | 5 0315 .- err ST AN,
> e P > L~ - A 2N
;\\,/ ,1 ¥ ’/ //\\’/ 1 | , | \‘ /
> 4 ‘s O | v | N
- ’ ,/ ’ 4 (R4 7’ 4] =1 N,/
°*0-50 e 4 ’ *0-50 “ pd { s 7 =0 N
< , 7 g , N,0 e ) INVIRN
*5-100 . *5-106 - A I = o/
s &<, ’ e 7 & | ” M | N
, ’ ’ -, P ’ A &Y | /
4 ’ 4 P 4 P s | |
0.310 i /” ’, /g\,, i 0.310 _/,, ’,, ,’ /q\” ,:’ =q: : /
7’ 7’ b‘,’ , 7’ ’/ b’y’ ,/ ' '_?- ' N
o> -7 ’ . | < v/
l’l 4, ll, L L L A’I l’ L l’ ll Il 1 1/ |
0.285 0.290 0.295 0.300 0.305 0.310 0.285 0.290 0.295 0.300 0.305 0.310
Horizontal Tune Horizontal Tune

m Proved dominant effect of long range beam-beam effect

m Dynamics dominated by the 1/r part of the force, reproduced by
electrical wire, which was proposed for correcting the effect

m Experimental verification in SPS and installation to the LHC IPs

Non-linear dynamics, CERN Accelerator School, October2015
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7 2
— 107 107 + T
Q - ¢ head on |
g 105:_ s h.o.+l.r. | ’|L—\
‘c |
€ .
o . 1 s AN -y ST ¢ A HGIN i Siviw—
~ 10

5 F o h.o.+l.r.+tr.err.

S 104l +tunemod
3 107

<

o

o

+Moebius twist

I
1
|
1
1
|
I,
F o h.o.+lr.+treerr. %m
|

103;

tune difference

headon (h !) )

head on + l&ngrange (Ir)
107 L lr. + KEK !riplet errors (tr.er.) .
ho. + Lr. +/KEK trer.
ho.+1lr. +IENAL trer.

—— KEK trer. | a
N R : . L . @)

8 10 0.0 20 4.0 6.0 8.0 10.0
amplitude x,y (o,,) amplitude x.y (0)

[
[
|
|
[
PR "
5

m Very good agreement of diffusive aperture boundary (action
variance) with frequency variation (loss boundary
corresponding to around 1 integer unit change in 107 turns)

49

Non-linear dynamics, CERN Accelerator School, October2015



o0

The CERN Accelerator School

2

- Up to now we considered only
transverse fields

10000 -
. . .
5000 | ‘ Ma.gneti fringe field is the
i longitudinal dependence of the
8000 - /
- . field at the magnet edges

7 _
=T :
S5 6000 | ] . Important Wheg magnet aspe.ct
2o s | : ratios and/or emittances are big
O\ 3 .= 7000 1
E g' 4000 - 3 N
5 3000 - 5
E 2000 - H
< g 4000 1
Z 1000 - 3
E—l) 3000 A
CL:: 0 | 2000 -
: 0 50 100 150
E Z (cm) 1000 A
.'E'll:) ° 0 10 20 3I0 40 50 60
5
Z

V4 (cm) 50



o0

The CERN Accelerator School

General field expansion for a quadrupole magnet:

o0 1)mx2n 2m-+1

[21]

2

(— m
Be= D Z (2n)!1(2m + 1)! (l)b2n+2m+1—2l

m,n=0[1=0

By

m,n=0 [=0

m,n=0 [=0

and to leading order

Non-linear dynamics, CERN Accelerator School, October2015

i . ;
B: = y|bp——(3z%+ yQ)b[lz]
i 12
_ IR 23 [2]
By, = z|b T (3y® + =“)b3
B. = axybil+0()

( 1)mx2n—|—1y2m—|—l m
Z Z (2n + D)!I(2m + 1)! (l)b

0 m (_1)mx2n—|—1y2m my | [21]
2. 2 (2n 4 1)!(2m)! (l)b2n+2m+1—2l

[20+1]
2n+2m-+1-—-2I

+ O(5)

+0(5)

The quadrupole fringe to leading order has an octupole-like effect 5t



m From the hard- edge Hamiltonian

+Q

F= 12Bp(14°2)

(v3py, — 23p2 + 32%yp, — 3y%ap.),

the first order shift of the frequencies
with amplitude can be computed

analytically

oVy\
ovy )

(torsion)
Ahh = 167TB
Ahy = 167TB

Ayy = 167er

Non-linear dynamics, CERN Accelerator School, October2015

Anp Ay
Ahv Uy

Z Qi BriOizi
Z +Q; (Bmayz
Z inByz@yz

27, -
2J, )

5.83¢

with the “anharmonicity” coefficients

5.82¢

Byia:ci) >8]

2

Tune footprint for the
SNS based on hard-
edge (red) and realistic
(blue) quadrupole
fringe-field

Oy

Realistic il |
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SNS Working Point (Qx,Qy)=(6.4,6.3)

op/p=12%,-2%| (@ 480 T mm mrad

Vertical Tune
=)
W

I
I
I
I
I
I
I
I
I
.
I -\
64 | | T~
| \
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vertical PositiovA

6.4
Horizontal Tune

0.08

0.06

S
>
X

0.02

Vertical Tune

op/p=—1% (@ 480 T mm mrad

6.39 |

6.38

6.37 |

SR SN P S VO S SO SV

(2,0) (4,0) ;

6.48 6.49

Horizontal Tune

A
n

|D] <1077

Sp/p=—1.0%

: , e 1077
e 107°
e 107°
e 1071

ANNNNNNA

| D]
| D]
| D]
| D]
| D]
| D]

= F

0.02 0.04 0.06
Horizontal Position [m]

0.08

IAIAIA TN TA

6.51
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m Choice of e
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Tune Diffusion quality factor

Do — < \D| >
QEF — )1/2 /R
1() y()
0.014

o A (6.23,5.24) Chosen Working Point
S 0.012- o
£ . (6.4,6.3)
o S 0.01 -
S =
2 2 0.008
n @ (). -
5 =
T = 0.006
- D(63 8)

-
% 2 0.004 AN A H
o A :
E 0.002 - +£3,0. :
(= >
=
g 0 . .
: 25 2 15 -1 05 0 05 1 15 2 25
Z

Momentum spread [%] 54
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m Figure of merit for

Non-linear dynamics, CERN Accelerator School, October2015

choosing best working
point is sum of diffusior

rates with a constant 064 Fruma—_—r
added for every lost L N
partiCIG 0,62

Each point is produced .|
after tracking 100

particles > |
Nominal working point
had to be moved o
towards “blue” area 057 g

0.56

053 054 055 056 057 058 059 06 061 062

N/2 v

0.55
- \/ (Vo1 —ve2)® 4+ (11 — vy2)?

b ¢

WPS = 0.1N},.; + Z eD

55
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B Symplectic integrators with positive steps for Hamiltonian
systems [f — A + ¢B with both 4 and B integrable were
proposed by Mcl.achan (199)).

m [Laskar and Robutel (2001) derived all orders of such

Integrators

m Consider the formal solution of the Hamiltonian system
written in the Lie representation
— tn — —
T(t) = Z EL%ZIZ(O) = "1 £(0).
. n>0
m A symplectic integrator of order 1, from ¢ to{ + 7
consists of approximating the Lie map ¢™l# = ¢7(LatLlen)
by products of e“7F4Aand e®iThen § =1 ... nwhich
integrate exactly A and B over the time-spans ¢;Tand d;T

m The constants ¢; and d; are chosen to reduce the error 56

Non-linear dynamics, CERN Accelerator School, October2015
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B 1he SABA, integrator is written as
2 g
ci1TL d TLeg cotl o diTL.p c1TL
SABA2:€1 A 501 B pC2T LA 01 BgClThA

1 1 1 1
Wlth C1 = 2 1_ﬁ> ) C2:ﬁ ’ d1:§
m When{{A, B}, B} isintegrable, e.g. when A is quadratic in

momenta and B depends only in positions, the accuracy of
the integrator is improved by two small negative kicks
SABA,C = ™7 € 5L¢{a.8}.5) (SABAQ) EIE P
with  c=(2—+/3)/24

m The accuracy of SABA,C 1s one
order of magnitude higher than

the Forest-Ruth 4t order schemce

B The usual “drift-kick” scheme 0

corresponds to the 2°d order inte -1
-14 12 -1 -08 -06 -04 -02 O

SABA; = ezl eTLGBegLA, log10(s)

log10(AE/E)
© o c'n SN N

Non-linear dynamics, CERN Accelerator School, October2015
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ealsa completely different dynamics then the

m The one kick integrator rev
10-kick
m SABA,C integrator captures the corr

ct dynamics

05 |

045

04 |

0.35

03 -

025

02|

015

01

-0.1

05

0.45

04

0.35

0.3

0.25

el
——

02 e

0.15
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0.25
0.2
0.15
0.1
0.05

-0.05

k2.MS.4 (m™)

-0.1
-0.15
-0.2
-0.25

Non-linear dynamics, CERN Accelerator School. October2015

Normalized diffusion sum (Qx:1 1.78, Qy:6.7)

0.14

0.12

- 10.1

- 10.08

F 10.06

-0.2 -0.1 0 0.1

k2.MS.1 (m™)

0.2

60

50

40

301

20

10

2

Hamiltonian driving terms up to 4™ order

[ 1near lattice Tinge fields
I : ramiles

[ 2 ramilles extendad
[ 4tamines extended

h2000 h2100 h1020 h1011 h1002 h4000 h2100 h2020 h2011 h2002 h1120 h0040 hOoG1

m Comparing different chromaticity sextupole

correction schemes and working point optimization
using normal form analysis, frequency maps and
finally particle tracking

m Finding the adequate sextupole strengths through

the tune diffusion coefficient

59
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Experimental methods
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m Frequency analysis of turn-
by-turn data of beam
oscillations produced by a
fast kicker magnet and
recorded on a Beam Position
Monitors

m Reproduction of the non-
linear model of the
Advanced Light Source
storage ring and working
point optimization for
increasing beam lifetime

y amplitude [mm]

0 1 2 3 4 5 6 7 8
x amplitude [mm]

ALS lattice, measured frequancy map (relative beamloss)

8.08

Yy e 1
14.22 14.23 1424 1425 1426 14.27

14.28
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1 Study the resonance behavior around different working points

0 Strength of individual resonance lines can be identified from the
beam loss rate, i.e. the derivative of the beam intensity at the
moment of crossing the resonance

2 Vertical tune is scanned from about 0.45 down to 0.05 during a
period (3s) along the flat bottom

- Horizontal tune is constant during the same period

2 Tunes are continuously monitored using tune monitor (tune post-
rocessed with NAFF) and the beam intensity is recorded with a
eam current transformer

'deo @ Experimental Met

«cq. Time: 2011/05/20 12:02:55 User: SPS.USER.MD1 SC: 3804 #Acquisitions: 376 sampling time: 10ms

200

Time [ms]
oo N

Non-linear dynamics, CERN Accelerator School, October2015
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B [dentify the dangerous resonances
B Compare between two different optics

B Try to refine the machine model

Low Y, optics

21

20.8

20.6¢

y

Q

20.41
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20

/N 7 1\
\ / \ /
\ / \ /
\ /
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\/ \/
/\
/ \
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— o D e — —
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/ \
\
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/ \
\Y ¥/ / N/
71\ 71\
(N L AN L
20 20.2 20.4 20.6 20.8 21

27

26.8

26.61

26.4r

26.2

26

B Plot the tunes color-coded with the amount
of loss

Nominal Optics

\ /

\\ / \\ /

/ /
B RN N iy A I

/
/ \ /
\ \
/
\
/

— N - U

Y \

Y \

\

/ \

/ \
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71N / /

AN | \ | N
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2

Resonances (stable and unstable fixed points) are
responsible for the onset of chaos

Dynamic aperture by brute force tracking (with
symplectic numerical integrators) is the usual quality
criterion for evaluating non-linear dynamics
performance of a machine

Frequency Map Analysis is a numerical tool that
enables to study in a global way the dynamics, by
identifying the excited resonances and the extent of
chaotic regions

It can be directly applied to tracking but also
experimental data

A combination of these modern methods enable a
thorough analysis of non-linear dynamics and lead to a
robust design 64
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Thanks to F.Antoniou,
H.Bartosik, W.Herr, J.Laskar,
S.Liuzzo, L.Nadolski,D.Robin,
C.Skokos, C.Steier, F.Schmidt,

A.Wolski, F.Zimmermann
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B An important non-linear equation which can be
integrated is the one of the pendulum, for a string of
length L and gravitational constant g

d2
g t;b | Z sin g = (
B For small displacements it reduces to an harmonic
oscillator with frequency w, = \/%

B The integral of motion (scaled energy) is

1 (do\°
_<d_g:> —%COS¢211:E,

and the quadrature is written as ¢ /
assuming that for + = () L O = \/2 Il + T COs Cb)

Non-linear dynamics, CERN Accelerator School, October2015
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B Using the substitutions cos¢ = 1 — 2k?sin? § with

k=+/1/20+1,L/g) , the integral is

L [° df .
Ty / and can be solved using
9Jo V1—k2sin%0

1)

B For recovering the period, the integration is
performed between the two extrema, i.e. =0 and

¢ = arccos(—1I1L/g), corresponding to 9 — () and
0 = 7 /2, for which

L (™2 df L
h= 4\/;/0 V1 — k2sin® 6 - 4\/;F(7T/2’ )
i.e. the complete elliptic integral multiplied by four

times the period of the harmonic oscillator "

Jacobi elliptic functions: ¢(t) = 2 arcsin

e

Non-linear dynamics, CERN Accelerator School, October2015
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B Consider a general two degrees of freedom Hamiltonian:

H(J790) — HO(J) _I_ng(JaQO)

with the perturbed part periodic in angles:
Hi(J,p) = Zk k1 Hy, ko (J1, J2) expli(k11 + k2ip2))

B The resonance njw; + naws = 0 prevents the convergence
of the series

B A canonical transformation can be applied for eliminating
one action: (J, o) — (J,$) using the generating function

A

Fr(J, @) = (n1o1 — nags)J1 + a5
B The relationships between new and old variables are

Jo=mJ1 Jy = Jy — naJy
D1 = N1p1 — N2y D2 = P2

B This transformation put us in a rotating frame where the
rate of change 5, = ny¢; — nys, measures the deviation
from resonance 69

Non-linear dynamics, CERN Accelerator School, October2015
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2

B The transformed Hamiltonianis #(3,¢) = A,(3) + A, (3, @)
with the perturbation written as a Fourier series

Z Hy, . ko (J exp { [klsﬁl (/ﬁnz + k2n1)951]}
n1

k1,k2
B This transformation assumes that (o is the slow

frequency and we can average the Hamiltonian over the
corresponding angle to obtain

ﬁ(j,sb):ﬁo(j)Jrsﬁl(J,@l) Wlth Hy(J) = Hyo(J) and
Hl(j,%) <H1( ,D1)) 6y = Z 5 [— )exp( ipp1)

B The averaging eliminated one angle and thus J, = J, + J; —
is an invariant of motion

B This means that the Hamiltonian has effectively only one
degree of freedom and it is integrable

70
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)

B Assuming that the dominant Fourier harmonics for p = 0, &1
the Hamiltonian is written as

H(J,$1) = Hy(J) + eHoo(I) + 2¢H,, —p, (T) cos @y
O F1xed points (. é,,) (i.e. periodic orblts) in phase space

(J1,$1) are defined by OH _0. OH 0

0.J1 D
B Move the reference on fixed point

and expand H(J) around AJ; = J; — Jio

B Hamiltonian describing motion near a resonance:
(A, by = ZH0) (AT

OJ2 17, =

B Motion near a typical resonance is like the one of the
pendulum!!! The frequency and the resonance half width

+ 28ﬁn1,_n2 (j) COS P1

are 1/2
Yo a 1/2 _ )
_ ] e O(J) Ajl o = 2 2eHp,,—n, (J)
1 = | 2eH,, —n,(J) - 92 Hy(3)
972 |5,_s 20
1 J1=J10 0J2 |. . 71

Ji=J10
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2

B Now, if ¢ = () the solution for the action is JQO — ()

B So there is no minima in the potential, i.e. the central fixed

point is hyperbolic
0.8 T T | | T l l

— T S <. e
- . -

LA ;:
v"EF"‘ iy
et e oy &
0'4 - (o gl L i & -
o B e Rty - 2 .
0.2 % L@ B e NIRRT -

a O RN -

o
-0.4 R -
i i
06 & -
. "..1'.,}_ " _‘Q#‘.‘”:‘

'0.8 | | | | | | ‘I‘
-0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8

X 72
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Detuned correction

m 3 regions

| Small
amplitudes
regular motion
Medium

5th

amplitudes
order

resonance
crossing

-+
=
=

0.41

0.4
Horizontal Tune

0.41

0.4
Horizontal Tune
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aun I, [BINIIA

Large

x107°

itudes
losses due to
3rd order

AN

ampl

resonance
crossing

m Excitation of 3t

order resonance
and correction

36.35

14.45

14.4

Improved sextupole correction

0

[oe]

1

© <

wua] Bunup soueuosai (p°g) abeleny

24

22

1.8
Initial horizontal position [m]

16
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m Non linear

CERN A ccelerator School, October2015

Non-linear dynamics,

2

optimization based Nfz‘leipmxux,cmw _ Jl—COS[NC(anx,C+nyuy,c>] o
on phase advance = L-cos(n,p, +n,u,.)
scan for minimization @
of resonance driving N.(nu +m ) =2k
terms and tune-shift | -
with amplitude Miblpe T, = 20T
0
12.5
12.45
-5
S S | 2> 124
1-10
12.35}
12.3;
-15

16.38 16.4 1642 16.44 D
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AQ /AQ 0 10/0 18

— Horlzontal
—+— Vertical

Lossless blow-up
of beam core

“no blow-up” :
for Q,>20.14

202 2025 203

20.5

20.4}

20.3}

20.2}

20.

2

B Injecting high bunch density beam into the SPS

B Space charge effect quite strong with (linear)
tune-shifts of

B Changing horizontal / vertical frequency and
measuring emittance (action) blow-up
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B Injecting high bunch density beam into the SPS
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2

B Space charge effect quite strong with (linear) tune-
shifts of

B Changing horizontal / vertical frequency and

measuring emittance (action) blow-up

AQ /AQ 0.10/0.18

Lossless blow-up

—t Horlzontal
—+— Vertical

of beam core

”no blow-up”

for Q,>20.20

0.5
20

20.05 20.1 2%1 5 202 20.25

20.3

20.5

20.4}

203l

7777777777

20.2}

20.1}




