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I.) Magnetic Fields and Particle Trajectories 
The Ideal World  



LHC Storage Ring: Protons accelerated and stored for 12 hours 
                     distance of particles travelling at about v ≈ c 
      L = 1010-1011 km  
                                       ... several times Sun - Pluto and back  


Luminosity Run of a typical storage ring: 

à     guide the particles on a well defined orbit („design orbit“) 
à     focus the particles to keep each single particle trajectory  
        within the vacuum chamber of the storage ring, i.e. close to the design orbit.   
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 Lorentz force 

„  ... in the end and after all it should be a kind of circular machine“ 
 ! need transverse deflecting force  

typical velocity in high energy machines: 

old greek dictum of wisdom: 
if you are clever,  you use magnetic fields in an accelerator wherever  
it is possible. 

But remember:  magn. fields act allways perpendicular to the  velocity of the particle    
! only bending forces,   ! no „beam acceleration“ 

Transverse Beam Dynamics:   

0.) Introduction and Basic Ideas 
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circular  coordinate system 

condition for circular orbit:   

Lorentz force 

centrifugal force 

The ideal circular orbit 
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1.) The Magnetic Guide Field 

Dipole Magnets: 
 

define the ideal orbit  
homogeneous field created  
by two flat pole shoes 

convenient units:  
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  „normalised bending strength“ 

2πρ = 17.6 km 
 

        ≈ 66%   

The Magnetic Guide Field 
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required:     focusing forces to keep trajectories in vicinity of the ideal orbit  
 

    linear increasing Lorentz force 
 

    linear increasing magnetic field  

                 

                 

           

2.) Quadrupole Magnets: 

normalised quadrupole field: 

gradient of a  
quadrupole magnet: 

what about the vertical plane: 
    ... Maxwell   

By = g x , Bx = g y

LHC main quadrupole magnet 
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3.) The equation of motion: 

Linear approximation: 
 

 * ideal particle         ! design orbit  
 

 * any other particle ! coordinates x, y  small quantities 
      x,y << ρ 

 
                  ! magnetic guide field: only linear terms in x & y of B  
                       have to be taken into account    

Taylor Expansion of the B field: 

normalise to momentum 
        p/e = Bρ 
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Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 
 
Split the magnets and optimise  
them according to their job:  
 
bending, focusing etc  
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 The Equation of Motion: 

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 

* man sieht nur  
dipole und quads ! linear 



Equation of Motion: 

● 
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θ ● Consider local segment of a particle trajectory 
... and remember the old days: 
(Goldstein page 27)   

radial acceleration: 
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develop for small x: 
2 2

2 (1 )− − = z
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guide field in linear approx. 
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Remarks: 

2
1( ) 0ʹ′ʹ′+ − ⋅ =x k x
ρ

… there seems to be a focusing even without a quadrupole   
     gradient ... but it is WEAK ! 
 
       „weak focusing of dipole magnets“ 

Mass spectrometer: particles are separated  
                                according to their energy 
                                and focused due to the 1/ρ  
                                effect of the dipole  

* The Weak Focusing Term 

Don Edwards: ... This circumstance is illustrated in 
Fig. 4, in which an engineer is sitting at a desk 
within the vacuum chamber. The problem was 
a result of the weak focusing provided by the 
magnet systems. 
The higher the energy, the larger ρ and the weaker  
the dipole focusing 

Bevatron, Berkeley 



Equation for the vertical motion: 

0ʹ′ʹ′+ ⋅ =z k z

* * * vertical plane 

* * * keep it linear  
Taylor Expansion of the B field: 

Multipole contributions to the  
HERA s.c. dipole field 
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divide by the main field  
        to get the relative error contribution 
 
! definition of multipole coefficients.  



Differential Equation of harmonic oscillator   …  with spring  constant K 
 

Ansatz: 

general solution:  linear combination of two independent solutions  

4.) Solution of Trajectory Equations 

Define …  hor. plane: 
 

            … vert. Plane: 
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Hor. Focusing Quadrupole  K > 0: 

0 0
1( ) cos( ) sin( )ʹ′= ⋅ + ⋅x s x K s x K s
K

0 0( ) sin( ) cos( )ʹ′ ʹ′= − ⋅ ⋅ + ⋅x s x K K s x K s

For convenience expressed in matrix formalism: 
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1cosh sinh

sinh cosh
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!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & z is uncoupled“   
 
!!   for all magnet matrices the condition det (M) =1 is fulfilled  
  which means we are dealing with a conservative system 



 Thin Lens Approximation: 
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matrix of a quadrupole lens 

in many practical cases we have the situation: 
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... useful for fast (and in large machines still quite accurate)  „back on the envelope  
    calculations“ ... and for the guided studies ! 
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focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

*.....* * * *= etotal QF D QD B nd DM M M M M M

court. K. Wille 
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„C“ and „S“ = sin- and cos- like trajectories of the lattice structure, in other words the  
                         two independent solutions of the homogeneous equation of motion 

x(s) 

s 

                          0 
 
typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 



5.) Orbit & Tune: 

Tune: number of oscillations per turn 
 
            64.31 

 59.32 
 
 

Relevant for beam stability:  
                               non integer part 

LHC revolution frequency:  11.3 kHz kHzkHz 5.33.11*31.0 =



Question: what will happen, if the particle performs a second turn ?  

x 

... or a third one or ... 1010 turns 

0 

s 



Astronomer Hill:   
 

                differential equation for motions with periodic focusing properties 
 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: ( ) ( ) ( ) 0ʹ′ʹ′ − =x s k s x s

   restoring force  ≠ const,                                        we expect a kind of quasi harmonic       
   k(s) = depending on the position s                       oscillation:  amplitude & phase will depend  
   k(s+L) = k(s),   periodic function                         on the position s in the ring. 



6.) The Beta Function 

General solution of Hill´s equation: 

( ) ( ) cos( ( ) )= ⋅ +x s s sε β ψ φ

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

ε, Φ = integration constants determined by initial conditions 

Inserting (i) into the equation of motion …  
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Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. 

For one complete revolution: number of oscillations per turn „Tune“ 
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7.) Beam Emittance and Phase Space Ellipse 

general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 
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Beam Emittance and Phase Space Ellipse 
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Liouville: in reasonable storage rings  
area in phase space is constant. 
 
               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  
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Phase Space Ellipse 

{ }( ) ( ) cos ( )= +x s s sε β ψ φparticel trajectory: 

max. Amplitude: εβ=)(ˆ sx x´ at that position …? 

… put         into                                                                                              and solve for x´       )(ˆ sx

22 xx ʹ′+ʹ′⋅+⋅= βεβαεβγε βεα /⋅−=ʹ′x

In the middle of a quadrupole β = maximum,  
 α = zero 0=ʹ′x … and the ellipse is flat 

* 

* A high β-function means a large beam size  
and a small beam divergence. 
   … et vice versa !!! 

! 
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and in the same way we obtain: 

εγ=ʹ′x̂ x = ±α ε
γ

shape and orientation of the phase space  
ellipse depend on the Twiss parameters β α γ  



Emittance of the Particle Ensemble: 

single particle trajectories, N ≈ 10 11  per bunch 
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particle at distance 1 σ from centre ↔ 68.3 % of all beam particles 
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aperture requirements:  r 0 =  10 * σ   LHC:  mmmm 3.0180*10*5* 10 === −βεσ



Emittance of the Particle Ensemble: 

Example: HERA 
      beam parameters in the arc 
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8.) Transfer Matrix M …   yes we had the topic already  
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of Hill´s equation 

remember the trigonometrical gymnastics:  sin(a + b) = … etc 
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which can be expressed ... for convenience ... in matrix form 
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* we can calculate the single particle trajectories between two locations in the ring,  
   if we know the α β γ at these positions.  
* and nothing but the α β γ at these positions.  

*     …  ! * Äquivalenz der Matrizen 



11.) Résumé: 

beam rigidity: ⋅ = pB qρ

bending strength of a dipole: 1 00.2998 ( )1
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ψ turn = phase advance  
per period 

9.) Periodic Lattices 

„This rather formidable looking  
matrix simplifies considerably if  
we consider one complete revolution …“ 
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Stability Criterion: 

Question: what will happen, if we do not make too  
                  many mistakes and your particle performs  
                 one complete turn ? 

Matrix for 1 turn: 

cos sin sin
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The motion for N turns remains bounded, if the elements of MN remain bounded 
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stability criterion …. proof for the disbelieving collegues !! 

Matrix for 1 turn: cos sin sin
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10.) Transformation of α, β, γ 

consider two positions in the storage ring: s0  , s 

since ε = const (Liouville): 
€ 

M =
m11 m12
m21 m22

" 

# 
$ 

% 

& 
' 

Betafunction in a Storage Ring 

... remember W = CS´-SC´ = 1 

• 
• 

… inserting into ε   

sort via x, x´and compare the coefficients to get .... 

0'
*

' ss x
x

M
x
x
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⎞
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M
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⎠
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⎜⎜
⎝

⎛
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⎞
⎜⎜
⎝
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'
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M−1 =
m22 −m12
−m21 m11

# 

$ 
% 

& 

' 
( 

€ 

x0 = m22x −m12 # x 
# x 0 = −m21x + m11 # x 

€ 

ε = β0(m11 $ x −m21x)
2 + 2α0(m22x −m12 $ x )(m11 $ x −m21x) + γ 0(m22x −m12 $ x )2



in matrix notation: 

! 

1.)  this expression is important  
 

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and  
     calculate their values at any other point in the ring. 
 

3.) the transfer matrix is given by the focusing properties of the lattice elements,  
     the elements of M are just those that we used to calculate single particle trajectories. 
 

4.) go back to point  1.)  

€ 

β

α

γ

% 

& 

' 
' ' 

( 

) 

* 
* * 
s2

=

m11
2 −2m11m12 m12

2

−m11m21 m12m21 + m22m11 −m12m22

m21
2 −2m22m21 m22

2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
*
β

α

γ

% 

& 

' 
' ' 

( 

) 

* 
* * 
s1

The Twiss parameters α, β, γ can be transformed through the lattice via the  
matrix elements defined above. 

€ 

β(s) = m11
2 β0 − 2m11m12α0 + m12

2 γ 0
α(s) = −m11m21β0 + (m12m21 + m11m22)α0 −m12m22 γ 0
γ(s) = m21

2 β0 − 2m21m22α0 + m22
2 γ 0



 The „ not so ideal world “   

II.) Acceleration and Momentum Spread   



Remember: 
            Beam Emittance and Phase Space Ellipse: 

general solution of Hills equation: 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 

equation of motion: 

2

1( ) ( )
2
1 ( )( )

( )

−
ʹ′=

+
=

s s

ss
s

α β

α
γ

β

""mm≈= εβσbeam size: 

0)()()( =−ʹ′ʹ′ sxsksx

))(cos()()( ϕψβε += sssx

x´

x
εβ

εα β−
εγ

εα γ−

?

?

?

?

?

?

x´

x

εβ

εα β−

εγ

εα γ−

?

x´

x

?

βε / εβ
●

●
●

●
●

●
● ●

)()()()()(2)()( 22 sxssxsxssxs ʹ′+ʹ′+= βαγε



11.) Liouville during Acceleration 

x´ 

x 
εβ

εα β−εγ

εα γ−

●

●

●●

Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  
 

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 

EnergypotEnergykinVTL
q
Lp
j

j ..; −=−=
∂

∂
=
!

)()()()()(2)()( 22 sxssxsxssxs ʹ′+ʹ′+= βαγε



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: pdq const=∫

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

xdx dx dtx
ds dt ds

β
β

ʹ′ = = = where βx= vx / c 

1x dxε
βγ

ʹ′⇒ = ∝∫
the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

2

2

1

1

c
v

−

=γ
c
x

x
!

=β;

∫∫ = dxmcpdq xγβ

∫∫ ʹ′= dxxmcpdq γβ

ε 



Nota bene: 

1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

  
 
 
2.) At lowest energy the machine will have the major aperture problems,  
      ! here we have to minimise  
 
 
3.) we need different beam  
    optics adopted to the energy:  
     A Mini Beta concept will only  
     be adequate at flat top.  

εβσ =

β̂

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 
 
emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 
 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



A kind of ideal machine ... 
   the Tandem Van-de Graaf 

12.) The „ Δp / p ≠ 0“ Problem  



Linear Accelerator 

1928, Wideroe 

+ + + + -̶ -̶ -̶ 

* RF Acceleration: multiple application of  
  the same acceleration voltage; 
  brillant idea to gain higher energies  
  ... but changing acceleration voltage 

Energy Gain per „Gap“: 

tUqW RFωsin0=

500 MHz cavities in an electron storage ring 

drift tube structure at a proton linac 

12.) The „ Δp / p ≠ 0“ Problem  



Problem: panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Z X, Y,( )

Bunch length of Electrons ≈ 1cm Example:  HERA RF: 

U0 

t νλ
ν
=

=

c
MHz500 cm60=λ

cm60=λ

994.0)84sin(
1)90sin(

=

=
o

o
3100.6 −=

Δ

U
U

typical momentum spread of an electron bunch:  
3100.1 −≈

Δ

p
p



13.) Dispersion:    trajectories for Δp / p ≠ 0  
  

vBe
x
mvx

dt
dmF y=

+
−+=

ρ
ρ

2

2

2

)( y
ρ 

s 
● x 

remember: x ≈ mm , ρ ≈ m … !  develop for small x 

veBxmv
dt
xdm y=−− )1(

2

2

2

ρρ

consider only linear fields,  and change independent variable: t → s  

mv
gxe

mv
Bexx +=−−ʹ′ʹ′ 0)1(1

ρρ

● 

p=p0+Δp 

Force acting on the particle 

… but now take a small momentum error into account !!! 

x
B

xBB y
y ∂

∂
+= 0

ŷ



Dispersion: 

develop for small momentum error 2
000

0
11

p
p

ppp
pp Δ
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Δ+

⇒<<Δ

ρ
1

− 0≈xk ∗

2
00
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0
2

1
p
pxeg

p
xegeB
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p
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Δ
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ρρ

ρρ
1

0
2 p

pkxxx Δ
=−+ʹ′ʹ′

ρρ
1)1(

0
2 p

pkxx Δ
=−+ʹ′ʹ′

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. 
! inhomogeneous differential equation. 

xk
p
pxk

p
eB

p
pxx *1**)(*

00

0

0
2 +

Δ
=+

−Δ
≈+ʹ′ʹ′

ρρ

ρ
1



2
1 1( ) px x k

p ρρ
Δ

ʹ′ʹ′+ − = ⋅

general solution: 

( ) ( ) ( )h ix s x s x s= +
( ) ( ) ( ) 0h hx s K s x sʹ′ʹ′ + ⋅ =

1( ) ( ) ( )i i
px s K s x s
pρ
Δ

ʹ′ʹ′ + ⋅ = ⋅

Normalise with respect to Δp/p: 

( )( ) i
p
p

x sD s
Δ

=

 

Dispersion function D(s)  
 
        * is that special orbit, an ideal particle would have  for Δp/p = 1  
 
        * the orbit of any particle is the sum of the well known xβ  and the dispersion 
 
        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
 

Dispersion: 



. ρ 

xβ 

Closed orbit for Δp/p > 0 

( ) ( )i
px s D s
p
Δ

= ⋅

Dispersion: 
 Example: homogenous dipole field 

Matrix formalism: 

( ) ( ) ( ) px s x s D s
pβ
Δ

= + ⋅

0 0( ) ( ) ( ) ( ) px s C s x S s x D s
p
Δ

ʹ′= ⋅ + ⋅ + ⋅ 0s

x C S x Dp
x C S x Dp
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Δ

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ʹ′ ʹ′ ʹ′ ʹ′ ʹ′⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

e.g. matrix for a quadrupole lens: 

€ 

Mfoc =
cos( K s 1

K
sin( K s

− K sin( K s cos( K s

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=
C S
C' S'
# 

$ 
% 

& 

' 
( 



0
0 0 1p p

p ps

x C S D x
x C S D x
Δ Δ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ʹ′ ʹ′ ʹ′ ʹ′ ʹ′= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Example HERA  

3

1...2

( ) 1...2

1 10

x mm

D s m
p
p

β

−

=

≈

Δ ≈ ⋅

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

          ! Dispersion must vanish at the collision point  

Calculate D, D´ 

or expressed as 3x3 matrix 

D

β

(proof: see appendix) 

! 

D(s) = S(s) 1
ρ
C( !s)d!s −

s0

s1

∫ C(s) 1
ρ
S( !s)d!s

s0

s1

∫



Example: Drift 

1
0 1Drift
l

M ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0= 0=

Example: Dipole 

cos sin

1 sin cos
Dipole

l l

M
l l

ρ
ρ ρ

ρ ρ ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟= →
⎜ ⎟
−⎜ ⎟
⎝ ⎠

( ) (1 cos )

( ) sin

lD s

lD s

ρ
ρ

ρ

= ⋅ −

ʹ′ =

0

1cos( ) sin(

sin( ) cos( )

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

foc

K s K s
KM

K K s K s
Bls

kK

=

−= 2

1
ρ

1 0
0 1 0
0 0 1

Drift

l
M

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
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D(s) = S(s) 1
ρ
C( !s)d!s −

s0

s1

∫ C(s) 1
ρ
S( !s)d!s

s0

s1

∫



p
p*)s(DxD

Δ
=

Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
     ! closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  



ρ 

ds x 
dl 

design orbit 

particle trajectory 
particle with a displacement x to the design orbit 
! path length dl ...  

1
( )
xdl ds
sρ

⎛ ⎞
→ = +⎜ ⎟

⎝ ⎠

dl x
ds

ρ
ρ
+

=

1
( )
E

E
xl dl ds
sρ
Δ

Δ
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

∫ ∫

circumference of an off-energy closed orbit 

remember: 

( ) ( )E
px s D s
pΔ
Δ

=

( )
( )E

p D sl ds
p s

δ
ρΔ

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
∫

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  
   and the bending radius. 

o 

o 

o 

14.) Momentum Compaction Factor: αp 

The dispersion function relates the momentum error of a particle to the horizontal  
orbit coordinate and so  it changes the length of the  off - energy - orbit !! 



For first estimates assume:  

Assume:   

Definition: 

αp combines via the dispersion function  
the momentum spread with the longitudinal 
motion of the particle. 

p
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L
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Δ
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δδ ε



Transfer Matrix from point „0“ in the  
lattice to point „s“:  

For one complete turn the Twiss parameters  
have to obey periodic bundary conditions:  
 )()(

)()(
)()(

sLs
sLs
sLs

γγ
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ββ
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turnsturnss

turnsturnsturnsM
ψαψψγ

ψβψαψ

sincossin
sinsincos
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Matrix in Twiss Form 

15.) Gradient Errors 



Quadrupole Error in the Lattice 
  

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 

z 
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s 

ẑ

● x 
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remember the old fashioned trigonometric stuff and assume that the error is small !!!  

1≈ ψ≈ Δ

and referring to Q instead of ψ: 

Qπψ 2=

∫
+ Δ

=Δ
ls

s

dssskQ
0

0 4
)()(

π
β

    !     the tune shift is proportional to the β-function  
        at the quadrupole 
 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 
 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  
 

  !!!!    β is a measure for the sensitivity of the beam 

2
β

ψ
kds

=Δ

2
sincossinsincoscos 0

000
ψβ

ψψψψψ
kds

+=Δ−Δ

2
sincos)cos( 0

00
ψβ

ψψψ
kdsΔ

+=Δ+

Quadrupole error ! Tune Shift 

ψψψ Δ+= 0



ΔQ = Δkβ(s)
4π

ds
s0

s0+l

∫ ≈
Δklquadβ
4π

a quadrupol error leads to a shift of the tune: 

 Example: measurement of β in a storage ring: 
                                   tune spectrum 
 
 
 
Without proof (CERN-94-01) 
A quadrupole error will always lead to a tune shift, but in addition to a change of the beta–function. 

GI06 NR

y = -6.7863x + 0.3883

y = -3E-12x + 0.2814
0.2800

0.2850

0.2900

0.2950

0.3000

0.3050

0.01250 0.01300 0.01350 0.01400 0.01450

k*L

Q
x,

Q
y

Δβ(s) = β(s)
2sin(2πQ)

β( !s)Δk( !s)cos(2ψ(s)−ψ( !s) −πQ)d!s!∫

As before the effect of the error depends on the β-function at the observation point as well as at the 
 place of the error itself, on the error strength and there is again a resonance denominator 
 
! half integer tunes are forbidden. 



16.) Chromaticity:  
           A Quadrupole Error for Δp/p ≠ 0 

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  
 

   

dipole magnet 

focusing lens gk p
e

=

particle having ...   
          to high energy 
          to low energy 
          ideal energy 

ep

dlB

/
∫=α

p
psDsxD
Δ

= )()(



definition of chromaticity: 

gk p
e

=

Chromaticity: Q' 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 

0p p p= +Δ

kkg
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Problem: chromaticity is generated by the lattice itself !! 
 
Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
   ! it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 
 
                     Q' = - 250  

      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 
                  

à Some particles get very close to  
    resonances and are lost  
 
    in other words: the tune is not a point 
                          it is a pancake 

… what is wrong about Chromaticity: 

Q ' = − 1
4π

β(s)k(s)ds!∫



Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 



Tune and Resonances 

m*Qx+n*Qy+l*Qs = integer 

Qx =1.0 Qx =1.3 

Qy =1.0 

Qy =1.3 

Qx =1.5 

Qy =1.5 

 Tune diagram up to 3rd order 

… and  up to 7th order 

Homework for the operateurs:  
find a nice place for the tune  
where against all probability  
the beam will survive 



N 

Sextupole Magnets:  

1.) sort the particles acording to their momentum ( ) ( )D
px s D s
p
Δ

=

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

Bx = !gxz

Bz =
1
2
!g(x2 − z2 )

linear rising  
„gradient“:  

∂Bx
∂z

=
∂Bz
∂x

= !gx

S 

S N 

corrected chromaticity: 

normalised quadrupole strength:  

ksext =
!gx
p / e

=msext.x

.sext sext
pk m D
p
Δ

=

Correction of Q’ 



β-Function in a FoDo structure 
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Chromaticity in a FODO lattice 



remember ... 
sin 2sin cos

2 2
x xx =

putting ...  

contribution of one FoDo Cell to the  chromaticity of the ring: 

using some TLC transformations ... ξ can be expressed in a very simple form: 
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question: main contribution to ξ in a lattice … ? 

Chromaticity 

interaction region 
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Dipole Errors / Quadrupole Misalignment 
 The Design Orbit is defined by the strength and arrangement of the dipoles. 

Under the influence of dipole imperfections and quadrupole misalignments we obtain a “Closed Orbit”  
which is hopefully still closed and not too far away from the design.   
 
Dipole field error: 
 
 

Quadrupole offset: g = dB
dx

→ Δx ⋅ g = Δx dB
dx

= ΔB

misaligned quadrupoles (or orbit offsets in quadrupoles) create dipole effects that lead to a 
distorted “closed orbit” 

normalised to p/e: Δx ⋅ k = Δx ⋅ g
Bρ

=
1
ρ

x
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In a Linac – starting with a perfect orbit – the misaligned quadrupole creates an oscillation that  
is transformed from now on downstream via  x

x '
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dl
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=
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... and in a circular machine ?? 
 
we have to obey the periodicity condition. 
The orbit is closed !! ... even under the influence of a orbit kick. 

Calculation of the new closed orbit: 
 the general orbit will always be a solution of Hill, so ... 

x(s) = a ⋅ β cos(ψ(s)+ϕ

We set at the location of the error s=0, Ψ(s)=0 
and require as 1st boundary condition:  
periodic amplitude 

x(s+ L) = x(s)

a ⋅ β(s+ L) ⋅cos(ψ(s)+ 2πQ−ϕ ) = a ⋅ β(s) ⋅cos(ψ(s)−ϕ ) β(s+ L) = β(s)
ψ(s = 0) = 0
ψ(s+ L) = 2πQcos(2πQ−ϕ ) = cos(−ϕ ) = cos(ϕ )

→ϕ = πQ



Misalignment error in a circular machine 
 

2nd boundary condition: x’ (s+L) + δx’= x’(s) 
we have to close the orbit 

ψ(s) = 1
β(s)∫ ds

ψ '(s) = 1
β(s)

x(s) = a ⋅ β cos(ψ(s)−ϕ )

x '(s) = a ⋅ β −sin(ψ(s)−ϕ( )ψ '+ β '(s)
2 β

a ⋅cos(ψ(s)−ϕ )

x '(s) = −a ⋅ 1
β
sin(ψ(s)−ϕ( )+ β '(s)

2 β
a ⋅cos(ψ(s)−ϕ )

boundary condition: x’ (s+L) + δx’= x’(s) 

−a ⋅ 1
β(!s + L)

sin(2πQ−ϕ( )+ β '(!s + L)
2β(!s + L)

β(!s + L) a ⋅cos(2πQ−ϕ )+ Δ!s
ρ
=

                                                           = −a ⋅ 1
β(!s)

sin(−ϕ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(−ϕ )

Nota bene:    refers to the location of the kick !s



Misalignment error in a circular machine 
 

Now we use: β(s+L) = β(s), φ=πQ   

−a
β(!s)

sin(πQ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(πQ)+ Δ!s
ρ

=
a
β(!s)

sin(πQ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(πQ)

⇒ 2 a ⋅ sin(πQ)
β(!s)

=
Δ!s
ρ

⇒ a = Δ!s
ρ
⋅ β(!s) 1

2sin(πQ)
! this is the amplitude of the orbit oscillation 

  resulting from a single kick 
 
 

inserting in the equation of motion 
 
x(s) = a ⋅ β cos(ψ(s)+ϕ

x(s) = Δ!s
ρ
⋅
β(!s) β(s) cos(ψ(s)−ϕ )

2sin(πQ)

! the distorted orbit depends on the kick strength,  
! the local β function 
! the β function at the observation point  
 
!!! there is a resoncance denominator 
! watch your tune !!! 



Misalignment error in a circular machine 
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For completness: 
 if we do not set                      we have to write a bit more but finally we get:  

 
ψ(s = 0) = 0

Reminder: LHC 
Tune:  Qx= 64.31,   Qy=59.32 
 
Relevant for beam stability:  
                 non integer part 

  avoid integer tunes 



Short Resume until now: 
  * Dipole field errors lead to closed orbit distortions 
  * Quadrupole misalignments as well  
  * Quadrupole gradient errors lead to tune shifts ΔQ and beta beats Δβ/β 

 
… and what does a roll angle error do ??? 

  .  
 
 
Dipole  
strength  
error: 
 
 

      A tilt error in a main dipole  
      causes a perturbation on the 
      vertical closed orbit.  

 
 
 
Dipole  
roll angle 
error  

Quadrupole Rotation Errors 
 

B 

An error in the strength of a main dipole causes a 
perturbation on the horizontal closed orbit. 

(court. pictures from R. Tomas) 



quadrupole tilt errors lead to coupling of the transverse motions 
 
 
Standard quadrupole 
 
 
 
 
 
 
 
 
Skew Quadrupole: 

Quadrupole Rotation Errors 
 

Lorents Force:        
Fx = −kx and Fy = ky making horizontal dynamics 
totally decoupled from vertical. 

F F = q(!v ×
!
B)

Lorents Force:        
A horizontal offset leads to a horizontal and vertical  
component of the Lorentz force 

 -> to coupling between x and y plane 
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Observations on Beam: 
 Coupling makes it impossible to approach tunes below a certain  
 ∆Qmin that depends on the tune and the coupling strength 

 
 
 
 
 
 
 
 
 
 

  observed tune as a function 
   of the quadrupole strength 
  “closest tune aproach” 

 
 
 
Correction via dedicated skew quadrupoles  
in the machine 
 

Quadrupole Rotation Errors 
 

ΔQ 



Resume´: 
 
 

1
ε

βγ
∝ beam emittance:  

2
0 0 0( ) 2s s sβ β α γ= − +
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( ) ssβ β
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= +

beta function in a drift: 

… and for α = 0  

ρρ
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0
2 p

pkxx Δ
=−+ʹ′ʹ′particle trajectory for Δp/p ≠ 0 

inhomogenious equation: 
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= + ⋅… and its solution: 

momentum compaction:  
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