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First publication in 1946

Applied to longitudinal oscillations of an electron plasma

> Was not believed for =~ 20 years
(but worked in simulations and experiment)

> Still plenty of papers every year (=~ 6000 in 2012)
(and many attempts to teach it ...)

> Many applications: plasma physics, accelerators

> Physical interpretation often unclear

> Many mathematical subtleties ...
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> Landau damping damps collective oscillations

> Leads to exponentially decaying oscillations



In a plasma:

> Landau damping damps collective oscillations

> Leads to exponentially decaying oscillations

In an accelerator:

> Landau damping does not damp anything !!



In a plasma:
> Landau damping damps collective oscillations

> Leads to exponentially decaying oscillations

In an accelerator:
> Landau damping does not damp anything !!
> We do not want exponentially decaying oscillations

"Landau damping” is confused with decoherence

> Landau damping stabilizes the beam, i.e.

"Landau damping” is the absence of oscillations !!!



The non-trivial part:

> In a beam (any plasma) particles interact via Coulomb forces
(binary collisions)

> For Landau damping: particles "interact” with the beam (collective
field)

Must distinguish:

» Binary interactions (collisions) of particles

» Interactions of particles with a collective field (mode)
= Landau damping does not involve collisions !!!

(If you want to remember something, remember that !)



Often confused with " decoherence”

> Landau damping does not lead to emittance growth

> Decoherence does !

Different treatment (and results !) for
> Bunch and unbunched beams

> Transverse and longitudinal motion



Landau damping - the menu

> Sketch Landau's treatment for plasmas
> Mechanisms of stabilization - physical origin

> Conditions for stabilization - beam transfer function and stability
diagrams

> Collective motion, physics and description
> Example: how it is used, limits, problems ...

> Do not go through all formal mathematics (found in many places,
or discussed in the bar), rather intuitive approach to touch the
concepts, give hints ..



Why an intuitive approach ?

A lot of attention is often paid to interpretation of subtle (mathematical
and philosophical) problems:

» Singularities

> Reversibility versus lrreversibility

> Linearity versus Non-linearity

The truth is:

> Most " problems” are fictitious

> Not coming from the physics of the process

> Appear in specific mathematical treatment and versions of theory

> Make publications



Plasma oscillations
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» Plasma without disturbance: ions (®) and electrons (.)



Plasma oscillations
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» Plasma: stationary ions (@) with displaced electrons ()

2 ne

> Restoring force: oscillate at plasma frequency w e

i.e. a stationary plane wave solution (Langmuir, 1929)




Plasma oscillations
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> Restoring force: oscillate at plasma frequency w? =

» Produces field (mode) of the form:
E(x,t) = Egsin(kx —wt) (or E(x,t) = Eyellkr—wt)



Plasma oscillations
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> Electrons interact with the field they produce

» Field (mode) of the form:
E(z,t) = Epsin(kz — wt) (or E(x,t) = Ege’(Fz—«1)



Plasma oscillations

Individual particles interact with the field produced by all particles
=P (Changes behaviour of the particles
= (Can change the field producing the forces

=» Particles may have different velocities !

Self-consistent treatment required

If we allow w to be complex (w = w, + iw;):
E(Qj,t) — Eoei(kw_wﬂ = E(Zlf,t) — Eoez'(ka:—wrt) . ewit

we can have a damped oscillation for w; < 0



Resonance damping

- Interaction with a "mode” -

— i"- |

> Surfer gains energy from the mode (wave)



Interaction with a "mode”

> If Surfer faster than wave:

mode gains energy from the surfer
> If Surfer slower than wave:

mode loses energy to the surfer

> Does that always work like that ?



NQO, consider two extreme cases:

> Surfer very fast: " jumps” across the wave crests, little
interaction with the wave (water skiing)

> Surfer not moving: "oscillates” up and down with the waves
=» \Wave velocity and Surfer velocity must be similar ... !!

=» Surfer is "trapped” by the wave



Interaction with a "mode”
Remember: particles may have different velocities !

If more particles are moving slower than the wave:

> Net absorption of energy from the wave

> Wave is damped !

If more particles are moving faster than the wave:

> Net absorption of energy by the wave
> Wave is anti-damped !

Always: the slope of the particle distribution at the wave velocity is

important !

=% Have to show that now (with some theory)



Liouville theorem
> Consider an ensemble of N particles
> Described by a density distribution function (%, p,1):
[ (&, p,t)dZdp = [ Y(Z, p,t)dedydzdp,dp,dp, = N
(Z and p are 3-N-dimensional vectors)

> If the distribution function is stationary —

ki
ot

=» Flashback to last week, ==» this is the Liouville’'s Theorem:

— W»H] = 0

Density is conserved and in phase space moves like incompressible

fluid for a Hamiltonian system



Example: "motion” of particle distribution in Phase Space

Phase space density Phase space density

Il Il Il Il Il Il
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> Form of phase space distorted by non-linear motion

(How would the picture look like for linear motion ?)
> Local phase space density is conserved

» Global density is changed (e.g. beam size)



> Local phase space density is conserved (number and distance of
neighbours)

> How do we describe the evolution of the distribution ?

Despite better knowledge: move from (Z, p) to (Z, ¥)



Boltzmann equation
Time evolution of ¢ (&, U, 1):

d 0 0 1 = 0
W W 52 L 1Een Y 4 aw
dt ot oF m 0v ——
' ' h g ~ collision
time change space change v change, force F

Without collisions and stationary, it becomes Vlasov-equation:

dp O Oy oY
W= o tTaEt @0 g5 = 0

(Note: gz,é = Vz,b)



Why is the Vlasov equation useful ?

dp o 0p 9

dt Ot aa; F(x’ t):

ELi

F'(Z,t) is force of the field (mode) on the particles

Can be due to impedances, beam-beam effects, etc.

It is the basis for treatment of collective effects



From the solution one can determine whether a disturbance is:

growing: instability, negative imaginary part of frequency

decaying: stability, positive imaginary part of frequency

—

Strictly speaking: F'(,t) are given by external forces. When a particle
interacts strongly with the collective forces produced by the other
particles (F(Z, )= [ (1,Z, 1)), they can be treated the same as
external forces.




Back to Plasma Oscillations

For our problem we need:

for the force E' (depending on field E):
F=c¢ E

for the field E (depending on potential ®):
E=-Vd

for the potential ® (depending on distribution 1)):

AD =L — [ v
€0 €0



Therefore:

dyp o Lo 1. O
a ~ oo Ut e =0
and:
Acb—i/zpdv
€0

Coupled equations: perturbation produces field which acts back on
perturbation.
Do we find a solution 7



Plasma oscillations

Assume a small non-stationary perturbation 7); on the stationary
distribution )y (v):

Then we get:
d@b 8¢1 - awl I 5 - 3%
b . E i
it o T ar TP 55 0
and:
/AN A



Plasma oscillations

01 (Z,0,1) = E(7,t) = 1(4,7,1) = ...
> Density perturbation produces electric field
> Electric field acts back and changes density perturbation
> Change with time ..

> How can we attack that ?



Plasma oscillations - Vlasov’s approach

Expand as double Fourier transform:*)

1 —+ o0 —+ 00 _

¢1 (fa 67 t) — 2_ wl (k, 'l_f, w)ei(kw_m)dkdw
T

— o0 — o0

“+00 +oo
/ T (k:c wt)dkdw

and apply to Vlasov equation

O(Z, v, 1)

*) Remember: we assumed the field (mode) of the form:
E(x,t) = Foet(kz—wt)



Plasma oscillations

Assuming a perturbation as above, the condition for a solution is:

2
1+ — /a%/avdv:o

eomk | (w — kv)

This is the Dispersion Relation for plasma waves
i.e. relation between frequency (w) and wavelength (k)



Plasma oscillations

Looking at this relation:

» It depends on the (velocity) distribution
> It depends on the slope of the distribution diq /v

> The effect is strongest for velocities close to the wave velocity, i.e.
VR
= There seems to be a complication (singularity) at v = ¢

Can we deal with this problem ?



Dealing with the singularity
Hand waving argument [VL]:

> In practice w is never real (collisions !)

Optimistic argument [BG]:
> OYo/0v = 0 where v = ¢

Alternative approach [VK]:
> Search for stationary solutions (normal mode expansion)

> Continous versus discrete modes (not treated here)

&l Better argument (with 20/20 hindsight) [LD]:

> Initial value problem with perturbation ¢ (Z,¥,t) att = 0, (time
dependent solution with complex w)

> Procedure: in time domain use Laplace transformation

in space domain use Fourier transformation



Plasma oscillations - Landau’s approach

Fourier transform in space domain:

+oo
BT = oo [ n@n e
v
- 1 [T .
B(k,t) = o E(Z,t)e' "™ dg

and Laplace transform in time domain:

4+ oo
Wy (k,7,p) = U (k, T, t)e P dt



Plasma oscillations

In Vlasov equation and after some algebra (see books) this leads to the
modified dispersion relation:

62

1+

b/ Ov ir (9o _
P'V'/ (w— kv)dv k ( v )’u:w/k =0

Eomk

P.V. refers to " Cauchy Principal Value” (see mathbooks or ask a tutor)

Second term only in Landau’s treatment
=» responsible for damping, appears only in the Initial value problem



Plasma oscillations

_im (5’_1?)
k \ Ov v—w

> w is complex and the imaginary part becomes:

2
In(w) = w; — T wpe (81&)
% v=w/k

Evaluating the term:

- 5 Eomk2

» Get a damping (without collisions) if: (g—f) o <0

=» Landau Damping



Velocity distribution

ftv)

Distribution of particle velocities (e.g. Maxwellian distribution)
relative to wave velocity

More "slower” than "faster” particles =% damping

More "faster” than "slower” particles =# anti-damping

=P Therefore: slope is important !



Warning: a paradox

- For a bar discussion (or a question tomorrow) =%

- Lets consider a Lorentz transformation (which must not change the
physics):
It is possible to go to a Lorentz frame which is moving relative

to the particles faster than the wave (phase-) velocity !
Then ALL particles are faster than the wave velocity !!

In this frame we always have anti-damping !!!

- Is this true 777



Now what about accelerators ???
Landau damping in plasmas, all right
Physical origin rather simple
How to apply it in accelerators ?

We have:
> No plasmas but beams
> No distribution of velocity, but tune
» No electrons, but ions (e.g. p)

> Also transverse oscillations



Now what about accelerators 777
How to apply it in accelerators ?

Can be formally solved using Vlasov equation, but physical
interpretation very fuzzy (and still debated ..)

Different (more intuitive) treatment ([AC], [AH],[DS])

Look now at:
> Beam response to excitation
> Beam transfer function and stability diagrams
> Phase mixing

> Conditions and tools for stabilization, problems



Response of a beam to excitations

How does a beam respond to an external excitation?

Consider a harmonic, linear oscillator with frequency w driven by an
external sinusoidal force f(¢) with frequency 2: The equation of motion

IS:
i 4wz = A cosQt = f(t)

for initial conditions x(0) = 0 and #(0) = 0 the solution is:

(02— w7) (cos QU — cos wi )
2(0)=0,d(0)=0




In general a beam consists of an ensemble of oscillators with different
frequencies w with a distribution p(w) and a spread Aw.

Number of particles per frequency band:

p(w) = +dN/dw with fjooo p(w)dw =1

0.4

0.35 |-

0.3 |-

0.25 |-

0.15 |-

0.05 |-

Aw

reminder: for a transverse (betatron motion) w, is the tune !



IMPORTANT MESSAGE!'!

[ ] p(w) is distribution of external focusing frequencies !

> Transverse, bunched and unbunched beams: betatron tune
> Longitudinal, bunched beams: synchrotron tune

> Longitudinal, unbunched beams: 777 (see later !)

Bl A s spread of external focusing frequencies !




Given the frequency distribution p(w) = +dN/dw
and the single particle response:

A
t) = — Qt  — t
(1) (02 — w?) (cos (;))_CSE(;‘;:J

The average beam response (centre of mass) is then:




We can re-write (simplify) the expression

< a(t) >=— /OO [(QQ il Jy(cos Ot — cos wt)] o(w)dw

—

for a narrow beam spectrum around a frequency w, (tune) and the
driving force near this frequency Q ~ w, *)

< 2(t) >= —Qix / h [(Q—iw)(cos Ot — cos wt)] o(w)dw

— o0

For the further evaluation we transform variables from w to
u = w — 2, and assume that (2 is complex: €2 = Q, + £);

*) justified later ... (but you may already guess !)



We get now two contributions to the integral:

B A - 1 — cos(ut)
<z(t)> = e cos(€2t) /OO du p(u + Q) ”
A > sin(ut)
Q Q
+ o sin(Qt) /_ du p(u + Q) "

[©.@)

This avoids singularities for u = 0
We are interested in long term behaviour,

l.e. T — 00, SO we use:

n(ut
lim sin{ut) = 7o (u)
t—o00 U

lim L= _ py (1)

t—o0 U U




and obtain for the asymptotic behaviour (back to w, Q)*):

oo

< x(t) >= A wp(Q)sin(Qt) + COS(Qt)P.V./

2&)3; —00

The response or Beam Transfer Function has a:

Resistive part: absorbs energy from oscillation = damping (would

not be there without the term —cos wt)

Reactive part: "capacitive” or "inductive”, depending on sign of

term relative to driving force

*) Assuming €2 is complex, we integrate around the pole and obtain a 'principal value P.V." and a 'residuum’



Response of a beam to excitations
What do we see:

- The "damping” part only appeared because of the initial conditions
z(0) = 0and (0) = 0!

- With other initial conditions, we get additional terms in the beam
response

- le. for z(0) # 0 and ©(0) # 0 we may add:

sin(wt)

:C(O)/dwp(w)cos(wt) +:i:(0)/dw,0(w)

w

> Do not participate in the dynamics, what do they do ?



Particle motion

eeeeeeeeeeee

— Oscillation of particles with different tunes

Initial conditions: x(0) = 0 and #(0) # 0



Particle motion

— Oscillation of particles with different tunes
Initial conditions: x(0) = 0 and #(0) # 0

— Average over particles, centre of mass motion



Particle motion

Beam response

X(), <x(t)>

— Oscillation of particles with different tunes
Initial conditions: x(0) # 0 and #(0) =0
— Average over particles, centre of mass motion

This is NOT Landau Damping !!



End of Part 1, to remember:

> Landau Damping is not to be confused with Decoherence
> It relies on interactions with collective fields, collisionless

> Initial conditions provide the "damping part” in the (dispersion)

equations:

Stable beam at the beginning: Landau Damping inhibits the instability

"Landau damping” is the absence of oscillations !!!



Physics of Landau Damping

Part 2

Werner Herr
CERN
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Interpretation of Landau Damping

Initial conditions: x(0) = 0 and #(0) = 0, beam is quiet
Spread of frequencies p(w)

When an excitation is applied:

> Particles cannot organize into collective response
(phase mixing)

> Average response is zero

> The beam is kept stable, i.e. stabilized



Particle motion

Beam response

X(), <x(t)>

— Oscillation of particles with different tunes
Initial conditions: x(0) # 0 and #(0) =0
— Average over particles, centre of mass motion

This is NOT Landau Damping !!



Interpretation of Landau Damping

Initial conditions: x(0) = 0 and #(0) = 0, beam is quiet

Spread of frequencies p(w)

When an excitation is applied:

> Particles cannot organize into collective response
(phase mixing)

> Average response is zero

> The beam is kept stable, i.e. stabilized

=P Next : quantitative analysis



Response of a beam to excitations

For this, we re-write (simplify) the response in complex notation:

< xz(t) >= 2:13; [Wp(ﬂ)sin(ﬂt) + cos(Qt)P.V. /_O:O dw (cf(—wzl)]
becomes:
< 2(t) >= 2:1 [P.V./dw (wp(_“g)) n ]

First part describes oscillation with complex frequency ()



Response of a beam to excitations

Reminds us a few things ....
Since we know the collective motion is described as e(—#%)

For an oscillating solution €2 must fulfill the relation

1+ [P.V./deJriwp(Q) ~0

(w—9Q)

20y

This is again a dispersion relation, i.e. condition for oscillating solution.

What do we do with that 77

Well, look where €2; < 0 provides damping !!

Note: no contribution to damping when () outside spectrum !!



Simplify by moving to normalized parametrization.
Following Chao’s proposal, in the expression:

< a(t) >= 223 o1 [P,V,/dw% + imp(2)

we use again u, but normalized to frequency spread Aw:

normalize

u = (wy — Q) = u:(wx—ﬂ)

Aw

and introduce two functions f(u) and g(u):

f(u) = AwP.V. fdw%

g(u) = TAwp(w, — vAw) = TAwp()

remember: w, = tune, (2 is the driving frequency



The response with the driving force reads now:

A

%o Aw e " [f(u) +i- g(u)]

< x(t) >=

where Aw is the frequency spread of the distribution.

The expression f(u) 41 - g(u) is the Beam Transfer Function
Easier with this to evaluate the different cases and examples ....

For important distributions p(w) analytical functions f(u) and g(u)
exist (see e.g. Chao, Tigner, "Handbook ..")

Will lead us to stability diagrams.



Response of a beam in presence of wake fields

Example: the driving force comes from the displacement of the beam as a

whole, i.e. <z > = Xy ! For example driven by a wake field or impedance.

The equation of motion for a particle is then something like:
i+wr=ft)=K <z>

where K is a " coupling coefficient”



Coupling coefficient &' depends on nature of wake field:

> Purely real:
- Force in phase with the displacement

- e.g. image space charge in perfect conductor

> Purely imaginary:

- Force in phase with the velocity

> In practice, have both and we can write:

K = 2w, (U —iV)



Response of a beam in presence of wake fields

Interpretation:

> A beam travelling off centre through an impedance induces transverse
fields

> Transverse fields kick back on all particles in the beam, via:

itwr=ft)=K <z>

> If beam moves as a whole (in phase, collectively !) this can grow for
V>0

> The coherent frequency 2 becomes complex and shifted by ( — wz)*

*) without impedance: 2 = w (betatron frequency, i.e.tune)



For a beam without frequency spread (p(w) = §(w — w,)) we can

easily sum over all particles and for the centre of mass motion < x >

we get:
<>+ <r>=ft)= 2w, (U—-iV)- <z >
> For the original coherent motion with frequency €2 this means

- In-phase component U changes the frequency

- Out-of-phase component V creates growth (V' > 0) or damping
(V <0)

For any V' > 0 the beam is unstable (even if very small) !!



Response of a beam in presence of wake fields

What happens for a beam with an frequency spread ?

The response (and therefore the driving force) was:

A

o A e~ [f(u) + i - g(u)]

< x(t) >=




Response of a beam in presence of wake fields
The (complex) frequency € is now determined by the condition:

(2 — wy) 1

Aw (f(u) +ig(u))

All information about stability contained in this relation !

B The (complex) frequency difference (€2 — w, ) contains impedance,
intensity, v, ... (see lecture by G. Rumolo).

Bl The right hand side contains information about the frequency
spectrum (see definitions for f(u) and g(u)).



Without Landau damping (no frequency spread):
If S(2 —w,) < 0 beam is stable
B f S(Q —w,) > 0 beam is unstable (growth rate 771 1)

With Landau damping we have a condition for stability:
(2 —wy) 1

Aw (f (u) +ig(u))
How to proceed to find limits ?
Could find the complex Q at edge of stability (771 = 0!

== (Can do a bit more ...



Stability diagram
Look at the right hand side first.

Take the (real) parameter u in

1
(f(u) +1ig(u))

D, =

1 Scan u from —oo to +00

2 Plot the real and imaginary part of D7 in complex plane



Why is this formulation interesting 777
The expression:

(f(u) +ig(u))

is actually the Beam Transfer Function,
l.e. it can be measured !!

> With its knowledge (more precise: its inverse) we have conditions
on (£ — w,) for stability

> Intensities, impedances, ...



Example: rectangular distribution:

1
—  forjw —w,| < Aw
plw) = ¢ 22

0 otherwise

Step 1: Compute f(u) and g(u) (or look it up, e.g. Chao, Tigner,
"Handbook of ...")

1

fu) = iln

u—+ 1 s
_ T ga-—
v o(w) =T H(1 ~ Ju]

Step 2: Plot the real and imaginary part of D,



Stability diagram

Stability diagram

15

0.5

-1.5

Imag D1
o

1 1 1 1
-2 -1.5 -1 -0.5 0.5 1 1.5 2

0
Real D1

» Real(Dy) versus Imag(D;) for rectangular p(w)
> This is a Stability Boundary Diagram

» Separates stable from unstable regions (stability limit)



Stability diagram

Take the (real) parameter u in

1

Pr= T i)

1 Scan u from —oo to +00

2 Plot the real and imaginary part of D1 in complex plane

= Plot the complex expression of —% in the same plane as a
w

point (this point depends on impedances, intensities ..)



Stability diagram

Stability diagram

15
1
0.5 - stable @
—
o
(@) 0
©
= °
- stable
-0.5 - unstable @
-1
-15
-2 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0] 0.5 1 1.5

Real D1

> This is a Stability Boundary Diagram

> Separates stable from unstable regions



Stability diagram

For other types of frequency distributions, example:

Stability diagram

stable

Imag D1

o
Real D1

Real(Dy) versus Imag(D;) for bi-Lorentz distribution p(w)

In all cases: half of the complex plane is stable without Landau Damping



Now: transverse instability of unbunched beams
The technique applies directly. Frequency (tune) spread from:

> Change of revolution frequency with energy spread (momentum

compaction)
> Change of betatron frequency with energy spread (chromaticity)

but oscillation depends on mode number n (number of oscillations around the

circumference C):
x exp(—iQdt + in(s/C))
and the variable u should be written:
u = (wWe +n-wo—N)/Aw

the rest is the same treatment.



Examples: transverse instability of unbunched beams

Collective mode

> Transverse collective mode with mode index n = 4



Examples: transverse instability of unbunched beams

Collective mode

> Transverse collective mode with mode index n = 6



What about longitudinal instability of unbunched beams
No external focusing !

No spread Aw of focusing frequencies !
> Spread in revolution frequency: related to energy

> Energy excitations directly affect frequency spread

AW, ey n AE

wo 3% Ey

Frequency distribution by:

P(Wrey) and — Awyey



What about longitudinal instability of unbunched beams
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> With and without perturbation in a plasma



What about longitudinal instability of unbunched beams

AR T A
o VRRRRRRRRRRRRRIRBRRRRRRRRRNNRRRIIRINININY

> With and without longitudinal modulation in a beam



What about longitudinal instability of unbunched beams

No external focusing (w, = 0):
Aw n - Aw
B (Q — M - w0)2 . 1 _ D
n2Aw? ~ (F(w) +iG)) !

and introduce two new functions F'(u) and G(u):

/
Fu) = n-Aw2P.V./dw0 p'wo)

n-wy — €2

G(u) = TAw?p' (Q/n)



IMPORTANT MESSAGE!'!

_(Q—n-wo)2 B 1 B
2A? - Fwticw)) - P

> The impedance now related to the square of the complex frequency shift
(Q—n-wo)?

> Consequence: no more stable in one half of the plane !

> Landau damping always required



Longitudinal stability - unbunched beam

Stability diagram for unbunched beams, longitudinal, no spread:

Stability diagram
' NoI spread e
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Real(D1) versus Imag(D;) unbunched beam without spread



Longitudinal stability - unbunched beam

Stability diagram for unbunched beams, longitudinal:

Stability diagram

P'arabolic E—
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Real(D;1) versus Imag(D;) for parabolic p(w) and unbunched beam



Longitudinal stability - unbunched beam

Stability diagram for unbunched beams, longitudinal:

Stability diagram
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Real(D1) versus Imag(D;) for parabolic and Lorentz distribution p(w) and

unbunched beam



Longitudinal stability - unbunched beam

Why so different stability region:

Distribution function

T
Parabolic _—
Lorentz

Parabolic

/ \ Lorentz
: 2

Larger stability provided by tail of frequency distribution ....

What if we do not know exactly the distribution function 7



Longitudinal stability - unbunched beam

Stability diagram

0.8

' Parabolic

Lorentz
Inscribed circle «=+:---:-
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Stability boundary relates Z, I, etc. with frequency spread
Can derive criteria for stable or unstable beams

Simplified criterion: inscribe = circle as estimate



Longitudinal stability - unbunched beam

For longitudinal stability /instability:

2
2l B Eolne| (Ap
no ql p
This is the Keil-Schnell criterion [EK], frequency spread from
momentum spread and momentum compaction 7,
For given beam parameters define maximum
1Z)]

n

impedance

Can derive similar criteria for other instabilities (see lecture by G.
Rumolo)



Effect of the simplifications

We have used a few simplifications in the derivation:
> Oscillators are linear

> Movement of the beam is rigid (i.e. beam shape and size does
not change)

What if we consider the "real” cases ?

I.e. non-linear oscillators



The case of non-linear oscillators

Consider now a bunched beam, because of the synchrotron oscillation:
revolution frequency and betatron spread (from chromaticity) average

out !
> Source of frequency spread: non-linear force
- Longitudinal: sinusoidal RF wave
- Transverse: octupolar or high multipolar field components

Can we use the same considerations as for an ensemble of linear

oscillators ?



The case of non-linear oscillators

NO !

The excited betatron oscillation will change the frequency distribution

p(w) (frequency depends on amplitude) !!
Complete derivation through Vlasov equation.

The equation:

< z(t) >= 21; e 1 [P.V. / dw ( wp (_“’zz) —|—z'7rp(Q)]

becomes:

< a(t) >= i [P.V. / d 2PWOW (@) /8(2]

(w—0)



Response in the presence of non-linear fields

Study this configuration for instabilities in the transverse plane

Since the frequency w depends now on the particles amplitudes .J, and
Jy*):

OH
W (Jz, Jy) = 57

is the amplitude dependent betatron tune (similar for w,,).
We then have to write:

pw) = p(Je,Jy)

*)

see e.g. ”"Tools for Non-Linear Dynamics” (W.Herr, this school)



Response in the presence of non-linear fields

Assuming a periodic force in the horizontal (x) plane and using now the

tune (normalized frequency) ) = =

wo

F, = A - exp(—iwoQt)

the dispersion integral can be written as:

aP(JwaJy)

AQcoh/ dJs / 15 ijl;J)

=» Then proceed as before to get stability diagram ...



What happens when bunches are not rigid ?

If particle distribution changes (often as a function of time), obviously
the frequency distribution p(w) changes as well. :

> Examples:
- Higher order modes
- Coherent beam-beam modes

> Treatment requires solving the Vlasov equation (perturbation
theory or numerical integration)

= Pragmatic approach (20-20 hindsight): use
unperturbed stability region and perturbed complex tune shift ...




Landau damping as a cure

If the boundary of

determines the stability, can we:
> Increase the stable region by:
- Modifying the frequency distribution p(w), i.e. p(Jz, Jy)
- Introducing tune spread artificially (octupoles, other high order fields)

The tune dependence of an octupole (k3) can be written as™:

QCC(JCCaJy):Q0+a'k3'Jx+b'k3'Jy

sk
see e.g. ”Tools for Non-Linear Dynamics” (W.Herr, this school)



Landau damping as a cure

B Other sources to introduce tune spread:
> Space charge
> Chromaticity
> High order multipole fields
» Beam-beam effects (colliders only)



Landau damping as a cure

B Recipe for "generating” Landau damping:
> For a multipole field, compute detuning Q(J,, J,)

» Given the distribution p(.J,, J)
> Compute the stability diagram by scanning frequency



Stability diagram with octupoles
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> Stabilization with octupoles



Stability diagram with octupoles
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> Stabilization with octupoles, increased strengths



Stability diagram with octupoles
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> Complex coherent tune of an unstable mode

> Now in the stable region



Stability diagram with octupoles
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> Complex coherent tune of an unstable mode

» What if we increase the impedance (or intensity) ?



Stability diagram with octupoles
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> Complex coherent tune of an unstable mode

> Now in the unstable region



Stability diagram with octupoles
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> Complex coherent tune of an unstable mode

> Increased octupole strength makes it stable again



Stability diagram with octupoles
Can we increase the octupole strength (current) as we like ?7?

No, we get several problems:

> Not many particles at large amplitudes: requires large strengths
> Octupoles introduce strong non-linearities at large amplitudes
> Can cause reduction of dynamic aperture and life time

> They can change the chromaticity !

> They can catch fire

The lesson: use them if you have no choice (or run out of ideas) ....



Another example: Head-Tail modes

(see e.g. Lecture G. Rumolo)
> For short range wake fields
> Broad band impedance

> Growth and damping controlled with chromaticity Q'
- Some modes need positive Q'
- Some modes need negative Q'

- Some modes can be damped by feedback (m = 0)

> In the control room: juggle with octupoles and Q' ....



Stability diagram and head-tail modes
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> Stability region from non-linear fields



Stability diagram and head-tail modes
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> Stability region from non-linear fields

» Head-tail mode (m = 0), unstable



Stability diagram and head-tail modes
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> Stability region from non-linear fields
» Head-tail mode (m = 0), unstable

> For two different chromaticities



Stability diagram and head-tail modes
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> Stability region from non-linear fields
» Head-tail mode (m = 0), unstable
> For three different chromaticities = one is stable

> What about higher order head-tail modes (m =1, -1, ..

)7



Stability diagram and head-tail modes
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> Large chromaticity "moves” m = 1 mode to positive imaginary
tune shift, need Landau damping to stabilize



Stability diagram with octupoles
Would need very large octupole strength for stabilization

The known problems:

> Can cause reduction of dynamic aperture and life time

> Life time important when beam stays in the machine for a long
time

> Colliders: life time more than 10 - 20 hours needed ...

Is there another option ?



Stability diagram and head-tail modes
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> Stability region and head-tail modes for different chromaticity

» Stabilization with octupoles or colliding beams [HV]

Colliding beams seem to have a very large stable region !



What makes the difference ... ?
The tune dependence of an octupole can be written as:

Qe(Je, Jy) = Qo + ady +bJy

linear in the action (for coefficients, see Appendix).

The tune dependence of a head-on beam-beam collision can be written
as™): 2
with o = 2% we get AQ/E =% {1 — IO(O‘;) e 7 }

*)

see e.g. "Beam-Beam effects” (Tatiana Pieloni, this school)



Response in the presence of non-linear fields
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> Tune footprints for beam-beam and octupoles
> Overall tune spread the same, but:

> For octupoles largest effect for largest amplitudes

> For beam-beam largest effect for small amplitudes



Response in the presence of non-linear fields
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> Stability diagrams for beam-beam and octupoles [HV]

> Stability region very different !



The Good, the Bad, and the Surprise ...

Landau Damping with non-linear fields: Are there any side effects 7

Bl The Good:
> Stability region increased

Bl The Bad:
> Non-linear fields introduced (resonances !)

> Changes optical properties, e.g. chromaticity ... (feed-down !)

Bl The Surprise:

> Non-linear effects for large amplitudes only (octupoles)

> Much better: head-on beam-beam (but only in colliders ...)



Conditions for Landau " damping”
» Presence of an incoherent frequency (tune) spread
> Coherent mode must be inside this spread

> Coherent mode must be inside the stability diagramm

The SAME particles must be involved !!!




Summary
Long history, heavily debated (still)

Different approaches to the mathematical treatment, (needed for
rigorous treatment of different configurations)

Many applications (plasmas, accelerators, wind waves, bio-physics,

astrophysics, ...)

Very important for hadron accelerators, but should be used with

care ...

It works ! It is not a mystery !



APPENDIX:

Tune shift of an octupole:

The tune dependence of an octupole can be written as:
Qe(Je, Jy) = Qo + ady +bJy

for the coefficients:

3 K;
AQ, = [87T/5xB—pds] r = [8%/2&;@”3 ds] Jy

3 K3



