Mathematical and Numerical Methods
for Non-linear Beam Dynamics

(an introduction)

Part 1

Werner Herr
CERN

Talk: http://cern.ch/Werner.Herr/CAS2015_LECTURES/Otwock _methods.pdf

Werner Herr, non-linear methods, CAS 2015, Otwock




Recommended Bibliography:

[AW] A. Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial College
Press, 2014.

[AC1] A. Chao, Lecture Notes on Topics in Accelerator Physics, SLAC, 2001.

[WH] W. Herr, Mathematical and Numerical Methods for Non-linear Dynamics

in Proceedings of the CERN Accelerator School: Advanced Accelerator Physics,
Trondheim, Norway, 18-29 August 2013, edited by W. Herr, CERN-2014-009 (CERN,
Geneva, 2014), pp. 157-198.

[AC2] A. Chao and M. Tigner, Handbook of Accelerator Physics and Engineering, World
Scientific Publishing, 1998.

[EF] E. Forest, Beam Dynamics - A New Attitude and Framework, Harwood Academic
Publishers, 1998.

[AD] A. Dragt, Lie Methods for Non-linear Dynamics with Applications to Accelerator
Physics

[MB] M. Berz, Modern Map Methods in Particle Beam Physics, Academic Press, 1999.

Additional material also in handout of the lecture and backup slides



Linear Dynamics in particle accelerators

Linear dynamics, optics and lattice concepts are traditionally
developped for periodic systems, i.e. synchrotrons and storage rings,
but:

Most machines are not synchrotrons, let alone storage rings

They are not periodic systems (sources, beam lines, linacs,
cyclotrons, FELs, ERLs, ...)

Most accelerators accelerate particles !!
Particles in general are not relativistic
=» Tools and concepts should be applicable to all these cases

... and they exist, as we shall see



1. Motivation and discussion of standard concepts.
Important: use of correct variables

2. Introduce a modern and contemporary* approach that
automatically leads from simple applications to general and
powerful concepts (necessarily brief and incomplete):

3. No attempt is made at mathematical rigor, (much more rigorous,
derivations and many examples in [AW][EF])

- Develop the concepits first for linear beam dynamics

- Generalize to non-linear dynamics
4. We get a general and consistent formalism (linear and non-linear)

*) the oldest reference is from 1998!




Motivation - why should you listen to me ?

Most introductions to transverse dynamics and beam optics
deal with ”linear” (ideal) machines

But there are a few problems:

Linear (ideal) machines do not exist

Linear (ideal) machines do not work !

Non-linearities unavoidable (and needed !)

Non-linear (real) machines work



What we shall see:

- Concept of linear and non-linear maps

Methods for analysis of the dynamical behaviour

Symplectic integrators

Lie operators and transformations

Use of Truncated Power Series Algebra

—»> (some applications in lectures by Y. Papaphilippou)

First: which variables should be used ?



(I) Start with standard Cartesian coordinates:

X,Y,Z2)

| use X, Y as transverse coordinates (some use X, Z)
Usually impossible to solve equation of motion (and useless)

Find new coordinate system where transverse variables remain small as the
beam moves along Z (see Transverse Dynamics)

X,Y) = (x,y)

These transverse variables are the transverse distances from reference path.



() Independent variable:

The independent variable is the time t and the time increases continuously as
we go along

We are much more interested in the distance between particles as we go along
(in particular: longitudinal deviation from the reference particle):

We therefore replace time ¢ by:

s = fyct=c-t distance along (curved)“reference path

As = c-At distance from reference particle

So we have for the reference particle:

(x,y,As) = (0,0,0)

“) for details: other lectures or handout



() We also need momenta in the set of variables:

Strictly speaking: one should always use canonical variables (we have
to use them later), and in this ordering !

X,px,y,py

With an uneasy feeling, to be consistent with other lectures and various
textbooks (where it is not crucial®):

,  Dx  Ox
X, X—;—a
,_py_é)y
Y Y—;—a

*) Do not believe there is no difference !!



(IV) Momentum deviation and spread:

Momentum of a particle P may be different from the momentum of the reference
particle Py, we define as the momentum deviation ¢:

s _ P=Py _ AP
Py P

An ensemble of particles (let’s call it a beam) may have a r.m.s. momentum
spread o

o% = <& >

So we can finally use: (X, px,Y.py,AS,0) or (X,x,y,y’,As,0)

(For bar discussions: does it make a difference if you have a beam
withos # 0?7?)



Terminology: PHASE SPACE

Unfortunately different definitions in textbooks and articles, here | am rigorous

Correct version, generalized coordinates and conjugate generalized momenta:

Xa an ya pya

Wrong version, generalized coordinates and generalized velocities:

X, Vy, Y5 Vy, ...

Totally wrong version, generalized coordinates and angular deviation:

X, X, y¥,Y,...

Again: do not believe there is no difference, for a discussion see [AW]



Treatment of linear dynamics in rings

For synchrotrons: often introduction using Hill’s equation

For simplicity — in one dimension (as done in most
lectures and textbooks !):

) 1 K(s)x(s) = 0

K (s) periodic function (with period one)

K(s) = K(s+ ()



Use the Courant-Snyder ansatz (only in 1D, x):

X(s) = VBu(s) - 2Jx - cos(p(s) + @)

K0 = A2 (sin(ua(s) + 6) + s - cos(u(s) + B))
(o)

Is the solution to a system that is: linear, confined and periodic !

What about: Beam lines, Linacs, Cyclotrons, ... ?

There are no a-, g-functions !

Question: is a particle with the above solution always stable ?



Trajectories through (arbitrary) magnetic structures

no field no field

Not a solution of the above (not periodic !) .....

Need something else

But it can be worse =»



Adding non-linear fields

with distortions, we have to re-write (similar for the other plane):

2
d”x(s) + K()x(s) = _By(x, Y, 8)
ds?

or in general as (any order) multipoles:

d?x(s)
ds?

+ K(s)x(s) = ) pijls)x’y’

[,j=0

= For exponents (i + j) > 2: enter non-linear dynamics
e.g. (i+ j) = 2:sextupole

=p Very non-linear differential equation to solve



Is it relevant and can we deal with that ?

d’x(s)
d s?

+ K(s)x(s) = ) pijls)x'y/

i,j>0

» Bad news:
For LHC: we go to 20th order ((i + j) < 20) !
We have no global solution

Mostly relevant for hadrons (no damping), e.g. protons, ions

» Good news:

A global analytical solution is not needed !



Why not ??

We do not want to know (we do not care !):
=» The particle’s position and momentum after 12 hours™

(Remember Thermodynamics !)

We do want to know:

= |s the beam stable for a long time ?

=» |s the motion confined ?

=» \What are global properties (e.g. Q, Q’, beam size, ...) ?
=» Does the beam hit the target ?

) ... unlike GPS satellites



An every day example ...

]

} Most important to know trajectory at beginning and end of flight,
and how to get there

} Not important to know exact trajectory as function of time or
distance (unless somebody shoots at you as well ..)

» Can we get a better framework to get that (easily) ?



How can we describe the flight ?

We perform an operation =» mapping M:

final

/

initial

The map M sends the initial conditions to the final conditions, it is a
"generalized” function: Transfer map

What happens inside M is important only when it is constructed !!

There are many different ways to do it | (for the same result) see later !!



Applied to accelerators ...
We want to describe what happens to the particle in an element (e.g. an
electric or magnetic field)

/"

/

Assume we have: magnetic field B@)
Newtons law and Lorentz force:

az
p =V

d S L =

Emo'yv = QvX B

We do not need to know: type of element



What can M be ?

The "maps” can be:

> In the simplest (linear) case the "map” can be written as a
"matrix”

> A non-linear transformation (Taylor series, Lie Transform ...)
» High order integration algorithm

} A computer program, subroutine etc.
How to get a map ? See later !
Let us look at the linear theory first !

Then generalize to non-linear theory



Simple examples - all derivations later

First a drift space (one dimension only) of length L, starting at position
s1 and ending at s,

X(s,)X'(s,)
x5 )x'(sy)

> sFs,tL

The simplest description (1D) is (should be in 3D of course):

HEEE

2 1

This is only an approximation, see later ... !




Another example

Focusing quadrupole of length L and strength k; (k; > 0):

[x) _[ cos(L - k) \/#E-sin@-«/E)J O (x)

Vki - sin(L - Vk;) cos(L - Vky)

/ /

2

for k, <Owe have: Vk; = i- V| k, | it becomes imaginary and re-write

sin(x) = —1i-sinh(ix) and cos(x) = cosh(ix)

[ y ) _ cosh(L - Vk;) ﬁ-sinh(L-\/E) ] ( y )
) Vki - sinh(L - Vk;) cosh(L - vVk;) )

How did we get the sin, cos, sinh, cosh ? See tomorrow ..



Side Note:

In case we have a momentum deviation 6 we have to
replace:

ki
D

20
D= |1 +— +6?
Br

we then have a momentum dependent focusing
(chromaticity)

k1:>

with

Watch out for 5, < 1, usually ignored, but such machines
exist !!



Another Side Note:

One can define:

1 dB

=k =——
Bp dx

Using I'” instead of Vk =% the matrix for focusing and defocusing

quadrupoles have the same form !

Frequently used for "complicated” calculations and to get "readable”
formulae (e.g. [WH, AC1]), so watch out !

“) or whatever you call it ...



Putting the “pieces” together

We have to deal with many elements in our machines

To make a ring or beam line:

» Combine the maps of all elements together

» Concatenated maps are a map again

» Represents a bigger part of the machine
(or the whole machine ...)

We have a lumped map ..




Starting from a position s, and applying all maps in
sequence of length L to get the overall map for the position
so + L (shown for 1D only):

X X
{ , ] = My o M, o ... o My o { ]
& so + L x,

X X
— { , J = M(S(),L) O [ , )
X X

so + L S0

S0



If the elements form a ring with circumference C:
Starting at position sy we get the One-Turn-Map (OTM):

X X
[ , ) = Ming(s0) © [ , )
X X
So + C S

90

Please note: M,;,,(so) depends on s !!
In the simplest case the One-Turn-Map is a One-Turn-Matrix:
Combination becomes a simple matrix multiplication.

How do we extract the wanted information (first for a matrix, general
case tomorrow) ?



Analysis of our One-Turn-Map with Normal Forms
Matrices can be transformed into (Jordan) Normal Forms
Original matrix and normal form are equivalent, but ...

Easier to analyse the matrix to obtain:
» Stability
» Get parameters (Q, Q', Twiss function, ..)
» Study invariants, etc.

} For resonance analysis (e.g. driving terms)

» etc. ...

|dea is to make a transformation to get a simpler form of the map



Assume M is our One-Turn-Matrix, we try to find a (invertible)
transformation ‘A such that:

AMA = R

The matrix R is:

> A "Jordan Normal Form”, (or at least a very simplified form of
the matrix)

> Example: R becomes a pure rotation

The matrix R describes the same dynamics as M, but:
> All coordinates are transformed

} The transformation ‘A "analyses” the motion



Transformation to Normal Form (pictorial)

M=AcRA)o A or: RAu)=A'oMoA

Motion on an ellipse becomes motion on a circle (i.e. a pure rotation)
R(Au) is the "simple” part of the map

How to get that ? Remember lectures on Linear Algebra (Eigenvectors,
Eigenvalues ...)



We find the two components of the original map:

VB(s) 0 cos(uy)  sin(uy) )
= N . and R = .
B \/[% —sin(uy)  cos(uy)

> From the Normal Form transformation we get plenty of information:
- We get 83, a, ... etc., u, is the tune Q, - 2 !

- The machine is stable when u, (and u, etc.) are real (i.e. not
complex)

- We get the closed orbit



No need to make any assumptions, ansatz, approximations,

Here demonstrated for one dimension, but it works for many
dimensions

A key: it does not matter how we got the map ! (see later)



Side note - normalized variables:

Also the variables are transformed:

MEE»

IS just a variable transformation to new, normalized variables:

x> + 2a.xx + Bx* = x2 4+ x?



Another example: linear coupling (2D)
Assume a one-turn-matrix in 2D (4 x 4 matrix):

M n
m N

T =

M,m,N,n are 2-by-2 matrices.
In case of coupling: m # 0,n # 0 we can try to re-write as:

M n
m N

T = = VRV!

with (same procedure as before):

A O vl C
R = and V =
0 B -C" yl



What have we obtained ?

The matrix R is our simple rotation, now in 2D:
> A and B are the one-turn-matrices for the "normal modes”, each
in 1D
> The matrix C contains the "coupling coefficients”

> The matrix V transforms from the coordinates (x, x’, y, y’) into
the "normal mode” coordinates (w,w’, v, V") via the expression:

(x, x,y,9) = V(w,w,v,V)

One simple operation !



Description using Action - Angle variables

Once the particles "travel” on a circle:
} Radius V2J is constant (invariant of motion): action J
> Phase advances by constant amount: angle V¥

l.e. the angle Y is the only independent variable !



Description using Action - Angle variables

Related to phase space variables x and p,:

x = +2J,8, cos(\Yy)
P = = |3 (sin(P) + ascos(P,))

2

Jy = %(‘yxx + 2a,xpx + Bipl) = %(x,% + p2)



What are they good for ?

f pdg = const. = 2nJ

for canonical variables® ¢, p then J is a constant as the system evolves
(Poincaré invariant).

We define an important quantity for a system with many particles:
beam emittance

€ = <J,> = <@><pi>-<qp>2 (¢ = xY)

It is the average of the action over all particles (other definitions exist,
but not generally valid)

*) This is a necessary condition, what it means see later ..



The general philosophy (linear systems):

Describe your elements by a linear map

Combine all maps into a ring or beam line to get the linear one turn
matrix

Normal form analysis of the linear one turn matrix will give all the
information

No need for any assumptions !
No need for any approximations !
Works in more than 1D and with coupling !



Try now: A general philosophy (non-linear systems):

Describe your elements by a non-linear map

Combine all maps into a ring or beam line to get the non-linear one
turn map

Normal form analysis of the non-linear one turn map will give all the
information

No need for any assumptions !
No need for any approximations !
Works in more than 1D and non-linearities !



A small complication ...

Non-linear maps are not matrices !



Various types of non-linear maps

Choice depends on the application, some examples:

Taylor maps

Symplectic integration techniques

Lie transformations

Truncated power series algebra (TPSA), can also generate maps
from tracking

» Not all maps are allowed !

} Key concept: Symplecticity most relevant for rings !



Requires for a matrix M =»>M" .5 - M =S with:

)

(0 1 0 O

-1 0 0 0
S =

0O 0 0 1

L0 0 -1 0,

It basically means: M is area preserving and

lim M" =finite — detM-=1

n—oo

To be rigorous: only for canonical variables

This form of S only for our standard ordering of variables (a general
definition exists)



Introducing non-linear elements (e.g. sextupole)

Effect of a (thin) sextupole with strength k; is:

() () ( 0 \
/ / 1 2 2
X X kL (x: —
As2) = - C| 2
y y 0
V) W) U kL Gy

=»> Asy) = M o Zs)

=» M is not a matrix, i.e. cannot be expressed by matrix multiplication



We need something like [ with: 7 = (z1,22,23,24) = (x, X", y,y)]:

Zj(Sz) = le-x +Rj2-x’ +Rj3'y+....
+Tj11 . X2 + Tj12 - xx + Tj22 . X’2+
+Tj13 - Xy + Tj14 . )Cy’ + ...

3 2
+Uj111 - X+ Uj112 cx7x 4

and the equivalent for all other variables ...



Compact as higher order Taylor - Maps:
We have (for: j =1...4):

4 4 4
() = D Raas) + ) D Tuzsnz(sy)
k=1

k=1 I[=1
4

4
* S: U jkimzk($1)21(51)Zm(S1)
I=1

Has to be truncated at some order (e.g. order 2 for a
sextupole)



Second order map for a sextupole with length L and strength &, (in 2D):

= x1 + Lx]
— /

_ I4
= )1 +Ly1

=y

=
~
-
) )

3 / / 4 / /
— )+ Lax -y + H&E - yP)
2 / / 3 / /
=)+ L ax -y + £GP - yP)

3 I4 4 4 / </
X1y1 + %(xlyl +y1x1) + é_4(x1y1))

~
.
—_ N

e N e
[

NI~

2 4 / 3 / 7/
X1y1 + %(xlyl +Y1x1) + %(xlyl))



Symplecticity for higher order MAPS

Truncated Taylor expansions are not matrices !!

It is the associated Jacobian matrix 4 which must fulfil
the symplecticity condition:

P 0z, (e I 6Z’2“)
ik — 8Zlf g. xy — 02?
9 mustfulfil: 9°-S-9=8

In general: J;; # const =» for truncated Taylor map
can be difficult to fulfil for all z



Example: take the sextupole Taylor map (for simplicity in one

dimension):
— r L L L* 2
Xy =X+ Lx k2(? + TX1x] + 55X +O(3))
2 3
X, =X —k> (% %xlxl + %x’lz + 0(3))
we compute:

T 0 1+AS
g -S-9= + S
—1-AS 0

IS non-symplectic with error:

k2
AS = == LYL*x* + 6Lxx" + 6x°)

72



Thick magnets

Taylor maps do not correctly describe non-linear magnets
(not symplectic !)

(position and momentum change inside the magnet)

Is this a dead end ? Do we have to wave the white flag ?

Not yet: thin magnets =—»
In previous example: AS o L*

Small error for small L, no error for L = 0!



In a magnet with zero length (thin) the position cannot
change

Thick "magnet”. Length and Field used to compute
effect

Thin "magnet”: let the length go to zero, but keep field
integral finite (constant):

L-ky, L-ky, L-ks,..

Thin (zero length) elements are technically difficult, but
much easier to use (how ?) ...



Moving through thin elements (shown for 1D)

S ’
X3

No change of amplitude x

=» Ax" = f(x) (polynomials of some order)
The "7momentum” x” receives an amplitude dependent deflection (kick)
X - X+ AX

Always symplectic (proof as tutorial exercise)




Using thin elements

Can we approximate a thick element by one or more thin
element(s) ?

» Yes, when the length is small or does not matter
» Symplecticity o.k.

» What about accuracy, what have we lost ??

» Demonstrate with some simple examples

(What follows is valid for all elements !!!)



Accuracy of thin lenses

} Start with exact map, compare with thin quadrupole

cos(L - VK) VLE -sin(L - VK)

Ms—>s+L —
—VK -sin(L- VK)  cos(L- VK)

} Taylor expansion in small” length L.:

1 0
LO-[ ]+L1-
0 1

0 1
-K 0




» Keep up to first order term in L

(1 o) (o0 1
Mg =L - +L -
0 1 -K O
Ms—>s+L — + O(Lz)
-K-L 1

» Precise to first order O(L')

} det M # 1, non-symplectic (of course, this is obvious !)



1
-K-L 1

Ms—>s+L — [ + O(Lz)

If we add a term —KL? the matrix becomes symplectic:
"symplectification” (it is wrong to O(L?) anyway ...)

- Ms—>s+L —

1 L
~K-L 1-KIL?



Keep up to second order term in L

1 2
- 1KL L

+O(L%)
-K-L 1-1iKL?

Mg =

» Precise to second order O(L?)

} More accurate than before, but again not symplectic



Made it symplectic by adding — KL’

1 2 1 3
- 1KL> L-1KL

+O(L")
-K-L 1-1iKL?

Ms—>s+L —

Precise to second order O(L?)



Looks like we made some arbitrary changes and called
it "symplectification”

Is there a physical picture behind the approximations ?
Yes, geometry of thin lens kicks ...

A thick element is split into thin elements with drifts
between them



Thick =» thin quadrupole

K

L

quadrupole of
finite length

options:

Represented by one or more "thin” lenses (kicks)

How many and where ?

Which is a good strategy ? ==» accuracy and speed




Thick quadrupole ..

Go to thin quadrupoles = various options



Option 1

L

Separate L and K become K - L

One thin quadrupole “kick” and one drift combined (lumped)

1 0qf1 L]
-K-L 1 )0 1

Resembles "symplectification” of order O(1)

1 L

Mlumped — KL 1-KI2




Option 2

K L

L/2 L/2

One thin quadrupole “kick” between two drifts

1 o1 iL)
-k-L 1 J{o 1

Resembles more accurate "symplectification” of order O(2)

1 3L
0 1

1 2 1 3
1-1Kk1? L-1KL

Mlum ped — 1 2
KL 1-1iKL




Accuracy of thin lenses

One kick at the end (or beginning):

=» Error (inaccuracy) of first order O(L?)

One kick in the centre:

=» Error (inaccuracy) of second order O(L?)
» ltis very relevant how to apply thin lenses

} Aim should be to be precise and fast (and simple to implement)



What about this option ?

K L/2

—

==p EXxercises in tutorial



Can we do better ?

» Try more slices, e.g. 3 kicks:
» How to put them ?

> Allow that they are at different positions
and have different strengths

» Minimize the inaccuracy




» Try a model with 3 kicks:

Cc2
cl c3

dl d2 d3 d4

=P T0o get best accuracy (i.e. deviation from exact solution):
=» You have 7 free parameters to minimize deviation:
- Kicks c1, c2, c3

- Drifts d1, d2, d3, d4



» The optimization gives us:

(o L aK L

aL

[
alL !

e B x

bL bL

BK L

with:
a~0.6756,b~-0.1756, a ~ 1.3512, 8 =~ -1.7024

» We have a O(4) integrator ...
» (a O(6) integrator would require 9 kicks (!) ...)
(for the derivation: [AC1])



The lumped matrix M becomes now:

( 17272 1 14714 17273 1-213 7475 )
21/3 676 2173 6717
twoampk L + gk L
M(O4)lumped —
2 174713 17272 1 14714
—kL+5kL l—ikL +ﬁkL
21/3 6715 2173 676
\ +24(2—21/3)2k L + 48(2—21/3)3k L )

Prove that it is symplectic ..

Why all that ? (answer in a few minutes)



Symplectic integration
What we do is Symplectic Integration
From a lower order integration scheme (1 kick), construct higher
order scheme
Formally (for the formulation of S (¢) see later):

> From a 2nd order scheme (1 kick) S,(#) we construct a 4th order
scheme (3 kicks = 3 x 1 kick) like:

S4(t) = Sa(x11) o So(xpt) 0 So(x1t) with:

_21/3 1
Xo = ST ~ —1.7024 x; = ST ~ 1.3512




Can be considered an iterative scheme (see e.qg.
H. Yoshida, 1990, E. Forest, 1998%):
» If S (r) is a symmetric integrator of order 2k, then:
Sok2(8) = Sou(x17) 0 S (xot) © Sox(x12) with:
-2 1
I YT

Higher order integrators can be obtained in a similar way




Symplectic integration
Example: From a 4th order to 6th order
Se(t) = Sa(x11) 0 S 4(xot) 0 S4(x17)

Replace each kick of a 4th order integrator by a 4th order integrator,
using the same scaling factors

We get 3 times 4th order with 3 kicks each, we have the 9 kick, 6th
order integrator mentioned earlier



Integrator of order 2 — 4

» Replace kick by 4th order integrator



Integrator of order 4 — 6 - step by step

» Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

» Replace each kick by 4th order integrator



Integrator of order 4 — 6 - step by step

} Replace each kick by 4th order integrator, requires 9 kicks

> We have 3 interleaved 4th order integrators (compute M(O6)mped),
Repeat the procedure to go to higher orders



Some remarks:

We have used a linear map (quadrupole) to
demonstrate the integration

Can that be applied for other maps (solenoids, higher
order, non-linear maps) ?
» Yes (this is the answer) !!

» We get the same integrators !

» Proof and systematic (and easy) extension in the
form of Lie operators® (see later)

—»> Best accuracy for thin lenses !



Accuracy of (non-linear) thin lenses
Now the general case with the function f(x):

Ax' = f(x)

> Non-linear elements are usually thin (thinner than dipoles, quadrupoles ...)
- Dipoles: ~ 14.3 m
- Quadrupole: x2-5m

- Sextupoles, Octupoles: ~ 0.30 m

== Can try our simplest thin lens approximation O(2) first ...



Drift - Kick - Drift

—_— N

— NI~
N ——
o
ﬁ
N
S S
N ——

[N



Putting it together:

L

X(L) = xj+L-f(xo+ Exé)
L / /

x(L) = xp+ 5 (xg + x'(L))

It is symplectic (... and time reversible) !!



Accuracy of thin lenses

the (exact) Taylor expansion of f(x) gives:

x(L) = xo+x)L+ % f(xo)L* + éxé f(x)L” + ...
the (approximate) algorithm gives:

x(L) = xo+xyL+ %f(x())L2 + ix(')f’(xo)L3 + ...

» Errors are O(L?) (of course, because O(L?) is correct by
construction)

» For small L acceptable, and symplectic



An application, a (1D) sextupole with:

fx) = k-X
using the thin lens approximation gives:

1

1
x(L) = xo+xpL+ Ekng2 + 3

1
kx0x6L3 + gkx62L4

1
X'(L) = xy+ kx%L + kx0x6L2 + ka62L3

Map for thick sextupole of length L in thin lens approximation, accurate
to O(L?)



For bar/coffee discussions (or a question tomorrow):

why did | write:
Ax" = f(x)
and not:

Ax’

S(x, x7)



Simulation and tracking
All these tools can be used in a simulation code

Main purpose of such a code: Propagate particles around a ring or
along a beam line. It is the most precise treatment.

Results (amongst others):
} Phase space topology (Poincare sections,..)
} Global properties (after some analysis), e.g. stability, detuning,

invariants, frequency map analysis ....

In our terminology: Tracking codes produce maps (i.e. relate output
to the input), it is the most precise map we can get !

Can we extract more "analytical” maps ? =% tomorrow



”You should remember” in a nutshell...
> Accelerator elements are described by symplectic maps
> Allow computation and analysis of One-Turn-Maps or Single-Pass-Maps
> Normal Form analysis provides all what we need to know
» Thin and thick lenses: when, why, pros and cons

> Symplectic integration provides best accuracy with thin lenses, in particular
when a closed expression is not possible

An integrator can be constructed to high order and accuracy

Next ...

> Extend to non-linear dynamics and introduce modern concepts



Mathematical and Numerical Methods
for Non-linear Beam Dynamics

(an introduction)
Part 2
Werner Herr, CERN

Werner Herr, non-linear methods, CAS 2015, Otwock




Road map:
> Lagrangian and Hamiltonian dynamics
» How to use that = Lie transforms
} How to analyse that == Non-linear normal forms

» How to analyse that easier = TPSA

Avoid abstract definitions and formulation, but:
> Intuitive (but correct !) treatment
» Useful formulae and examples

» Real life examples and demonstration (TPSA)



Problem: what is the motion of a system described by generalized
coordinates q(r) between two specific states q; = q(¢f;) and q; = q(t,)

coordinates: q(t) = gq;(t) (i=1,n)
velocities: q(r) = ¢i(t) (i=1,n)
(Goldstein convention)

n are degrees of freedom of the system, for N particles:n = 3-N



Describe the particle’s motion by a function L (Lagrange function)

qi1(1), ...q,(?) ... generalized coordinates

gi(1),...g,(t) ... generalized velocities
The integral S = [ L( g,(t), ¢:(1), 1) dt ® defines the action

Without proof or derivation:
S =T — V = kinetic energy - potential energy

*) to save typing: qi(®), g:(t) = (qi,q;)



Hamilton principle (least action)

2
S = f L(g;, g;, t)dt = extremum
1

il ;‘2 = 3
1 "‘L\t'\kﬂ\ VT

ROWAN HAMILTON

} Hamiltonian principle: system moves such that the action §
becomes an extremum



Lagrange formalism
Without proof:

S = fl 2 L(g;, g;,t) dt = extremum
s fulfilled when:

d oL  OL __ 0
dl‘aq,‘ aq,- o

(Euler - Lagrange equation)



From Lagrangian to Hamiltonian ..

Lagrangian L(q1, ...qn. g1, ---Gn, t) In generalized coordinates and
velocities

Provides (n) second order differential equations
Lagrangian is more general, for our purpose we use Hamiltonian (if
you are interested why, ask a lecturer or your tutors)
> First order differential equations (always solvable)
} Generalized momenta instead of velocities
» g; and p; are independent and on equal footing,
g; and ¢; are not

The generalized momenta p; we derive from L as:

_ oL
Pj = %



Once we know what the canonical momenta p; are: the Hamiltonian is a
transformation of the Lagrangian:

H(qj, pj,1) = Z gipi — L(g},4;,1)

l

without proof:
H =T + V = kinetic energy + potential energy

we obtain 2 first order equation of motion:

OH _ _ 5 _ _ 9 OH _ . _ 44
9, ~ Pi= " op, 4T a

Now back to beam dynamics .....



Hamiltonian of particle in EM fields

For the Hamiltonian of a (relativistic) particle in an electro-magnetic field we
have (¢ — x):

H(Z 1) =c \/(ﬁ — eA(X, 1))? + m2c? + eD(X, 1)

where A(%, 1), ®(Z, {) the vector and scalar scalar potential

Using canonical variables and the design path length s as independent variable
(bending in x-plane) and no electric fields:

x x  xr Ayuxy)
H:—(1+—)-\/(1+6)2— 2-p2+—+ - :
p Py T 22 T "By

where ¢ = (poia — Po)/ po 1S relative momentum deviation and A;(x, y) longitudinal
component of the vector potential [MB].



The magnetic fields can be described with the multipole expansion:

By +iBy = ) (by +ia,)(x + iy)"”"

n=1

and since B=V x A

1
As= ) =1+ ia)(x + iy)')

n=1

n =1 refers to dipole (not always true, other conventions exist !)
} Looks like what we had before .. what have we gained ?

} For a large machine (x <« p) we expand the root ( to 2nd order) and
sort the variables =»



Hamiltonian (for large machine) ..

kinematic dipole quadrupole sextupole
2, .2 T o
Pyt py X0 X kl 2 2 k2 3 2
= - — 4+ — 4+ —(x" - + —(x" —3x
T 5 2 2( yo) 6( y©)

—— ——
dispersive  focusing

| | 1 "B,
using (MAD convention) : k,

- B_p o0x"
> The Hamiltonian describes exactly the motion of a particle
through a magnet

> Basis to extend the linear to a non-linear formalism

But how do we use it ??



Poisson brackets

Introduce Poisson bracket for a differential operator:

= (228 oF %
, o1 Ox; Op;  Op; Ox;

Here the variables x;, p; are canonical variables, f and g are functions of x; and

Di-
We can now write (using the Hamiltonian H for g):
O0OH dx,-
i» Pi) = Xi i» H] = =
JS(xispi) = xi =[x, H] o " di
OH _ dpl

i» Pi) = Di i H] = —
f&xi,p) =pi=> [pi,H] o~ di

Poisson brackets encode Hamiltons’s equations



Poisson bracket [ f, H] describes the time evolution of the function f
It is a special case of:

df of
E _[faH]+ ot

If £ does not explicitly depend on time (‘?9—’; = 0) and:

_ df _
[f,H =0 = dt_o

implies that f is an invariant (constant) of the motion !

Poisson brackets with H determine invariants

We continue now again with s as the independent parameter.



We can define: : f:g=1[f, gl
where : f : is an operator acting on the function g:

=14

The operator : f : is called a Lie Operator

Lie operators are Poisson brackets in waiting

It acts on functions g(x, p), look at special cases:
gx,pp=x — |f,x] = :f:x

f:p

gx,p)=p — |f, pl



Useful formulae for calculations (and exercises)

With x coordinate, p momentum, try special cases for f:

P P
xX: = — P = - —
ap P dx
R
dp> I O0x2
P P
2 2
= 2x— : = —2p—
* Y op p Pax
o 0 5
:Xp: = P —X— :X::p: = :p::x: =




More useful formulae for calculations

With x coordinate, p momentum:

—_—— - —— -2
P Oox dp Op Ox P
2 op* dp _ 9p* dp
cpTip = — 0
ox O0p Op Ox

Cpr)Yx=p :CpPix)=p :(-2p)=0

Cp*)yp=p :Cp :p=p:0)=0



Next step — Lie transformations

We can define powers as:

Cfyg=f:Cf:9=IfI1fgll et

In particular:

i=0

” 1 1
=1+ 1 f: + 2—!(:]”:)2 + 5(:f:)3+...

The operator ¢'/* is called a Lie Transformation



TO REMEMBER (if anything): what’s the difference ?

» Very FA.Q. : difference between Lie Operator and
Lie Transformation ?

. f : g describes time evolution of g over an infinitesimal distance

e'/*g describes time evolution of g over a finite distance
Lie transformations are symplectic for thick elements !
> For coffee/bar discussion (and ask your tutors):

What is the meaning of this expression ?

lp,H] = 0

(o Is particle density in phase space)



Lie transformations - general

Acting on the phase space coordinates:

el (x, p)o = (x, )i
that is:
el xo = x
€:fzpo = D1

> Lie transforms describe how to go from one point to another [ACT,
AD].

> Through a machine element (drift, magnet ...) fully described by f
» But whatis f ?



Lie transformations
> The generator f is the Hamiltonian H of the element !

> We use the Hamiltonian to describe the motion through an
individual element

> Inside a single element the motion is "smooth” (in the full machine it
IS not !)

> Treats "thick” elements (L > 0) and is still symplectic !

ForanelementoflengthL: f = L-H



Back to maps:
we relate a non-linear map M to:

M = &f

note, we also have with this formulation:

the proof is rather trivial, see in a few minutes



A (most) important feature !
Assume we have the map:

M = el
we can write it in a different form (factorization):
e:f: — e:fzze:fgze:ﬁ;:m

Here f; are power series of k-th order.

The miracle:
since all exponential maps are symplectic, one can truncate the
factorized map at any order k ... and it remains symplectic !!

Remember: truncated Taylor maps are not symplectic !



Lie transformations - example

Lie operators act on functions like x, p (canonical momentum, instead of x’), for

example:

:pPix=-2p pPip=0

or as a Lie transformation with f = —Lp?/2:

. . 1 1
ey =y L p2 cx+ =L p2 )X+ .
2 —— 8 ——
:—2]9 =0
= X+Lp

—Lp?/2: 1 .2

e p = p—EL.p i
—

=0



Lie transformations - example

Lie operators act on functions like x, p (canonical momentum, instead of x’), for

example:

:pPix=-2p pPip=0

or as a Lie transformation with f = —Lp?/2:

: : 1 1
R EC S § PP x4+ =L p ) x4+
2 — — 8
= X+Lp
—Lp?/2: 1 .2
e p = p—EL.p i
——

=0

This is the transformation of a drift space of length L !!



Drift space - for the ambitious
The full and exact Hamiltonian in two transverse dimensions and with a relative

momentum deviation ¢ is:
H=-J(1+67 - p2 - p}

The map for a drift space is now:

new px

X = x+L-
JA+8? = % - p}

new

px = px

ynew — y + L - p)’
JA+82 = g2 = 3

Py = Dy

In 2D and with 6 # 0 it is a complicated beast ! And it creates chromaticity !!

In practice the map can (usually) be simplified to the well known form.



Some formulae for Lie transforms

With a constant, f, g, h arbitrary functions:
ca: =0 — % =1
fia=0 — ela=a
el g(x) = gle' x)
el'G(: g el = GG elig)
eli[g, hl = [¢7'g, ¢ h]
(€)™ = e

and very important:

cfe e e o ifige
e.f.e.g.e fr PR £



More examples (1D):

For:

f= —%(kx2 +p%)

we write for the transformation (map):

Remember:

e:f:x — e:—%(kx2+p2):x
e:f:p — e:—%(kx2+p2):p
X . r.n
e:f:g _ Z S 0
n!



we would get (try it, using the "useful formulae” and some intelligent
sorting !):

-~ 2\2n 2\2n+1
:_%(kx2+p2): _ (_kL ) . n L(_kL ) .
‘ * Z:(;( 2! T 2n+ 1)
&0 2\2n 2N\2n+1
. é(kx2+p2): _ (_kL ) . _ k(_kL ) .
‘ P Z( e P ans 1y

Il
)

n



Looks familiar:

Starting from:
L
f= —E(kxz +p°)
we finally have obtained:
efix = xcos(VKL) + -= sin( VkL)
Vk

e:f:

p — Vkx sin( VKL) + p cos( VKL)

=» Thick, focusing quadrupole !

A little riddle, what if we have  f = —1kx?



Hamiltonians of some thick machine elements (3D)

dipole:
2 2
H:_—x(5+ x? N Dx + Dy
0 207 2(1+9)
quadrupole:
2 2
1 Px TP
H==Fk 2 .2 4 y
Y ST )
sextupole:
2 2
1 PxtD
H = -k -3x7%) + .
R Tr
octupole:
1 Py + Dy




Remark:

In many cases the non-linear effects by the kinematic term
are negligible and

1 p:+p;
H=—ki(x*=y")+ a
Sk =y7) 2(1+0)
IS written as:
1 p:+ p;
H=-k(x*-y")+ -
> 1(36 Y) >

In 1D it reduces to previous example

L
fz—Emf+p%:—LJJ



Why all that 22?2

If we know the Hamiltonian H of a machine element then:
e Xo =X

e:H:pO = p

This is also true for any function of x and p:

e fo(x, p) = fi(x, p) e.g.: x5, x-p,..

The miracles:
} Poisson brackets create symplectic maps
» Exponential form e is always symplectic
> H can be very complicated, any non-linear contraption

A very good reason to use canonical variabls !!



Many machine elements

> We can combine N machine elements m, by applying one
transformation after the other:

:h: my

et = Mg,

e

> Not restricted to matrices, i.e. linear elements ...

» And arrive at a transformation for the full ring
== a one turn map, a ring with circumference C

> The one turn map is the exponential of the effective Hamiltonian:

_ —CH,¢r:
Mring =€ /1



concatenation very easy:
e:h: — e:f:e:g: — e:f+g:
when f and g commute (i.e. [f,g] = [g, f] = 0)

Otherwise formalism exist

=



Concatenation
To combine:

et = e:f:e:g:
We can use the formula (Baker-Campbell-Hausdorff (BCH)):
h=f + g+ s50f.8]l + GUAL8ll + $lg g /1]

+ L1f.le [ fI — (g, g, [e. [g, £11]
— CLALA LA LA NN + sle LA LA LA gl + .

or .

h=f +g+3:fig+pm:fPeg+ gl
+ oo fuglf - gt f
—%1f148+ﬁg flg+ ..



To combine in a (often applicable) case:

e:h: . e:f:e:g:

if one of them (f or g) is small, can truncate the series and get a very
useful formula. Assume g is small:

el e = e = exp|: f+ :f:” g+0(g%):
| —eif




Side note:

[ [
[ [
I I
—_— = | = =

L/2 L/2 .

Would be generated by a Hamiltonian:

_ 1 1
H = SHuift + Hiiek + 5Harift

1 1 :
—L:5 Harift+Hpick+5 Harift

€

We can use this to construct our integrators with kicks f(x)



Assume a general thin lens kick f(x) i.e. for the map:

X =  Xp
p = potfx)
then the Lie transform is obtained by:

ol S6dx':

Example: thin lens multipole of order n (f(x) = a - x"):

._a_ .n+l.
e n+l )



Useful for many calculations

Monomials in x and p of orders n and m (x"p™)

n ,,m

e ax' P
gives for the map (for n # m):
e:ax”pm:x - x. [1 + CZ(I’l . m)xn—lpm—l]m/(m—n)
e:ax”pm:p = p- [1 + Cl(l’l . m)xn—lpm—l]n/(n—m)
gives for the map (for n = m):
e:ax”p”:x - x- e—cmx”‘lp”_1

n—1,.n—1

e:ax”p”:p = p- X" p



A very important example ...

cos u + asin(u) B sin u ) [ Cosu  sInu
M = =

—y sin u cos u — asin(u) —siny COSu

corresponds to:
e:h: _ e:Sl: — e:—,u%(yx2+2axp+,8p2):

Written in our normal (simple) form, i.e. with the invariant J, :
e:h: _ e:Sl: — e:—,qu:

S 1 produces the linear transport matrix M...

For a one-turn-matrix: uis 27 - Q




For a 3D linear system we have for S ,:

_ Mx , - 2 My, o N
Sy = —7(36 +Px)—7(y +Py)—§&c5

or in action variables J:

1
Sz = —,uxe—,uny—Ea/cﬁz

whenever you have 1 local, non-linear object NL, you can express the
whole machine as:

. de o onr. Jlgo.
:So: NL: _ h: : 3520 VL 1352 gt )



A real life example: beam-beam interaction

IP1

> Linear beam transport around the machine
} Beam-beam interaction localized and very non-linear
> Important to understand stability
Our questions ?
} How does the particles behave in phase space ?

» Do we have an invariant and how to compute it ??



We look for invariants - start with single IP

Here in 1D, same treatment for higher dimensions

Linear transfer around the machine ¢! and beam-beam interaction ¢Z
It is factorized into the two parts (see before):

e = é€
with (see before):
S| = “(X2+ﬁ2)— J
I — > IB Px) = H X

with the usual transformation to action - angle variables

/2J
x = +42Jpsm¥Y, p= ECOS‘P



Beam-Beam part B(x):

For a Gaussian beam we have for for the kick b(x) of the beam-beam
"lens” (see lecture on beam-beam effects: T. Pieloni, next week):

2 2
b(x) = —(1 —e2?)
X
which can be directly derived from the fields

For the generator we get as defined before:

B(x) = fxdx'b(x')
0

and written as Fourier series (will soon be clear why):

(Ge]

B(x) = Z c, (et

n=—oo



We evaluate the expression (because the beam-beam part is much
smaller than the rest of the machine, see also earlier slide):

S]I

S :B: :h: .
1 — e—:Sl:

e’ = e = exp

:Sl+( )B+O(Bz):]

To do that we can now use some useful properties of Lie operators (as
mentioned before or any textbook e.g. [AW, AC1, WH, AD]):

:S1:g(N)=0, S =inue™,  g(: S, D)e™ = g(inu)e™



gives immediately for A:

in -
h=—ul + (Z ()= e’{ - emw)

n

or written differently:

h= -l + (Z N e<m‘1’+l’”z“>)

2sin(5)

Nota bene : deol)

is the amplitude dependent detuning ]



Some inspection - analysis of /2

h= —uJ + ) c,(J emHT)
s Z ol )2sm(”“)
lmear
On resonance:
_pP_ K
Q= n 2

with ¢, # O:
sin(@) =sin(pr) =0 V integer p
n
and h diverges, find automatically all resonance conditions

Can we also reproduce the distorted phase space (in action angle
variables) ?



Invariant from tracking: one IP

X Ox=0.31 X 0x=0.31
" 127
50.2
' 12.65 501
12.6 ' o ! . . .
-15 -1 05 « 05 . 15
1255 _ 19.9 -
| | | o o 498
-15 -1 -05 05 1 15 ¥+me
= Shown for particle amplitudes of 50, and 100,

W+ /2



Invariant versus tracking: one IP

X x -0.31

= Shown for particle amplitudes of 50, and 100,

(try that with other methods ...)



First summary: Lie transforms and integrators
} We have powerful tools to describe non-linear elements
» They are always symplectic !

} Can be combined to form a ring (and therefore a non-linear
One-Turn-Map)

} Tools and programs are available for their manipulation and
computation

} How do we analyse the maps ? Guess: Normal Forms



Normal forms non-linear case

Normal form transformations can be generalized for non-linear maps. If
M is our usual one-turn-map, we try to find a transformation:

N = AMA™!
} where N is a simple form (like the rotation we had before)

Of course we now do not have matrices, we use a Lie transform F to
describe the transform A:

—:h: -1 P —:F:
N =e¢ " = AMA = e Me™F

The matrices A and A~! describe the transformation between the
"Ideal” and "real” motion.



Side note: beam lines
The same strategy can be used for beam lines or any single pass
machine: If M is total transfer map, the we find a transformation:

N = MA
- Again N describes the wanted behaviour
- The map A the deviation (aberrations)

- One can add correctors (i.e. their maps) into M to minimise these
aberrations

(ditto for circular machines, example in "Non-linear Dynamics”
lecture)



Back to one-turn-maps

> More complicated transformation F' required
} Transform to coordinates where map is just a rotation
> In general better done in action angle variables: J,V

» Rotation angle may be amplitude dependent: ¥ =+ ¥(J)



The canonical transformation A:
N = AMA = A=e"
should be the transformation to produce our simple form
» h(Jy, Vs, Jy, Wy, 2,0) = h(Jy, Jy,8) = hepr(Jy, Jy, 6)
» It depends only on (J,,J,) = exact solution !
» Once we know h,¢(J,, Jy, ) we can derive everything !

» Formalism and software tools exist to find F (see e.g. Chao" or
E.Forest, M. Berz, J. Irwin, SSC-166)

[ - DA Chao, Lecture Notes on Topics in Accelerator Physics, 2001 m



Normal forms - non-linear case
Once we can write the map as (now example in 3D):

N — e_iheff(-]x,-]y,(s)z

where h.s¢ depends only on J,, J,, and ¢, then we have the tunes:

1 Oh,sy
X ‘])C7J 75 - -
QulJr Iy, 0) 2n dJ,
1 Gheff
Jer Iy, 0) = —
Oy 1y, 0) 2 dJy
and the change of path length:
6h€ff
Az = —
MY

Particles with different J,, J, and ¢ have different tunes:

== Dependence on J is amplitude detuning, dependence on ¢ are the
chromaticities !



How does /./, look like ?

The effective Hamiltonian can be written (here to 3rd order) as:

1
heff = + ,uxe +/.1ny + 50’662

+ a0+ ey dyS + 300
2 2 2 2 4
+  Cady ety +epydy + cad07 + cJy07 + a0

and then:

1 eff 1
01 J3s0) = 32— = 5 (j+ 2endu oy +cad + 0’

1 Oh, 1
0,(J5: 1y.6) = 5- 8Jff = 5 (ks + 26000y + €y + €10 + €,06)
y

6heff

Az = ——= = @+ 3030 + 4¢s0 + cady + ey + 20006 + 20,000




What’s the meaning of it ?

> My, Myt TUNES

> %ac,03,c4: linear and non-linear "momentum compaction
» ¢, ¢y first order chromaticities
» ¢, ¢yt second order chromaticities

> Cxx> Cxy> Cyy: detuning with amplitude

The coefficients are the various aberrations of the optics




How to deal with it ?
Try to find the effective Hamiltonian (analytically)

> Detailed analysis for magnetic multipoles, see lectures by Y. Papaphilippou
(sextupole, octupole, ..)

> What about complicated arrangement, e.g. as simulated by a computer
program ?

> Tracking particles with a computer code is the most reliable (and flexible)
method

> But can we get an "effective Hamiltonian” for a huge and messy computer
code ?

Yes ! It is possible | We have the tools !




Let us study the paraxial behaviour:

AN

} Red line is the particle trajectory (we have tracked that one)
> Blue lines are small deviations (i.e. close particles)

} If we understand how small deviations behave, we understand the
system much better



Now remember the definition of the Taylor series:

B A O
f(a+Ax) = fa) + Z ——Ax
L@ g L@ g2, 17
2! 3!
= The coefficients determine the behaviour of small deviations Ax
from the ideal orbit a

fla+Ax) = f(a) + Ax + ...

= f(a) is the "tracked particle”, f(a + Ax) is a "close particle”



Why are Taylor series useful ?

If we truncate the expansion to the m-th order:

1

n!

2 Ax"

fla+Ax) = fla)+ )
n=1

= We can represent the function f(x) by the vector

( f@), f(a), f"(a), ..., f™(a))
== This vector is what we need to understand the behaviour around a
== We have now an analytical solution for our problem

= How to get these coefficients (derivatives) without much work ?



Numerical differentiation

The problem getting the derivatives ™ (a) of f(x) at a:

f,(Cl) _ f(Cl + AAX) _ f(a)
X

» Need to subtract almost equal numbers and divide by
small number.

» For higher orders f”, f’”.., accuracy hopeless !

» The way out: we use Truncated Power Series Algebra
(TPSA) (M. Berz, 1988 and [MB])



Truncated Power Series Algebra

> The tracking of a particle in a complicated system relates the output
numerically to the input:

tracking

21 = (5P, Py, 8,001 — 22 = (X, Py, Y, Dy, S,0)2
} Can a tracking code produce a more "analytic” one-turn-map ??

} For example coefficients of a Taylor series ?

m

21 = (5 Py, Py 501 = 2= Cia)z] =3 fP(a)z]

= The answer is automatic differentiation



Automatic Differentiation

1. Define a pair (g0, q1), with gg, g1 real numbers



Automatic Differentiation

1. Define a pair (g0, q1), with gg, g1 real numbers
2. Define operations on a pair like:

(qo,q1) + (ro.r1) = (qo + 1o, q1 + 1)} Obvious !

¢ - (qo0.q1) = (c-qo,c-q1) oObvious!

(q0,q1) - (ro,71) = (g0 - 10, go - 1 + q1 - r9) not obvious !



Automatic Differentiation

1. Define a pair (g0, q1), with gg, g1 real numbers
2. Define operations on a pair like:

(qo,q1) + (ro,r1) = (qo + ro,q1 + 11)

¢ - (qo,q1) = (¢c-qo,c-q1)

(qo.q1) - (ro,r1) =(qo - ro, qo - 11 + q1 - Fo)

3. And some ordering:
(qo.q1) < (ro,r1) 1t go<rop or (go=ryp and gq; <rp)

(qo,q1) > (ro,r1) if go>r9 or (go=ro and ¢q; >rp)



Automatic Differentiation

1. Define a pair (g9, q1), with go, g, real numbers
2. Define operations on a pair like:

(qo,q1) + (ro,r1) = (qo + 10, g1 + 11)

¢ (qo.q1) = (c-qo,c-q1)
(qo,q1) - (ro,r1) =(qo 10, qo " 11 +¢q1 - Fo)

3. And some ordering:
(qo,q1) < (ro,r1) if go<ry or (go=rp and q; <ry)

(qO,ql) > (7‘(),7"1) if qo > rop Or (qQ =1 and q, > I"l)

4. This implies something strange:

(0,0) < (0, 1) < (r,0) (for any positive r)

0,1)-(0,1) = (0,0) =» (0,1) = +/(0,0)!!



Automatic Differentiation

This means that (0,1) is between 0 and ANY real number =% infinitely
small !!!
We call this therefore “differential unit” d = (0, 1) = 6.

Of course (g, 0) is just the real number ¢ and we define "real part” and
“differential part” (a bit like complex numbers..):

g0 = R(qo, q1) and ¢q; = D(qo, q1)

With our rules we can further see that:

(1,0) - (g0,491) = (g0, q1)

_ 1
(q0.q1) ~" = (—,—%)
g0 4,



Automatic Differentiation

We let a function f act on the pair (or vector) using our rules.

For example:
J(x) = f(x,0)
acts like the function f on the real variable x:

f(x) =R[f(x, 0)]

What about the differential part O ?



Automatic Differentiation

Key formula (without proof): for a function f(x):

DIlf(x +d)] = D[f((x,0) + (0, 1)] = DI f(x, DI = f'(x)

An example instead:

f(x) N
X

then using school calculus:

. 1
f(x):2x——2
X
For x = 2 we get then:
9 15
D)==, ff[Q)=—



The miracle:
For x in:

f(x) N
X

we substitute: x — (x, 1) = (2, 1) and use our rules:

2, 1%+, 1)}

I 1
= 44+ (Ea—z)

J1E, 1]

9 15 ,
(G- 7) =@, f@)

The computation of derivatives becomes an algebraic problem, no need
for small numbers, exact !



1. The pair (go, 1), becomes a vector of order N:
(90,1) =* (qo0,1,0,0,..,00 ¢6=(0,1,0,0,0,..)

2. (q0,91,92, ---qn) + (ro, 1, 12, ...tN) = (S0, S1, 82, -..SN)
with: S;i=4(q; t71;

3' C'(QOaQ1,Q2a"'QN) — (C’QO,C’Ql,C'qz,.-.C'QN)

4. (40,91, G2, ---qn) - (o, 71,72, ..Tn) = (S0, S1, 52, ...5N)
with:

" i
S = - ri—
kzz(; k(i — ko)t KTk



If we had started with:
x=(a,1,0,0,0..)
we would get:
fla+d)=(f(a), f'@, '@, f"@,.. @)
we can extend it to more variables x, y (here only two):
x=(a1,0,0,0...) dx=(0,1,0,0,0,..)
y=(b,0,1,0,0...) dy=(0,0,1,0,0,..)

and get (with more complicated multiplication rules):

of of Pf &
’ ’ ’ ’ g oes (Cl, b)
dx Ay 0x* 0xdy

fla+dx) — f((a+dx),b+dy)=|f



What is the use of that:

a — algorithm

or code
(a,1,0,0,..) ——»

—— f(a)

— (f(a), P’'(a), f’(a), ...)

”Algorithm” can be a mathematical function or a complex computer

code

1. We replace all standard operations with our new definitions

2. We push the vector f(x) = (a, 1,0,0,0...) through the algorithm as if

it is a vector in phase space

3. We extract a truncated Taylor map with the desired accuracy and to

any order



What is the use of that:

(a,1,0,0,..) ——»

algorithm

or code

—— f(a)

— (f(a), P’'(a), f’(a), ...)

} Replacing the operations with a new definition is very easy using
polymorphism of modern languages (e.g. C++, FORTRAN 95,..)
and operator overloading, see following example

} We have a Taylor map, i.e. analytical representation of a computer

code !l

= Normal form analysis on Taylor series is much easier: the
coefficients are directly related to the various aberrations !!



What is the use of that:

Demonstrate with simple examples (FORTRAN 95):
» First show the concept
» Simple FODO cell

} Normal form analysis of the FODO cell with octupoles
All examples and all source code in:
Website: http://cern.ch/Werner.Herr/CAS2015/DA

Small DA package provided by E. Forest

[ mm Courtesy E. Forest for the small DA package used here ...



Look at this small example: f(a) = sin(%)

PROGRAM DATEST1

use my_own_da

real x,z, dx >
my_order=3

dx=0.0

x=3.141592653/6.0 + dx
call track(x, z)

call print(z,6)

END PROGRAM DATEST1

SUBROUTINE TRACK(a, b)
use my_own_da

real a,b —p>

b = sin(a)

END SUBROUTINE TRACK

PROGRAM DATEST2

use my_own_da
type(my_taylor) x,z, dx
my_order=3

dx=1.0.mono.1 !thisis our (0,1)
x=3.141592653/6.0 + dx
call track(x, z)

call print(z,6)

END PROGRAM DATEST2

SUBROUTINE TRACK(a, b)
use my_own_da
type(my_taylor) a,b

b = sin(a)

END SUBROUTINE TRACK



Look at the resulis:

) 0.5000000000000E+00
) 0.8660254037844E+00
) 0.0000000000000E+00
) -0.2500000000000E+00
) 0.0000000000000E+00
) 0.0000000000000E+00
)
)
)
)

0,0
1,0
0,1
2,0
0,2
1,1
3,0) -0.1443375672974E+00
0,3) 0.0000000000000E+00
2,1) 0.0000000000000E+00
1,2) 0.0000000000000E+00

J
J
J

(
(
(
(
(
(
(
(
(
(

(0,0) 0.5000000000000E+00

]

We have sin(%) = 0.5 all right, but what is the rest ??



Look at the results:

(0,0) 0.5000000000000E+00

) 0.5000000000000E+00
) 0.8660254037844E+00
) 0.0000000000000E+00
) -0.2500000000000E+00
) 0.0000000000000E+00
) 0.0000000000000E+00
)
)
)
)

0,0
1,0
0,1
2,0
0,2
1,1
3,0) -0.1443375672974E+00
0,3) 0.0000000000000E+00
2,1) 0.0000000000000E+00
1,2) 0.0000000000000E+00

(
(
(
(
(
(
(3,
(0,
(2,
(

J

1 1

Sin(% + Ax) = sin(%) + cos(g)Ax1 — —Sin(%)sz — —cos(%)Ax3

2 6



What is the use of that:

&l We have used a simple algorithm here (sin) but it can be anything very
complex (try: S’”(x) using the DA package provided on the webpage)

We can compute nonlinear maps as a Taylor expansion of anything the
program computes

Simply by:

» Replacing regular (e.g. REAL) types by TPSA types (my_taylor) i.e.
variables x, p are automatically replaced by (x, 1,0, ..) and (p,0, 1,0, ..)
etc.

> Operators and functions (+, —, %, =, ..., exp, sin, ...) automatically
overloaded, i.e. behave according to new type



What is the use of that:

Assume the Algorithm describes one turn, then:

Normal tracking:
» X, = (X, P Y Py 800 =P Xyt = (X, Pr, Vs Pys 85 sl
» Coordinates after one completed turn
TPSA tracking:
» X, = (X, P Y: Py 8,00 =P Xy = X C;X,
} Taylor coefficients after one completed turn
» The C; contain useful information about behaviour

> Taylor map directly used for normal form analysis =»



Demo 1:
» Track through a FODO lattice:
QF - DRIFT - QD - DRIFT
Integrate 100 steps in the quadrupoles

Now we use three variables:

X, P Ap = (2(1), 2(2), z(3))



program fodo1

use my.own._da

use my.analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my-map) M,id

real(dp) L,DL,k1,k3,fix(3)
integer i,nstep

my_order=4 | maximum order 4
fix=0.0 ! fixed point

id=1

z=fix+id

LC=62.5 | half cell length
L=3.0 ! quadrupole length
nstep=100

DL=L/nstep

k1=0.003 ! quadrupole strength

Demo 1:

doi=1,nstep ! track through quadrupole
z(1)=z(1)+DL/2*z(2)
z(2)=2(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)+DL/2*z(2)

enddo

z(1)=z(1)+LC*2(2) | drift of half cell length

doi=1,nstep ! track through quadrupole
z(1)=z(1)+DL/2*z(2)
z(2)=z(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)+DL/2*z(2)

enddo

z(1)=z(1)+LC*2(2) | drift of half cell length

call print(z(1),6)

call print(z(2),6)

M=z | overloads coefficient with the map

NORMAL=M ! overloads map with normal form analysis
write(6,*) normal%tune, normal%dtune.da

end program fodo1



(0,0,0) 0.9442511679729E-01
(0,0,1) -0.9729519276183E-01

1,0,0
0,1,0
1,0,1
0,1,1
1,0,2
0,1,2
1,0,3
0,1,3

0.6972061935061E-01
0.1677727932585E+03
0.1266775134236E+01
-0.3643444875882E+02
-0.1603248617779E+01
0.3609522079691E+02
0.1939697138318E+01
-0.3575511053483E+02

o~~~ o~ o~ o~ o~ o~
—_ L = = — — ==

(1,0,0)-0.5300319873866E-02
(0,1,0) 0.1588490329398E+01
(1,0,1) 0.1060055415702E-01
(0,1,1)-0.5832024543075E+00
(1,0,2)-0.15900660054 19E-01
(0,1,2) 0.5779004431627E+00
(1,0,3) 0.2120059477024E-01
(0,1,3)-0.5725843143370E+00

The result is:

From the elements in the Taylor expan-
sion, the result for the matrix per cell:

Ax; = 0.06972Ax; + 167.77Ap;

Ap; = —0.00530Ax; + 1.5885Ap;

The output from the normal form analy-
sis are (per cell !):

Tune = (0,0,0) = 0.094425

Chromaticity = (0,0,1) = -0.097295



The miracle ...
In FORTRANG95 derived "type” plays the role of "structures” in C

After the assignment: NORMAL = M, the parameters are derived from the
Taylor map (M) and give:

NORMAL%tune is the tune

NORMAL%dtune_da is the detuning with amplitude 22

NORMAL%R, NORMAL%A_T, NORMAL%A_T**-1 are the matrices
AMA = R from the normal form transformation

From A we get a,p5,y ...

... and some more



Modified previous example (with one octupole):

program fodo3

use my_own_da

use my_analysis
type(my_taylor) z(3)
type(normalform) NORMAL
type(my-map) M,id

real(dp) L,DL,k1,k3,fix(3)
integer i,nstep

my._order=4 | maximum order 4
fix=0.0 ! fixed point

id=1

z=fix+id

LC=62.5 ! half cell length
L=3.0 ! quadrupole length
nstep=100

DL=L/nstep

k1=0.003 ! quadrupole strength
k3=0.01 ! octupole strength

doi=1,nstep ! track through quadrupole

z(1)=z(1)+DL/2*z(2)

z(2)=z(2)-k1*DL*z(1)/(1 + z(3))

z(1)=z(1)+DL/2*z(2)

enddo

z(2)=2(2)-k3*z(1)**3/(1 + z(3)) ! now we add an octupole kick !!!
z(1)=z(1)+LC*z(2) ! drift of half cell length

doi=1,nstep ! track through quadrupole
z(1)=z(1)+DL/2*z(2)
z(2)=2(2)-k1*DL*z(1)/(1 + z(3))
z(1)=z(1)+DL/2*z(2)

enddo

z(1)=z(1)+LC*z(2) ! drift of half cell length

call print(z(1),6)

call print(z(2),6)

M=z

NORMAL=M

write(6,*) normal%%tune, normal%dtune_da
end program fodo3



The result is:

(0,0,0) 0.9442511679729E-01
(0,0,1) -0.9729519276183E-01

2,0,0) 0.5374370086899E+02
0,2,0) 0.5374370086899E+02
0,0,2) 0.1018391758451E+00
2,0,1) 0.2035776281196E+02

Py

Linear matrix as before, but effects of
1,0,0) 0.6972061935061E-01

)
0,1,0) 0.1677727932585E+03 octupole.
1,0,1) 0.1266775134236E+01
0,1,1)-0.3643444875882E 402 The output from the normal form analy-
3,0,0)-0.1586519461687E+01 :
2,1,0)-0.1440953324752E +02 sis are (per cell 1):

)_

1,2,0)-0.4362477179879E+02

~ o~~~ o~ o~ —~

Tune = (0,0,0) = 0.094425
""""" Chromaticity = (0,0,1) = -0.097295

1,0,0)-0.5300319873866E-02

0.1,0) 0.1588480329398F.+ 01 Detuning with amplitude = (2,0,0) =
1,0,1) 0.1060055415702E-01

0,1,1)-0.5832024543075E+00 53.74 |

3,0,0)-0.1519218878892E-01

~ o~ o~ o~ —~



Remember the normal form transformation:

AMA! = R

The type normalform in the demonstration package also contains the maps ‘A
and R !
j2=(x*"2+p**2)*"NORMAL%A**(-1)

(remember: x**2+p**2 is the tilted ellipse ....
Can get the optical functions out because
3: coefficient of p**2 of invariant j2
a: coefficient of x*p of invariant |2

y: coefficient of x**2 of invariant j2



We obtain (here at the end of the cell):
beta, alpha, gamma
300.080714 -1.358246 9.480224E-003



This was trivial - now a (hormally) hard one

The exact map:

sin(x}) = —g

A—=R(1 —cos(x})) = A—R(1 — /1 - p?)
R-p; =R -sin(x))
R(1 —cos(x))) +x; = R(1 — /1= p?) +x,

A 90" bending magnet ..



How to apply Differential Algebra here ...

» Start with initial coordinates in DA style:
x1 =(0,1,0,..)
p1 =(0,0,1,...) and have:
A=(0,0,R,0,..)
B=(,1,0,0,0,R,0,...)

» After pushing them through the algorithm:

— — 1 _ Oxy Ox, O0°x 3% x>
> 0= (0,0,R~4,0,0,0.) = (0,52, 52, T o)

- _ | _ dpr Opy pr  pa
> p2 - (Oa _1_3307 Oa Oa _170) - (07 dx1° dp,’ (9)6% > 9x10p; )

} Automatically evaluates all non-linearities to any desired order ..



How to apply Differential Algebra here ...

» Start with initial coordinates in DA style:
x1 =(0,1,0,..)
p1 =(0,0,1,...) and have:
A=(0,0,R,0,..)
B=(,1,0,0,0,R,0,...)

» After pushing them through the algorithm:

_— _ 1 _ dxs Oxr 0*xy  0*xr
> 2= (0,0,R,—4,0,0,0..) = (0, 52, 2, T P )

— _ 1 _ dp, Opy pr  pa
> p2 - (Oa _ana Oa Oa _170) - (07 axfa apia (9)6% > 9x10p,° )

} Automatically evaluates all non-linearities to any desired order ..



Some we know ...
Transfer matrix of a dipole:
cos(%) Rsin(l%) )_{ g—ﬁ 2—2 )

opr  Op>

Mdipale — {
ox;  Op1

—%sin(%) cos(l%)

For a 90" bending angle we get:

M gipole =[ 01 K ]
-+ 0

as computed, but we also have all derivatives and non-linear effects !



What is the use of that:

Although not strictly a symbolic method in the traditional sense:

> TPSA provide analytic expression (Taylor series) for the one turn
map

> Parameters (i.e. strength) can be used as input and make it
parameter dependent

» Can be used for tracking
} Can be analysed for dynamic behaviour of the system

> Typical use: Normal Form Analysis discussed earlier, rather
straightforward from a Taylor expansion



A Summary

Contemporary methods are very powerful and can:
} Largely avoid: assumptions, approximations and simplifications
> They form a natural extension from linear to non-linear beam

dynamics

For realistic machines: symplectic, iterative mapping is appropriate,
using
» Symplectic integration
> Lie transformations and normal form analysis
» Truncated Power Series Algebra (TPSA)



A Summary

Contemporary methods are very powerful and can:
} Largely avoid: assumptions, approximations and simplifications
> They form a natural extension from linear to non-linear beam

dynamics

For realistic machines: symplectic, iterative mapping is appropriate,
using
» Symplectic integration
> Lie transformations and normal form analysis
» Truncated Power Series Algebra (TPSA)

If you don't like all that, get used to it ...

and thanks for your stamina



Back up

- backup slides -



What is the point ???

0.0004

0.0003

0.0002

0.0001

-0.0001

-0.0002

-0.0003

-0.0004

T T
exact quadrupole map

Xor

» Phase ellipse - quadrupole exact solution




Quadrupole non-symplectic solution

0.0004 T T
exact quadrupole map
non-symplectic O(1)
0.0003
0.0002 |
0.0001

//
//

-0.0001
-0.0002
-0.0003

-0.0004
-2

1 1 1 1 1
-1.5 -1 -0.5 (6] 0.5 1 1.5 2

} Non-symplecticity: particles spiral towards outside



Quadrupole symplectic O(L') and O(L?)
solutions

0.0004

exact quladrupole m:lalp
symplectic map O(1)
symplectic map O(2

0.0003 y ez = ‘\p @

0.0002

0.0001

-0.0001
-0.0002

-0.0003

-0.0004
-2

1 1 1 1 1 1
-1.5 -1 -0.5 (6] 0.5 1 1.5

} symplecticity: phase space ellipse accurate enough



Given the Hamiltonian h:

sin(3¥ + %) sin(¥ + g))

. 3 0
sink SN

h=—ul - %k(Z,BJ)m : (
2

particles move in phase space along constant /.

Back to Cartesian coordinates we get for A:
3 3
h = —g(x2 + x’2)§,u,83/ 2x[(3x"* - xz)cotj'u —(x* + x'z)cotg — dxx']

Constant & defines the trajectory in phase space !



Where to put the elements in an accelerator ?

d*x
E + K(S)X =0

} Usually use s (pathlength) along "reference path”

> "Reference path” defined geometrically by straight sections and
bending magnets



Second order MAPS concatenation

Assume now 2 maps of second order:
A, = [RA,T4] and B, = [RE,TH]

the combined second order map
Cr, = Ayo Bz IS C, = [RC, TC] with:

R = R*- R”
and (after truncation of higher order terms !!):

4 4 4

c _ BA B pA pA

Iy = E ,Rillek + E , E ,Tilleijk
[=1 I=1 m=1



Symplecticity for higher order MAPS

try truncated Taylor map in 2D, second order:

2 ’ 2
Ry xo + R22X6 + T211X0 + T212X0X0 + T222x0

/

X B Riixo + ngx(/) + T111x(2) + T112XOX6 + T122x(’)2
X

The Jacobian becomes:

Ryy + 2T 11x0 + T1oxy Rz + Trioxo + 2T 122,
Ry +2To11x0 + T212x,  Rop + Ta1ax0 + 21202,

symplecticity condition requires that:
det J =1 for all xo and all x;



Symplecticity for higher order MAPS

This is only possible for the conditions:

( Ri1R» — R;2Ry = 1
Ri1T212 + 2R Th11 — 2R12T211 — Ry T112 =0
\ 2R11T222 + RppTh12 — R12T212 — 2R T122 =0

» 10 coefficients, but 3 conditions
» number of independent coefficients only 7 !
} Taylor map requires more coefficients than necessary

} e.g. 4D, order 4: coefficients 276 instead of 121



Canonical transformations

With Hamiltonian’s equations, still have to solve (2n) differential
equations
Not necessarily easy, but:

> More freedom to choose the variables ¢ and p (because they
have now “equal” status)

} Try to find variables where they are easy to solve

Change of variables through “canonical transformations”



Why canonical transformations ?

Hamiltonian have one advantage over Lagrangians:

> If the system has a symmetry, i.e. a coordinate ¢; does not
occur in H (i.e. g—Z =0 - % = 0) ==» the corresponding
momentum p; is conserved (and the coordinate g; can be

ignored in the other equations of the set).

} Comes also from Lagrangian, but the velocities still occur in £ !



Canonical transformations

Starting with H(q, p, t) get new coordinates:

Qi = Qi(g, p,1)
P; = Pi(q,p,1)
and new Hamiltonian K(Q, P, t) with:
oK . dP; 9K . dQ,

00, - Vit o, YT 4

We can two types of canonical transformations



Canonical transformations - type 1

} |deally one would like a Hamiltonian H and coordinates with:

(9H _ _— dpJ _ O
dq; Pi=="a ~
» Coordinate g; not explicit in H

» p; is a constant of the motion (!) and:

dQ] — aH(p17p27 pn)
dt (9pj

which can be directly integrated to get g;(¢)

= Fi(p1, p2,--Pn)



Canonical transformations - type 1, example

Harmonic oscillator:
1 mw? pr mw?
H=T+V = —m’*+ —x* = Z_ 4"
2 2 2m 2

try: x = 1/% -sin(X) and p = V2mwP - cos(X) and we get:

K = wPcos*(X) + wPsin*(X) = wP

then:
dX 0K . X -
= =W " = W (04
dt 0P
back transformation to x,p:
2FE
X = sin(wt + a)

mw?



Canonical transformations - type 2

> Find a transformation of g, p at time ¢ to values gg, po at time ¢ = 0.

q = q(qo, po, 1)
p = p(qo, po, 1)

» The transformations ARE the solution of the problem !
For both types: how to find the transformation ?

} Without details: Hamilton-Jacobi equation ...



Extension: general monomials

Monomials in x and p of orders n and m (x" p™)

n ,,m

PR A
gives for the map (for n # m):
e:ax"p’”:x - x. [1 + a(n . m)xn—lpm—l]m/(m—n)
e:ax"pm:p = p- [1 + Cl(l’l . m)xn—lpm—l]n/(n—m)
gives for the map (for n = m):
e:ax”p”:x - x. e—anx”_lp’“_1
anxn—lpn—l

. n o n.
e.axp.p = p-e



Collision scheme - two IPs
IP1

U= pl+p2

IP5



Two IPs

= two transfers f,, f; and two beam-beam kicks F', F?,
first IP at iy, second IP at u:

rl.
= €'f2' e

el Ll el Ll o200 L2, N A
B g Pl il gl pifE g i

rl. .2, 2. N A
Pl 7 P

= €
:fl: .Fl. _.fl. 'f2' .F2. _.fz. .fz. .hz.
— e’ ot et et o e 2t = gt

L.
VI TRt/ Ty TR Y

— ¢ e e — e:hzz

fr= —pA, fl = —mA, and f} = — A



Two IPs
here a miracle occurs (remember g(: f :)e™* = g(inu)e™?):
o fr: oY = pinm GinY L in(u +Y)

i.e. the Lie transforms of the perturbations are phase shifted?).
Therefore:

ol
e R e e =

¢ ¢ hy:

e

becomes simpler with substitutions of ¥; = Y+ u;and¥Y = WY+ uin
Fland F:

e:Fl(‘Pl):e:F(‘P):e:fzz N e:Fl(‘Pl)+F(‘P):e:f2:

| 3 Forest, "Beam Dynamics, A New Attitude and Framework”, 1998 i |



Two IPs

gives for h,:

hy=—pA+ ) PHCAA) inaf24gn) | jmin(F a2

hy = —A + 2co(A) + Z 2MHENA) (e + 4 —))cos( —)

2sin(nk 5) 2

interesting part
Nota bene, because of:

e:F(‘{’):e:fzz — e:Fl(‘Pl)+F(‘P):e:f2:

can be generalized to more interaction points ...



Invariant versus tracking: two IPs

X yx -0.31

=» Shown for 50, and 100,



Recap: Hamiltonian for a finite length element

We have from the Hamiltonian equations for the motion through an
element with the Hamiltonian H for the element of length L.

d
d_ct] =[g,H] =: —H : q (from lecture 5)
dké] k
—p_ — = (:—-H:
il )°q
— % (drq A Kk —tH:
_>Q(t): E H(_d[k): 4 E(—H) =e

k=0
with independent variable s instead of ¢ (nota bene: so = 0,7y = 0):

_>Q(S) — e:—LH:



Lie transformations on moments:

We have used Lie transformations mainly to propagate coordinates and
momenta, i.e. like:

el xo = x
ezfipo = D1
of course for more dimensions (x, pyx, y, Py, ...):
} Remember: can be applied to any function of x and p !!

» In particular to moments like x%, xp, p?, ...



Lie transformations on moments

Assume a matrix M of the type:

V= mpp  mp
mpp My
described by a generator f, we have for the Lie transformation on the
moment:

el'x? = (e/'x)*  (see lecture )

therefore:
(e’ x)* = (my1x + mpp)*

N2 2 .2 2 .2
(efx) =m{;x~ + 2mympxp + mp,p



From the map to the Hamiltonian

The other question ==» assuming we do not have the Hamiltonian, but
a matrix M (from somewhere):

cos(u) + asin(u) B sin(u)
—vy sin(u) cos(u) — asin(u)

MZy = Z,

how do we find the corresponding form for f ?

M JEN e:f:

rather clumsy, skim over the next 3 slides and show the result, (for
derivation see e.g. [AC1])



For the linear matrix f must be a quadratic form in (x, p, ...).

Any quadratic form can be written as:
1

1
f:—EZ*FZ [ = —E(a-x2+b-xp+c-p2)]

where F is a symmetric, positive definite (why ?) matrix.
Then we can write (without proof, see e.g. Dragt):

f:Z=SFZ

where S is the "symplecticity” matrix.
Therefore we get for the Lie transformation:

e:fZZ PEEN eSFZ



Since we have n = 2, we get (using Hamilton — Cayley theorem):

b C b C
=dapg+ a
—a —b

el = exp[

—a -b

We now have to find ap and a; !

The eigenvalues of S F' are:

A, = xiVac—-b?



This tells us for the coefficients the conditions:

A _

e aogp+ ajp - A,

eﬂ‘ =ap+a;- A

and therefore:

ao = cos( Vac — b?)
sin( Vac — b?)
Vac — b?

ay =

and

SF sin( Vac—-b?)| b ¢
e’ = cos(Vac — b?) + s [—a —b}



Example: a (simple) map to the Hamiltonian

For a general 2 X 2 matrix:

nmpp My
M =
may My

For the linear matrix f must be a quadratic form in (x, p, ...).

The result of the calculation is:

a 2b c Vac — b?

—mpp myp —my M2 gin( Vac — b?)

for the quadratic form: f = —-1(a-x*+b-xp+c- p?)



From the map to the Hamiltonian

For the example of a (simple) drift:

it

a=0, b=0, c=L

we find:

and for the generator:

N P
f= 2(Lp)



From the map to the Hamiltonian

For the example of a thin quadrupole:

we find:

and for the generator:



\

More on moments

To summarize the moments:

11
mipimayi

2
My,

2mymyo
mipinyoy + MiaNyy

2my my)

12
my2maz»

2
My,

)

This is the well known transfer matrix for optical parameters

AP

\ P




A real life example: beam-beam interaction®
» Beam-beam interaction very non-linear
> Important to understand stability
} Non-linear effects such as amplitude detuning very important
Our questions ?
} How does the particles behave in phase space ?
» Do we have an invariant ?

» Can we calculate the invariant ?

*) From: W. Herr, D. Kaltchev, LHC Project Report 1082, (2008).



Collision scheme - two IPs
IP1

IP5



Start with single IP

"Classic” (B.C.) approach:

Bl |nteraction point at beginning (end) of the ring (very local
interactions, o-functions )

Bl s-dependent Hamiltonian and perturbation theory:

H = ....+06(s)eV

Bl Disadvantages:
> for several IPs endless mathematics

} conceptually and computationally easier method



Effect on invariants - start with single IP

Look for invariants #, (see e.g. Dragt!), and evaluate for different
number of interactions and phase advance.

Very well suited for local distortions (e.g. beam-beam kick)
Linear transfer ¢2* and beam-beam interaction ¢, i.e.:

el gt = gt
with
A= B
2 — 2 ,8 px
and

F = fxdx’f(x’)
0

[ - DA Dragt, AIP Conference proceedings, Number 57 (1979) s m



Effect on invariants
using for a Gaussian beam f(x):
2 -2
f(x) = =(1 - e3?)
X

as usual go to action angle variables Y, A:

/2A
x = 2ABsin¥Y, p= FCOS‘P

and write F(x) as Fourier series:

(G]

. 1 Z
B(x) = Z c,(A)e™  with: ¢,(A) = > f e " F(x)dWP
0

n=—oo



We need:
REMEMBER: with this transform:

and useful properties of Lie operators (any textbook?):

1 g(A) =0, @™ = inue™ ., gC fr )e™ = g(inu)e™

and the formula (because the beam-beam perturbation is small !):

Ch+ (1 :_j;z_:fZ:)F + O(F?) :]

e:fz: e:F: — e:h: = exp

| 3 Forest, "Beam Dynamics, A New Attitude and Framework”, 1998 =



Single IP

gives immediately for A:

h=—uA + Z Cp(A)——— ¥

| — e
_ (in‘P+i@)
h= ,uA+ZCn(A)2 m(w) :

away from resonance, a normal form transformation takes away the
pure oscillatory part and we have only:

h = —uA + cy(A) = const.

dco(A)
dA

homework



Single IP

If you are too lazy or too busy:
—1 dcy(A)
2n dA

Is the detuning with amplitude, i.e. the amplitude dependent frequency
change of the transformation we had before ...

AQ =

We get:

—1N
AQ = — 201 = ¢ M2 [ (AB/20)]
2m vA



Single IP - analysis of /

_ (m‘P+i%)
h= ,uA+ch(A)2 mrunk :

On resonance:;

with ¢, # O:
sin(@) =sin(pr) =0 V integer p
n

and A diverges



Invariant versus tracking

B |s it useful what we obtained ?

-

Debug and compare ("oenchmark”)

Bl Compare to very simple tracking program:

linear transfer between interactions
beam-beam kick for round beam
compute action I = %(g—i + p2B*)
and phase ¥ = arctan(£)

compare I with A



Invariant from tracking: one IP

X 0x=0.31 X 0x=0.31
" 127 "
50.2
L L |
12.65 50.1
126 : S e
-15 -1 -05 0.5 . 15
| |
12.55 19.9 |-
| | | o o 498
-15 -1 -05 05 1 15 Y+m2
= Shown for 50-, and 100,

W+ /2



Invariant versus tracking: one IP

X x -0.31

y+r/2

=» Shown for 50, and 100,



Invariant versus tracking:

I/h
/21t = 0.33

54t

0.5 ‘f/ 5= P+ 11/,

= Behaviour near a resonances: no more invariant possible

= Envelope of tracking well described



If we have Q = z“—ﬂ ~ 7 (3rd order resonance). Using a "distance to

resonance d” as:

d
Q:mJr where : d < 1

3
The trick is to observe the motion every 3 turns:

. . 43 -
M3 — (e.—,u.].e.kx .)3 — e.3h.

We get a factor:

=3pd: o i-2ndd:

e (because : ¢ = 1)

e
E”

d =
21



Monomials in x and p of orders n and m (X" p™)

n ,,m

PR
gives for the map (for n # m):
e:ax”pm:x - x- [1 + a(n . m)xn—lpm—l]m/(m—n)
e:ax”p’”:p = p- [1 + Cl(l’l . m)xn—lpm—l]n/(n—m)
gives for the map (for n = m):
e:ax”p”:x - y. e—anx”_lp”_1

n—1_,.n—1

e:axp:p — p.eanx p



Without proof (but like before, see e.g. Chao), we get:

9) sin(3Y + * sin(¥ + &
h=-"2a7 - Z ak@ry? . ( 2) _ (, 2)
3 12 cinH sink
P 2

For small d (sin%“ ~ —nd) we can simplify:

2 1
h~—=—dJ — —k(BJ)*'*sin(3P)
3 V2
Analysis give fixed points, i.e. (back in Cartesian again):
T 3dx 4,8 Bx“-3x")=0

oh 27 , 1 3,
pvie ?dx 4,8 3xx' =0

|



