

Physics of Polarized Protons/Electrons in Accelerators

Mei Bai

Forschungszentrum, Juelich

Collider Accelerator Dept.
Brookhaven National Laboratory

Outline

- Introduction
 - What is polarized proton/electron beam?
 - Why high energy polarized beams?
- Physics of polarized protons in accelerators
 - Spin dynamics
 - Challenges in accelerating polarized protons to high energy
 - Brief history of high energy polarized proton beams development
- Brief introduction of polarized electrons in accelerators
- Summary

Polarized Proton/electron Beam

- Proton/electron, as spin half particle
 - Spin vector

$$S = \langle \psi | \sigma | \psi \rangle$$
; Here, ψ is spin state of the particle

Intrinsic magnetic moment

$$\overrightarrow{\mu} = \frac{g}{2} \frac{q}{m} S;$$
 and $\frac{dS}{dt} = \overrightarrow{\mu} \times B$ in the particle's frame

- Polarized proton/electron beam
 - **Beam polarization**, with N_{\pm} is the number of particles in the state of ψ +(up state) and ψ -(down state), respectively

$$P = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Why Polarized Beams?

- Study proton spin structure

Spin contribution from quarks

$$S = \frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

Spin contribution from all the gluons

Orbital angular momentum of quarks and gluons

CERN EMC and SLAC SMC: $\Delta\Sigma \sim 20\%$

Why high energy polarized protons?

Why Polarized Beams?

- Search for Electric Dipole Moment

Describes the positive and negative charge distribution inside a particle

It aligns along the spin axis of the partic and violates both Parity and Time Reversal.

Hence, significant EDM measurement of fundamental particles is an effective probe of CP-violation, could be the key to explain the asymmetry between matter and antimatter

Spin motion in a circular accelerator

Thomas BMT Equation: (1927, 1959)

L. H. Thomas, Phil. Mag. 3, 1 (1927); V. Bargmann, L. Michel, V. L. Telegdi, Phys, Rev. Lett. 2, 435 (1959)

$$-\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{e}{\gamma m} [G \gamma \vec{B}_{\perp} + (1 + G) \vec{B}_{//}] \times \vec{S}$$

Spin vector in particle's rest frame

G is the anomoulous g- factor, for proton,

G=1.7928474

γ: Lorenz factor

Magnetic field along the direction of the particle's velocity

Magnetic field perpendicular to the particle's velocity

Spin tune Q_s number of precessions in one orbital revolution:

$$\mathbf{Q}_{s} = \mathbf{G} \gamma$$

Spinor

Thomas-BMT equation

$$\frac{dS}{ds} = \vec{n} \times \vec{S} = [G\gamma\hat{y} + (1 + G\gamma)\frac{B_x}{B\rho}\hat{x} + (1 + G)\frac{B_{//}}{B\rho}\hat{s}] \times \vec{S}; \quad ds = \rho d\theta$$

$$\vec{S} = \langle \psi | \sigma | \psi \rangle; \text{ with } \psi = \begin{pmatrix} u \\ d \end{pmatrix}$$

- Equation of motion of spinor

$$\frac{d\psi}{d\theta} = -\frac{i}{2}(\vec{\sigma} \cdot \vec{n})\psi = -\frac{i}{2}H\psi$$

Spinor transfer matrix M

$$\psi(\theta_2) = e^{-\frac{i}{2}H(\theta_2 - \theta_1)} \psi(\theta_1) = M(\theta_2, \theta_1) \psi(\theta_1)$$

Spinor Transfer Matrix

- A dipole

$$n = G\gamma\hat{y}$$
 $M(\theta_2, \theta_1) = e^{-iG\gamma(\theta_2-\theta_1)\sigma_3/2}$

- A thin quadrupole

$$n = (1 + G\gamma)(\frac{\partial B_x}{\partial y}l / B\rho)y\hat{x} = (1 + G\gamma)kly\hat{x} \qquad M = e^{-i(1 + G\gamma)kly\sigma_1/2}$$

- A spin rotator which rotates spin vector by a precession of $\mathcal X$ around an axis of $\hat n$, $M=e^{-i\chi\hat n\cdot\hat\sigma}$
- One turn matrix of a ring with a localized spin rotation at $\, heta$

$$OTM = e^{-\frac{i}{2}2\pi Q_s \hat{n}_{co}\vec{\sigma}} = e^{-\frac{i}{2}G\gamma(2\pi-\theta)\sigma_3} e^{-\frac{i}{2}\chi \hat{n}_e \cdot \vec{\sigma}} e^{-\frac{i}{2}G\gamma\theta\sigma_3}$$

Spin tune becomes,

$$\cos \pi Q_{s} = \cos G \gamma \pi \cos \frac{\chi}{2} - \sin G \gamma \pi \sin \frac{\chi}{2} (\hat{n}_{e} \cdot \hat{y})$$

Depolarizing mechanism in a synchrotron

- horizontal field kicks the spin vector away from its vertical direction, and can lead to polarization loss
 - > dipole errors, misaligned gadrupoles, imperfect orbits
 - > betatron oscillations
 - > other multipole magnetic fields
 - > other sources

Depolarizing Resonance

• Imperfection resonance:

- Source: dipole errors, quadrupole misalignments
- Resonance location:

$$Gy = k$$
, k is an integer

- Resonance strength:
 - Proportional to the size of the vertical closed orbit distortion

- For protons, imperfection spin resonances are spaced by 523 MeV
- Between RHIC injection and 250 GeV, a total of 432 imperfection resonances

Depolarizing Resonance

OIntrinsic resonance:

- Focusing field due to the intrinsic betatron oscillation
- Location:

$$G\gamma = kP\pm Q_{\nu}$$

P: super periodicity of the accelerator,

Q: vertical betatron tune

- Resonance strength:
 - Proportional to the size of the betatron oscillation
 - When crossing an isolated intrinsic resonance, the larger the beam is, the more the polarization loss is. This is also known as the polarization profile

- an invariant direction that spin vector aligns to when the particle returns back to the same phase space, i.e.

$$\hat{n}_{co}\left(I_{z},\phi_{z},\theta\right) = \hat{n}_{co}\left(I_{z},\phi_{z}+2\pi,\theta\right)$$

Here, I_{z} and ϕ_{z} are the 6-D phase-space coordinates.

- For an ideal machine, i.e. the closed orbit is zero, the stable spin direction is along the direction of the guiding field
- The stable spin direction \hat{n}_0 for a particle on the closed orbit is the eigenvector of its one turn spin transfer matrix

$$M(\theta+2\pi,\theta)=e^{-\frac{i}{2}2\pi Q_s\hat{n}_0\cdot\vec{\sigma}}$$

- $\hat{n}_{co}(I_z,\phi_z,\theta)$ is function of phase space
- For particles on closed orbit, stable spin direction can be computed through one-turn spin transfer matrix. \hat{n}_{co} is also know as \hat{n}_0
- For particles not on closed orbit, since in general the betatron tune is non-integer, the stable spin direction is no longer the eigen vector of one turn spin transfer matrix. Algorithms like SODOM[1,2], SLIM[3], SMILE[4] were developed to compute the stable spin direction
- [1] K. Yokoya, Non-perturbative calcuation of equilibrium polarization of stored electron beams, KEK Report 92-6, 1992
- [2] K. Yokoya, An Algorithm for Calculating the Spin Tune in Accelerators, DESY 99-006, 1999
- [3] A. Chao, Nucl. Instr. Meth. 29 (1981) 180
- [4] S. R. Mane, Phys. Rev. A36 (1987) 149

- $\hat{n}_{co}(I_{\rm z},\phi_{\rm z}, heta)$ is function of phase space
- It can also be calculated numerically with stroboscopic averaging, a technique developed by Heinemann, Hoffstaetter from DESY[1]
- One can also compute \hat{n}_{co} through numerical tracking with adiabatic anti-damping technique, i.e. populate particles on closed orbit first with their spin vectors aligned with \hat{n}_0 . The particles are then adiabatically excited to the phase space during which spin vector should follow the stable spin direction as long as it is far from a spin resonance

[1] K. Heinemann, G. H. Hoffstatter, Tracking Algorithm for the Stable Spin Polarization Field in Storage Rings using Stroboscopic Averaging, PRE, Vol. 54, Number 4

 Particles on a 20π mm-mrad phase space - Particles on a 40π mm-mrad phase space

D. P. Barber, M. Vogt, The Amplitude Dependent Spin Tune and The Invariant Spin Field in High Energy Proton Accelerators, Proceedings of EPAC98

Resonance Crossing

- In a planar ring, for a single isolated resonance at

$$G\gamma = K$$

Frossiart-Stora formula[1]: 1960

$$p_f = p_i (2e^{-\pi|\varepsilon_K|^2/\alpha} - 1)$$
 with $\alpha = d(G\gamma)/d\theta$

and resonance strength is

$$\varepsilon_{K} = \frac{1}{2\pi} \int \left[\left[\left(1 + G \gamma \right) \frac{\Delta B_{x}}{B \rho} + \left(1 + G \right) \frac{\Delta B_{//}}{B \rho} \right] e^{iK\theta} ds$$

Resonance Crossing

For an imperfection

$$\varepsilon_{K} \propto G \gamma \sqrt{\langle y_{co}^2 \rangle}$$

- No depolarization dependence on the betatron amplitude
- For an intrinsic resonance

$$\varepsilon_{\scriptscriptstyle K} \propto G \gamma \sqrt{\varepsilon_{\scriptscriptstyle y,N} / \beta \gamma}$$

- Source of **polarization profile**, i.e. polarization depends on the particle's betatron amplitude in a beam
- For a Gaussian beam,

$$p_{f} = p_{i} \frac{1 - \pi \left| \epsilon_{K,rms}^{2} \right| / \alpha}{1 + \pi \left| \epsilon_{K,rms}^{2} \right| / \alpha}$$

RHIC Intrinsic Spin Depolarizing Resonance

Overcoming Depolarizing Resonance

- O Harmonic orbit correction
 - Oto minimize the closed orbit distortion at all imperfection resonances
 - Operationally difficult for high energy accelerators
- OTune Jump

- Operationally difficult because of the number of resonances
- Also induces emittance blowup
 because of the non-adiabatic
 beam manipulation

Zero Gradient Synchrotron Tune Jump

Overcome Intrinsic Resonance w. RF Dipole

- Adiabatically induces a vertical coherent betatron oscillation
 - Drive all particles to large amplitude to enhance the resonance strength
 - full spin flip with normal resonance crossing rate
 - Easy to control and avoid emittance blowup
 - Employed for the AGS polarized proton operation from 1998-2005

Without coherent oscillation

With coherent oscillation

O Can only be applied to strong intrinsic spin resonances

Overcome Intrinsic Resonance w. RF Dipole

Partial Siberian Snake

- \circ rotates spin vector by an angle of ψ <180 $^{\circ}$
- Keeps the spin tune away from integer
- Primarily for avoiding imperfection resonance
- Can be used to avoid intrinsic resonance as demonstrated at the AGS, BNL.

Dual partial snake configuration

$$\cos \pi Q_s = \cos G \gamma \pi \cos \frac{\psi_1}{2} \cos \frac{\psi_2}{2} - \cos (G \gamma (\pi - \theta)) \sin \frac{\psi_1}{2} \sin \frac{\psi_2}{2}$$

- Spin tune is no-longer integer, and stable spin direction is also tilted away from vertical
- The distance between spin tune and integer is modulated with $Int[360/\vartheta]$. For every integer of $Int[360/\vartheta]$ of $G\gamma$, the two partial snakes are effectively added. This provides a larger gap between spin tune and integer, which can be wide enough to have the vertical tune inside the gap to avoid both intrinsic and imperfection resonance
- Stable spin direction is also modulated

Spin tune with two partial snakes

 $\cos \pi Q_s = \cos G \gamma \pi \cos \frac{\Psi_w}{2} \cos \frac{\Psi_c}{2} - \cos G \gamma \frac{\pi}{3} \sin \frac{\Psi_w}{2} \sin \frac{\Psi_c}{2}$

Horizontal Resonance

- Stable spin direction in the presence of two partial snakes is no long along vertical direction
 - vertical fields due to horizontal betatron oscillation can drive a resonance at $G\gamma = kP\pm Qx$
 - Each is weak, and can be cured by tune jump

Overcome Horizontal Resonance

 AGS horizontal tune jump quadrupoles to overcome a total of 80 weak horizontal spin resonances during the acceleration

V. Schoefer *et al,* INCREASINGTHEAGSBEAMPOLARIZATIONWITH80TUNEJUMPS, Proceedings of IPAC2012, New Orleans, Louisiana, USA

Full Siberian Snake

- A magnetic device to rotate spin vector by 180°
- Invented by Derbenev and Kondratanko in 1970s [*Polarization kinematics of particles in storage rings, Ya.S. Derbenev, A.M. Kondratenko* (Novosibirsk, IYF) . Jun 1973. Published in Sov.Phys.JETP 37:968-973,1973, Zh.Eksp.Teor.Fiz 64:1918-1929]

- Keep the spin tune independent of energy

Snake Depolarization Resonance

- Condition

- S. Y. Lee, Tepikian, Phys. Rev. Lett. 56 (1986) 1635
- S. R. Mane, NIM in Phys. Res. A. 587 (2008) 188-212

$$mQ_y = Q_S + k$$

- even order resonance
 - Disappears in the two snake case if the closed orbit is perfect
- odd order resonance
 - Driven by the intrinsic spin resonances

Snake resonance observed in RHIC Blue, 2009 0.8 11/16 resonance Yellow, 2009 Polarization transmission efficiency(CNI #1) BluePol1, 2011 0.7 BluePol2, 2011 7/10 resonance YellowPol2, 201 0.6 3/4 resonance Setting for 2011 250 GeV run 250 GeV run 0.5 0.4 2009 0.3 Setting for 0.2 0.10.67 0.68 0.69 0.7 0.71 0.72 vertical tune

Avoid polarization losses due to snake resonance

- Adequate number of snakes

$$N_{snk} > 4 \left| \mathcal{E}_{k,\text{max}} \right| \qquad Q_s = \sum_{k=1}^{N_{snk}} (-1)^k \phi_k$$

- ϕ_k is the snake axis relative to the beam direction
- Minimize number of snake resonances to gain more tune spaces for operations

Avoid polarization losses due to snake resonance

$$N_{snk} > 4 \big| \varepsilon_{k,\max} \big| \qquad Q_s = \sum_{k=1}^{N_{snk}} (-1)^k \phi_k$$
 ϕ_{kis} the snake axis relative to the beam direction

- Keep spin tune as close to 0.5 as possible
 - Source of spin tune deviation
 - Snake configuration
 - Local orbit at snakes as well as other spin rotators. For RHIC,

angle between two snake axes
$$\Delta Q_{\rm s} = \frac{|\Delta \phi|}{\pi} \ + \ (1+G\gamma) \frac{\Delta \theta}{\pi} \qquad \text{H orbital angle between two snakes}$$

- Source of spin tune spread
 - momentum dependence due to local orbit at snakes
 - betatron amplitude dependence

History of High Energy Polarized Proton Beams

ZGS at Argonne National Lab

History of High Energy Polarized Proton Beams

Brookhaven AGS: 1974~present

1980s 1990s 2006 - now

Alan Krisch and Larry Ratner in the AGS MCR.

~ 40% polarization at 22 GeV, 7 weeks dedicated time for setup

5% snake +RF dipole

~ 2 weeks setup parasitic to RHIC Ion program

50% at 24 GeV

+10% cold helical snake

~2 weeks setup

65%-70% at 24 GeV

History of High Energy Polarized Proton Beams

Cooler Ring at Indiana University Cyclotron Facility

1985 -- 2002:

 Successfully accelerated polarized protons up to 200MeV with a super-conducting solenoid snake.
 Best polarization of 77% was achieved

History of High Energy Polarized Proton Beams

COSY (Cooler Synchrotron ring) at Julich, Germany

- 1985 -- present:
 - proton energy: 3 GeV/c
 - Full spin flip at each imperfection resonance with vertical correctors
 - Fast tune jump with an air-core quadrupole at each intrinsic spin resonance

Dual Snake Set-up

- ☐ Use one or a group of snakes
- to make the spin tune to be at 1/2
- ☐ Break the coherent build-up of the perturbations on the spin vector

How to avoid a snake resonance?

- Adequate number of snakes
- Keep spin tune as close to 0.5 as possible
- Precise control of the vertical closed orbit
- Precise optics control
 - Choice of working point to avoid snake resonances
 - near 3rd order resonance. Current RHIC operating tune is chosen to be Qy=0.673 for acceleration beyond 100 GeV
 - near integer tune, much weaker snake resonances
 - However, it requires very robust linear optics correction
 - Minimize the linear coupling to avoid the resonance due to horizontal betatron oscillation

→ Û → Û →

Precise Beam Control

- Tune/coupling feedback system: acceleration close to 2/3 orbital resonance
- Orbit feedback system: rms orbit distortion less than 0.1mm

Beam-beam Effect on Polarization

- Beam-Beam force on spin motion
 - For a Gaussian round beam, particle from the other beam sees

$$\vec{E} = \frac{qN}{2\pi\varepsilon_0 lr} [1 - \exp(-\frac{r^2}{2\sigma^2})]\hat{r} \qquad \vec{B} = \frac{1}{c}\vec{\beta} \times \vec{E}$$

Polarization Performance and Beam-beam

- Beam-Beam induces tune shift of

$$\xi = \frac{Nr_0\beta^*}{4\pi\gamma\sigma^2}$$

- It also induces an incoherent tune spread, which can populate particles on
 - orbital resonances, and causes emittance growth
 - snake resonances, and result in polarization loss during collision

A Typical BTF of RHIC Beam in Collision

Average Store Polarization vs. vertical tune

- ☐ The closer the vertical tune towards 0.7, the lower the beam polarization
- ☐ The data also shows that the direct beam-beam contribution to polarization loss during store is weak

* **(**

RHIC Polarized Proton Performance

Polarization as measured by H Jet target, average of the entire beam distribution. For 250(255) GeV, sharper polarization profile was observed and hence, effective polarization is $\sim 20 \%$ higher

Courtesy of W. Fischer

Polarized Electrons

- High energy polarized electrons, on the other hand, is quite different due to Sokolov-Ternov effect,
 - Discovered by Sokolov-Ternov in 1964
 - Emission of synchrotron radiation causes spontaneous spin flip

The difference of probability between the two scenarios allows the radiative polarization build up $P(t)=P_{max}(1-e^{-t/\tau_{pol}})$, where $P_{ST}=8/5\sqrt{3}$ and polarization build up time is

$$\tau_{pol}^{-1} = 5 \frac{\sqrt{3}}{8} \frac{e^2 \hbar \gamma^5}{m^2 c^2 \rho^3} = 5 \frac{\sqrt{3}}{8} c \lambda_e r_e \frac{\gamma^5}{\rho^3}$$

Polarized Electrons

For electron, rule of thumb of polarization build up time

$$\tau_{pol}^{-1} = 3654 \frac{R/\rho}{B[T]^3 E[GeV]^2}$$

S. Mane et al, Spin-polarized charged particle bams

	VEPP[10]	VEPP2-M[11]	ACO[8,9]	BESSY[44]	SPEAR[45]	VEPP4[46]
E(GeV)	0.640	0.625	0.536	0.800	3.70	5.0
$\tau_p(\min)$	50	70	160	150	15	40
P(%)	52	90	90	>75	>70	80
	DORIS II[47]	CESR[48]	PETRA[49]	HERA[19]	TRISTAN[50]	LEP[51]
E(GeV)	5.0	4.7	16.5	26.7	29	46.5
$\tau_p(\min)$	4	300	18	40	2	300
P(%)	80	30*	80**	70**	75**	57**

What's the polarization buildup time at RHIC@250GeV and LHC@1TeV?

*****(•••

In a planar circular accelerator

where the magnetic field is distributed piece-wisely

$$P_{\infty} = \frac{8}{5\sqrt{3}} \frac{\left\langle \left| \rho^{-3} \right| \hat{n} \cdot \hat{b} \right\rangle}{\left\langle \left| \rho^{-3} \right| \left[1 - \frac{2}{9} (\hat{\beta} \cdot \hat{n})^{2} \right] \right\rangle}$$

$$\tau_{p}^{-1} = \frac{5\sqrt{3}}{8} c \lambda_{c} r_{e} \gamma^{5} \left\langle \left| \rho^{-3} \right| \left[1 - \frac{2}{9} (\hat{\beta} \cdot \hat{n})^{2} \right] \right\rangle$$

 Clearly, a single snake or other configurations which lays the stable spin direction in the horizontal plane, can cancel the S-T radiative polarization build-up

Now, let's add in spin diffusion

$$P_{\infty} = \frac{8}{5\sqrt{3}} \frac{\left\langle \left| \rho^{-3} \right| \hat{b} \cdot \left[\hat{n} - \gamma \frac{\partial \hat{n}}{\partial \gamma} \right] \right\rangle}{\left\langle \left| \rho^{-3} \right| \left[1 - \frac{2}{9} (\hat{\beta} \cdot \hat{n})^{2} + \frac{11}{18} \left| \gamma \frac{\partial \hat{n}}{\partial \gamma} \right|^{2} \right] \right\rangle}$$

$$\tau_{p}^{-1} = \frac{5\sqrt{3}}{8} c \lambda_{c} r_{e} \gamma^{5} \left\langle \left| \rho^{-3} \left[1 - \frac{2}{9} (\vec{\beta} \cdot \vec{n})^{2} + \frac{11}{18} \left| \gamma \frac{\partial \hat{n}}{\partial \gamma} \right|^{2} \right] \right\rangle$$

Synchrotron Sideband

$$\gamma = \gamma_0 + \Delta \gamma \cos \psi \quad \text{with} \quad \psi = \nu_s \theta + \phi_0$$

$$\nu = G\gamma = \nu_0 + G\Delta \gamma \cos \psi \quad \text{with} \quad \nu_0 = G\gamma_0$$

 Hence, the spin-orbit coupling factor averaged over all synchrotron phase becomes

$$\left\langle \left| \overrightarrow{\Gamma} \right|^{2} \right\rangle = \left| \gamma \frac{\partial \hat{n}}{\partial \gamma} \right|^{2} = v_{0}^{2} \varepsilon_{K}^{2} \sum_{m} \frac{J_{m}^{2} \left(\Delta v / v_{s} \right)}{\left[\left(\left(v_{0} - K \right)^{2} \right) - v_{s}^{2} \right]^{2}}$$

Depolarizing Resonance @ SPERA

Fig. 1. Polarization measurements at SPEAR (from ref. [2]). The quantity P_{max} is $8/(5\sqrt{3}) \approx 92.4\%$. The curve is a guide for the eye, not a theoretical calculation. Various resonances have been identified in the data. The orbital tunes are called $v_{x,y,s}$ instead of $Q_{x,y,s}$. The spin tune is v. A single beam of positrons was circulated when making measurements. The graph is not a single experiment, but a compilation of many runs.

What's Missing in this talk

Linear spin dynamics

- 1st order depolarizing resonance
- Techniques for preserving polarization

Non-linear spin dynamics

High order depolarizing resonance

Spin tracking

- Robustness and modern architect
- Optimization, spin matching

Spin manipulation

- Spin flipping
- Spin tune-meter

Polarimetry

To the great minds who pioneered

*****••••

Achieved Performance and Projection

p ↑- p ↑	2009	2012	2013	2015	
operation					
Energy	GeV	100/250	100/255	100	
No of collisions	•••	107	107	107	
Bunch intensity	1011	1.3/1.1	1.3/1.8	1.85	
Beta*	m	0.7	0.85/0.65	0.65	
Peak L	10 ³⁰ cm ⁻² s ⁻¹	50/85	46/165	115	
Average L	10 ³⁰ cm ⁻² s ⁻¹	28/55	33/105	63	
Polarization P	%	56/35	59/52	56/57.4	

• Polarization quoted here is from Absolute Polarimeter using polarized H Jet

