

Capacitors: Content (1)

• Distinctive Features

- Introduction
- Equivalent Circuit
- Constraints
- Limitations
- Series Inductance
- Conclusion
- Used Technologies
 - Dielectrics
 - Capacitor Realisation
 - Electrolytic Capacitors

Capacitors: Content (2)

Applications and Specifications

- Introduction
- Filter Capacitors for Rectifiers at Industrial Frequencies
- De-Coupling Capacitors
- Commutation Capacitors
- Resonance Capacitors
- Capacitors for Semiconductor-Commutation Assistance
- Energy-Storage Capacitors

Distinctive Features

- Capacitors used in *electrotechnics* (increase power factor, start single-phase asynchronous motors, etc.)
 - almost sinusoidal waveforms at industrial frequencies (50 or 60 Hz)
 - absence of a notable constant voltage
- Capacitors used in *power-electronic* circuits
 - currents not sinusoidal
 - harmonics can easily exceed 60 %
 - often pulse-like with d*i*/d*t* easily exceeding 10 A/µs
 - often fundamental frequencies of 1 to 50 kHz
 - high permanent constant voltage superimposed to the alternating or pulse-like component
 - parasitic series inductance and resistance must be as small as possible.

Equivalent Circuit

- C ideal capacitor
- Ls series inductance
- **R**s series resistance
- R_p equivalent parallel resistance (dielectric losses)
- Reqequivalent series resistance (total capacitor losses)
- *Rf* leakage resistance (*RfC* often bigger than 1000 s => influence can be neglected)

Constraints (electrical)

- Dielectric ageing problem
 - voltage waveform (continuous, alternating, or both superimposed)
 - frequency
 - harmonics
 - temperature
 - over-voltage stress
- Problems linked to pulse-like currents
 - high currents => high forces => rupture or breakdown of terminals and internal connections
 - metallised electrodes are sensible
 - maximum values for dv/dt or I^2t

Constraints (thermal)

Thermal problem

- determines component reliability
- heating calculations are delicate and require a lot of experience
- capacitors dielectrics are quite limited in temperature (85°C vs. 150 to 200°C for transformers or motors)
- life time exponential function of temperature (for example, life time divided by 10 between 70 and 85 C)

Limitations (general)

- Ohmic losses
 - connections and the electrodes (*Rs*)
 - depend on frequency (skin effect)
- Dielectric losses
 - dielectric (\mathbf{R}_p)
 - product of reactive power ($\Im E^2 \omega$) and tangent of the loss angle (tan $\delta = C \omega / R_p = f(U, \omega, \theta)$)
- Electromagnetic losses
 - induced currents in the metal case
 - often imposes the use of amagnetic metals (such as aluminium)

Limitations (sinusoidal operation)

- Zone A
 - limitation by voltage
 - $Q = U^2 C \omega$
 - maximum power @ f1
- Zone B
 - limitation by losses
- **Zone C**
 - limitation by current
 - maximum current @f2
 - reduces with frequency due to skin effect

- I courant efficace traversant le condensateur
- Q puissance réactive
- U tension efficace aux bornes du condensateur

Series Inductance

- Series inductance Ls produces important transient voltage drop (Lsdi/dt)
- Impedance function of frequency
- Minimum corresponds to series resonance ($L_sC\omega^2 = 1$)
- Difficulties if resonance frequency close to some higher-rank harmonics
 - occurs particularly in high-frequency resonant converters (above 5 to 10 kHz)
- In practice: do not use capacitor above 1/5th of resonance frequency

Conclusion

- Constraints met in power electronics require capacitor technologies adapted to each application
- Big currents of high frequency and temperature limits of actual dielectrics impose components of very low losses and low thermal impedance
- General orders of magnitude:
 - $R_s \qquad 0.1 \text{ to } 10 \text{ m}\Omega$
 - *Ls* 5 to 400 nH
 - tan δ 2e-4 to 100e-4
 - Zth 0.5 to 20 K/W

Used Technologies

- Three large families for power electronics
 - electrolytic aluminium capacitors
 - filtering of continuous voltages
 - P > 10 kW, U < 1000 V
 - P > 100 kW, U < 3500 V
 - ceramic capacitors
 - high frequencies: f > 1 MHz
 - high cost
 - film capacitors (papers, plastics, dry or impregnated)
 - winding of metallic electrodes and dielectric (paper or plastic film)
 - general technology

Prof. A. Rufer

Dielectrics

•	rel. perm.	tan ð	strength	vol. mass	temp. coeff.
•		(10^{-4})	(kV/mm)	(kg/m^3)	(10 ⁻⁶ /K)
•paper	6.6			1200	
•polypropylen	e 2.2	2	600	900	-200
•polyester	3.2	50	500	1400	+1200
•mineral oil	2.3	10	60	860	-1400
•silicone	2.8	2	60	900	-3300

Prof. A. Rufer

Capacitor Realisation

- Al armature en aluminium (5 à 10 µm)
- L lamelle de cuivre
- D diélectrique

(a) condensateur à armatures ; sortie par lamelles

- Al armature en aluminium (5 à 10 µm)
- D diélectrique

b condensateur à armatures débordantes

- D diélectrique
- d débord facilitant l'accrochage du shoopage
- M métal (10 à 50 nm)
- MI marge d'isolation

(d) condensateur à film métallisé segmenté (crénelage)

Prof. A. Rufer

Electrolytic Capacitors

Applications and Specifications

- Difficult and expensive to manufacture capacitors satisfying all specifications for power-electronic capacitors => Components adapted to each application
- Two large families of capacitors:
 - operating voltage continuous and unipolar
 - filtering
 - de-coupling
 - energy storage
 - operating voltage alternating
 - harmonic filtering
 - commutation
 - resonance
 - commutation aid
 - somiconductor protection

DC Voltage

- Capacitors for continuous voltage
- Capacitors for energy storage with low discharge recurrence (few Hz)
- Low reactive powers
- Dielectric losses not dominant
- Series resistance and rms-current are the essential heating factors

AC Voltage

• Dielectric and ohmic losses important

Current, Reactive and Loss Power Calculation

Current, Reactive and Loss Power Calculation

Prof. A. Rufer

Current, Reactive and Loss Power Calculation

Filter Capacitors Industrielle

- Low-pass filters
- Unipolar voltages
- Main constraint:
 - continuous voltage (average rectified voltage)
 - peak value of oscillating voltage
 - sum of both defines nominal operating voltage Un
- Second constraint:
 - rms-value of current
 - proportional to f and U_{\sim}
 - for given current, *fU*~ not constant,
 U~ decreases slower than *f* increases
 (skin effect, dissipating power, etc.)

• Series inductance negligible at power supply with $f_s \le 400 \text{ Hz}$

De-Coupling Capacitors

- Resembling the preceding ones
- Constitute links of theoretically zero impedance in circuits with superimposed continuous and alternating components
- Peak value of alternating component can be *bigger* than continuous voltage => terminal voltage susceptible to inversion
- Principle use:
 - input and output filters of de-coupled power supplies
 - input filters of voltage-source converters
 - de-coupling of parasitic supply-cable inductances and batteries (autonomous supplies)

Examples

Filter capacitor for the TGV Atlantique (2000 μF, 1800 V). Evolution from metallised wax-impregnated paper (125x340x787 mm³, 49 kg) to segmented metallised rape-oilimpregnated polypropylene film, 4th generation (125x340x430 mm³, 21 kg).

Filter capacitor for an IGBT traction converter (tramway). Segmented metallised rape-oil-impregnated polypropylene technology. The 3 elements with flat terminals give this capacitor a series inductance < 30 nH (3150 μ F, 1000 V, 690x140x185 mm³).

Commutation Capacitors

- Deliver current pulses necessary to block thyristors
- Severe constraints, complex applied waveforms
- Classical thyristors disappear gradually: replaced by GTO/IGCT and IGBT
 - these active components do not need turn-off commutation capacitors
- The constraints applied to commutation capacitors remain a general type of constraints met in power electronics
 - dielectric constraints
 - voltage continuous, rms and peak value (must remain smaller than *Un*)
 - voltage variation rate (dielectric losses increase with high dv/dt)
 - constraints due to ohmic losses and frequency
 - current rms and peak value
 - $\mathbf{\Sigma}$

Resonance Capacitors

- Used to tune series or parallel resonant circuits used in industrial medium-frequency systems (resonant converters)
- Frequencies between several hundred Hz and several hundred kHz
- Relatively tight tolerances: often ∆C/C ≤ 2 % => exclusion of certain dielectrics
- Operate under pure alternating voltage without a superimposed continuous component
- Only constraints to take into account:
 - voltage peak value (must remain smaller than Un)
 - current rms-value (dielectric losses, ohmic losses)

Capacitors for Laboratoire d'électronique industrielle

- Semiconductor RCD-networks
- Minimise commutation losses
- Limit dv/dt
- Capacitor absorbs load current at switch opening: big pulsed currents
 => series inductance Ls must be minimum
- GTO: parasitic inductance of RCDcircuit very critical (< 100 nH)
 => development of capacitors with very low specific inductance (< 10 nH)

FÉDÉRALE DE LAUSANNE

S

Energy-Storage Capacitors

- Accumulate maximum energy in minimum volume
- Discharge this energy in very short times (very big currents)
- Typical applications:
 - lasers
 - lightning wave simulators
 - nuclear electromagnetic pulse simulators
- Dielectrics used at maximum strength
 => reduced life times
 - telemetric lasers: 500'000 charge-discharge cycles

50 kJ, 10 kV, peak current 60 kA, volumetric energy 600 J/l

