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Distinctive Features

• Capacitors used in electrotechnics (increase power factor, start 
single-phase asynchronous motors, etc.)
– almost sinusoidal waveforms at industrial frequencies (50 or 60 Hz)
– absence of a notable constant voltage

• Capacitors used in power-electronic circuits
– currents not sinusoidal

• harmonics can easily exceed 60 %
• often pulse-like with di/dt easily exceeding 10 A/µs
• often fundamental frequencies of 1 to 50 kHz

– high permanent constant voltage superimposed to the alternating or 
pulse-like component

– parasitic series inductance and resistance must be as small as possible.
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Equivalent Circuit

• C ideal capacitor
• Ls series inductance
• Rs series resistance
• Rp equivalent parallel resistance

(dielectric losses)
• Reqequivalent series resistance

(total capacitor losses)
• Rf leakage resistance

(RfC often bigger than 1000 s =>
influence can be neglected)
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Constraints (electrical)

• Dielectric ageing problem
– voltage waveform (continuous, alternating, or both superimposed)
– frequency
– harmonics
– temperature
– over-voltage stress

• Problems linked to pulse-like currents
– high currents => high forces => rupture or breakdown of terminals and 

internal connections
– metallised electrodes are sensible
– maximum values for dv/dt or I2t



Prof. A. Rufer

Constraints (thermal)

• Thermal problem
– determines  component reliability
– heating calculations are delicate and require a lot of experience
– capacitors dielectrics are quite limited in temperature

(85°C vs. 150 to 200°C for transformers or motors)
– life time exponential function of temperature

(for example, life time divided by 10 between 70 and 85 C)
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Limitations (general)

• Ohmic losses
– connections and the electrodes (Rs)
– depend on frequency (skin effect)

• Dielectric losses
– dielectric (Rp)
– product of reactive power ( E2ω) and tangent of the loss angle

(tan δ = Cω/Rp = f(U,ω,θ))

• Electromagnetic losses
– induced currents in the metal case
– often imposes the use of amagnetic metals (such as aluminium)



Prof. A. Rufer

Limitations (sinusoidal operation)

• Zone A
– limitation by voltage
– Q = U2Cω
– maximum power @ f1

• Zone B
– limitation by losses

• Zone C
– limitation by current
– maximum current @ f2

– reduces with frequency
due to skin effect
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Series Inductance

• Series inductance Ls produces important transient voltage drop 
(Lsdi/dt)

• Impedance function of frequency
• Minimum corresponds to series resonance (LsCω2 = 1)
• Difficulties if resonance frequency close

to some higher-rank harmonics
– occurs particularly in high-frequency

resonant converters (above 5 to 10 kHz)

• In practice: do not use capacitor
above 1/5th of resonance frequency
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Conclusion

• Constraints met in power electronics require capacitor 
technologies adapted to each application

• Big currents of high frequency and temperature limits of actual 
dielectrics impose components of very low losses and low 
thermal impedance

• General orders of magnitude:
– Rs 0.1 to 10 mΩ
– Ls 5 to 400 nH
– tan δ 2e-4 to 100e-4
– Zth 0.5 to 20 K/W
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Used Technologies

• Three large families for power electronics
– electrolytic aluminium capacitors

• filtering of continuous voltages
• P > 10 kW, U < 1000 V
• P > 100 kW, U < 3500 V

– ceramic capacitors
• high frequencies: f > 1 MHz
• high cost

– film capacitors (papers, plastics, dry or impregnated)
• winding of metallic electrodes and dielectric (paper or plastic film)
• general technology
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Dielectrics

• rel. perm. tan δ strength vol. mass temp. coeff.
• (10-4) (kV/mm) (kg/m3) (10-6/K)
•paper 6.6 1200
•polypropylene 2.2 2 600 900 -200
•polyester 3.2 50 500 1400 +1200
•mineral oil 2.3 10 60 860 -1400
•silicone 2.8 2 60 900 -3300
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Capacitor Realisation
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Electrolytic Capacitors
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Applications and Specifications

• Difficult and expensive to manufacture capacitors satisfying all
specifications for power-electronic capacitors => Components 
adapted to each application

• Two large families of capacitors:
– operating voltage continuous and unipolar

• filtering
• de-coupling
• energy storage

– operating voltage alternating
• harmonic filtering
• commutation
• resonance
• commutation aid
• semiconductor protection
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DC Voltage

• Capacitors for continuous voltage
• Capacitors for energy storage with

low discharge recurrence (few Hz)
• Low reactive powers
• Dielectric losses not dominant
• Series resistance and rms-current

are the essential heating factors



Prof. A. Rufer

AC Voltage

• Dielectric and ohmic losses
important
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Current, Reactive and Loss Power Calculation
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Current, Reactive and Loss Power Calculation
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Current, Reactive and Loss Power Calculation
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Filter Capacitors
for Rectifiers at Industrial Frequencies

• Low-pass filters
• Unipolar voltages
• Main constraint:

– continuous voltage (average rectified voltage)
– peak value of oscillating voltage
– sum of both defines nominal operating voltage Un

• Second constraint:
– rms-value of current
– proportional to f and U~

– for given current, fU~ not constant,
U~ decreases slower than f increases
(skin effect, dissipating power, etc.)

• Series inductance negligible at power supply with fs ≤ 400 Hz
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De-Coupling Capacitors

• Resembling the preceding ones
• Constitute links of theoretically zero impedance in circuits with 

superimposed continuous and alternating components
• Peak value of alternating component can be bigger than 

continuous voltage => terminal voltage susceptible to inversion
• Principle use:

– input and output filters of de-coupled power supplies
– input filters of voltage-source converters
– de-coupling of parasitic supply-cable inductances and batteries 

(autonomous supplies)
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Examples

Filter capacitor for the TGV Atlantique (2000 µF, 1800 V). 
Evolution from metallised wax-impregnated paper 
(125x340x787 mm3, 49 kg) to segmented metallised rape-oil-
impregnated polypropylene film, 4th generation 
(125x340x430 mm3, 21 kg).

Filter capacitor for an IGBT traction converter (tramway). 
Segmented metallised rape-oil-impregnated polypropylene 
technology. The 3 elements with flat terminals give this 
capacitor a series inductance < 30 nH (3150 µF, 1000 V, 
690x140x185 mm3).
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Commutation Capacitors

• Deliver current pulses necessary to block thyristors
• Severe constraints, complex applied waveforms
• Classical thyristors disappear gradually:

replaced by GTO/IGCT and IGBT
– these active components do not need turn-off commutation capacitors

• The constraints applied to commutation capacitors remain a 
general type of constraints met in power electronics
– dielectric constraints

• voltage continuous, rms and peak value (must remain smaller than
Un)

• voltage variation rate (dielectric losses increase with high dv/dt)
– constraints due to ohmic losses and frequency

• current rms and peak value
• reactive power (estimation of loss power using tan δ)
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Resonance Capacitors

• Used to tune series or parallel resonant circuits used in 
industrial medium-frequency systems (resonant converters)

• Frequencies between several hundred Hz and several hundred 
kHz

• Relatively tight tolerances: often ∆C/C ≤ 2 %
=> exclusion of certain dielectrics

• Operate under pure alternating voltage without a superimposed 
continuous component

• Only constraints to take into account:
– voltage peak value (must remain smaller than Un)
– current rms-value (dielectric losses, ohmic losses)
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Capacitors for
Semiconductor-Commutation Assistance

• Semiconductor RCD-networks
• Minimise commutation losses
• Limit dv/dt
• Capacitor absorbs load current at

switch opening: big pulsed currents
=> series inductance Ls must be
minimum

• GTO: parasitic inductance of RCD-
circuit very critical (< 100 nH)
=> development of capacitors with
very low specific inductance
(< 10 nH)
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Energy-Storage Capacitors

• Accumulate maximum energy in minimum volume
• Discharge this energy in very short times (very big currents)
• Typical applications:

– lasers
– lightning wave simulators
– nuclear electromagnetic pulse simulators

• Dielectrics used at maximum strength
=> reduced life times
– telemetric lasers: 500’000 charge-discharge cycles

50 kJ, 10 kV, peak current 60 kA, 
volumetric energy 600 J/l
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