

WARRINGTON - Monday 17 May - Alain CHAROY

AEMC POWER CONVERTERS FOR PARTICLE ACCELERATORS - a.charoy@aemc.fr

Introduction

Differential Mode Immunity

Differential Mode Emissions

Common Mode Emissions

Electromagnetic Radiations

Deterministic situation

Deterministic situation

EMC best controlling conditions

EMC troubleshooting

Common Mode & Differential Mode

How to measure CM & DM currents?

Typical input current of a 5 kVA filtered converter

A concealed key point: the switching dynamic impedance

Introduction

Differential Mode Immunity

Differential Mode Emissions

Common Mode Emissions

Electromagnetic Radiations

The voltage tolerance boundary

Transient Turn-on Overvoltage

AEME

Where to install a DM Voltage Transient Suppressor?

Where to add protection components?

A **Diode** avoids output voltage doubling A **NTC thermistor** limits inrush current

The problem of the negative impedance of a DC/DC converter

- No Start Up
- Output voltage instability
- Add a large capacitor at DC / DC input
- Reduce cable inductance (several pairs in //)
- Destruction of DC / DC converter Reduce the converter regulation bandwidth

Introduction

Differential Mode Immunity

Differential Mode Emissions

Common Mode Emissions

Electromagnetic Radiations

Some problems of converters harmonics

- Harmonics are generated by non sinusoidal currents. For an electric network, harmonics are a low frequency problem (< 2 kHz and in Differential Mode only).
- Usually, even harmonics are low (because + and half-waves look the same).
 Most of inverters and AC / DC converters without PFC exceed normalized levels.
- Odd harmonics of converters can be severe (> 50 % @ H3 ; > 30 % @ H5).
- For most single phase converters without PFC on a 3 phase network, the 3rd harmonics (150 Hz) is an "homopolar" current. So, I_{neutral} can exceed I_{phase}.
- Anti-harmonic or active filters are useful for a low power source (electric generator).
- For a high power network, the problem of harmonics is not the voltage distortion but the mastering of cabling protection scheme (cables & circuits breakers).

Differential Mode interferences

Differential Mode Emission Spectrum Without Filtering

1 - Choose the proper structure (to mismatch the impedances)

- 2 Choose $(L1+L2) \times Cx$ value so that Fresonance < lowest frequency to filter
- 3 Verify that no inductance saturates at max current (Max P & Min V)
- 4 Limit H field coupling to leakage inductance (in air) of L1 & L2
- 5 Safety margin necessary to compensate electrolytic caps ESR dispersion

- 6 Add C' as needed to reduce wideband recovery noise of rectifier bridge
- 7 Limit H field-to-loop coupling to avoid parasitic voltage pick-up.

Take care of Differential Mode cabling...

Take care of Differential Mode cabling...

How to reduce cabling parasitic impedances...

To reduce the cabling areas is necessary, but insufficient

How to measure Output Ripple...

How to analyse Output Ripple

Introduction

Differential Mode Immunity

Differential Mode Emissions

Common Mode Emissions

Electromagnetic Radiations

 $1 I_1 = C_1 \cdot \Delta V / \Delta t$

I1 doesn't circulate through the load, so it is little disturbing.

AEME

I₂ ≈ C₂. ΔV / Δt (but possibly modified by ZCM)
 I₂ can circulate through the load, so it may be very disturbing.
 Measured total CM current : ICM = I₁ + I₂

Common Mode Emission Spectrum Without Filtering

The 3 cases of Primary-to-Secondary Common Mode

- No disturbance outside of the chassis
- No CM noise in electronic circuits
- EMC filter easy to optimize
- No disturbance outside of the chassis
 CM Noise through electronic circuits
 EMC filter more difficult to optimize

- EM radiations outside of the chassis Input filter impossible to optimize
- The output cable must be shielded or filtered

Load

To float or not to float the output, that's the question...

I+ ≠ I–

A (nearly) universal solution

How to measure Primary - to - Secondary C. M. current?

Time measurement

- 50 mV/mA sensitivity
- 100 MHz bandwidth
 - I mA peak-peak = Excellent
 - 10 mA peak-peak = Average
 - 100 mA peak-peak = Excessive

Frequency measurement

- 9 or 10 kHz RBW, Peak detection
- Span : 0.1 to 50 MHz (100 MHz)
 - 10 dB μ A = Excellent
 - 30 dB μ A = Average
 - 50 dB μ A = Excessive

This simple "CM/DM SEPARATOR" reduces by 10 + the time and difficulty to optimize a single-phase EMC filter

Practical realisation of a "CM/DM SEPARATOR"

CM / DM separator adaptation on a commercial LISN

Introduction

Differential Mode Immunity

Differential Mode Emissions

Common Mode Emissions

Electromagnetic Radiations

Sources of Electromagnetic Radiations

1 Sources of H field :

Leakage fields of windings Secondary loop areas Primary loop area

2 Sources of E field :

High $\Delta V/\Delta t$ conductive parts (Heat sink, ferrite core...) HF insufficiently filtered cables (e.g. output cable)

IMC

HF solutions must be installed close to the sources

Ground Loop : Definition & Effects

Star Grounding : Principle & Reality

Ground Grid : Definition & Effects

Other ground wire or structure

How to improve immunity ?

Ground Grid : Definition & Effects

Improvement of Ground Grid =

Better immunity against conducted disturbances

Adding a Ground Strap =

Further reduction of the Ground Loop Area

A GROUND GRID is highly recommended !

Where to connect the shielded cables braid ?

- Any power cable : At both ends, to chassis ground, without pigtail.
- High frequency coax : At both ends, to chassis ground, without pigtail.
- Digital link (except coaxial Ethernet): At both ends, to chassis ground...
- **High impedance source** (> 10 kΩ): At both ends, to chassis ground...
- Any cable inside an equipment : At both ends, to chassis ground...
- Any outer shield (not signal return): At both ends, to chassis ground...
- Low voltage signal cable, with low frequencies to transmit, with a low impedance source, in a noisy environment,

without balanced transmission (bad CMRR): At one end only ... But then good immunity will be hard to achieve ! Avoid aluminium foil with a drain wire (without braid). Please, let us remember...

- EMC is not black magic (Just simple physics...)
- Some measurement equipments are required
- Usually, only simple equipments are sufficient
- It's good to be experienced (& confident enough)
- It's important to understand how system works
- It's useful to methodically analyse what happens
- It's efficient to foresee and simplify EMC problems
- It's necessary to know the orders of magnitudes
- It's politically effective to be persuasive (& smiling)
- It's essential never to become discouraged !...

Questions ?

