Power Converter Course, Warrington

12.05.2005

High Power Active Devices

Eric Carroll, ABB Switzerland

INTRODUCTION

Electronic Switches

Thyristor

Can be turned **on** by gate signal but can only be turned **off** by reversal of the anode current

Gate Turn-Off Thyristor (GTO)

Can be turned **on** and **off** by the gate signal but requires large capacitor (snubber) across device to limit dv/dt

■ Transistor (transitional resistor)

Can be turned **on** and **off** by the gate (or base) signal but has high conduction losses (its an amplifier, not a switch)

Integrated Gate Commutated Thyristor (IGCT)

Can be turned *on* and *off* by the gate signal, has low conduction loss and requires no dv/dt snubber

Available Self-Commutated Semiconductor Devices

High Power Turn-off Devices

© ABB Switzerland Ltd - 5

Power Semiconductors ...

are switches....

....for converting electrical energy

Turn-on Switches (Thyristors)

Thyristors (PCTs)

thyristors produce voltage distortion in phase control mode

will ultimately be replaced by ToDs, except...

in AC configuration for:

- transfer switches
- tap changers
- line interrupters

World Energy Consumption ...

... drives the need for high power electronics

Energy trend

By 2020:

- Energy consumption will double
- Electricity generation will double
- Electrification of end-consumption will quintuple

Today, only 15% of electricity flows via electronics

Medium Voltage conversion has only been economically possible in the last 10 years

Power conversion at MV levels set to grow faster than LV (20% p.a.)

SELF- COMMUTATED INVERTERS

Basic Topologies

Turn-on waveforms for IGCTs and IGBTs

ABB Switzerland Ltd -

DEVICES

IGBTs

IGBTs – key features

- Transistors with insulated gate
- Allow dv/dt and di/dt control via gate signal (losses)
- High on-state voltage (transistor)
- High turn-on losses (no snubber)
- Low gate power requirements (voltage control)
- No passives required (independant dv/dt and di/dt control)

HiPakTM **High Power IGBT Modules**

	Voltage	Current	Type	Part Number	V_{ce}	V_{F}	Eoff	Eon	Vdc
	_				125°C	125°C	125°C	125°C	
	2500V	1200A	Single	5SNA 1200E250100	3.1V	1.8V	1.25J	1.15J	1250V
	3300V	1200A	Single	5SNA 1200E330100	3.8V	2.35V	1.95J	1.89J	1800V
	3300V	1200A	Single	5SNA 1200G330100*	3.8V	2.35V	1.95J	1.89J	1800V
-1	6500V	600A	Single	5SNA 0600G650100*	4.7V	4.0V	3.5J	4.0J	3600V

^{*} High voltage version

StakPakTM - stackable press-packs (collector side)

StakPak-H4: 2.5 kV/1300 to 3000 A

StakPak-J6: 4.5 kV/2000 to 3000 A

StakPak-H6: 2.5 kV/ 2000A to 3000 A

ABB Switzerland Ltd - 17 -

IGBT Press-packs

Conventional IGBT presspack:

requires tight mechanical tolerances

StakPak™ IGBT presspack with individual springs:

suitable for long stacks with compounded tolerances

StakPak™ HVDC Valve

Long stacks would require very tight mechanical tolerances to ensure identical force on each chip in each housing:

- on assembly
- over time
- with temperature cycling
- with shock and vibration

IGBT Trends

IGBT Trends

- Higher voltages
- Higher Safe Operating Area (SOA)
- Softer (controlled) switching

Soft switching: 3.3kV SPT* IGBT/Diode chip-set

* Soft Punch Through

Soft switching: 8 kV IGBT PT vs SPT

3.3kV Diode RBSOA Performance

3.3kV/100A Diode RBSOA during Reverse Recovery V_R = 2500V, I_F = 200A, di/dt=1000A/ μ s, L_s = 2.4 μ H, T_j = 125°C

Peak Power = 0.8 MW/cm²
No clamp, no snubber

4.5kV IGBT RBSOA Performance

Peak Power = 0.5 MW/cm²
No Clamp, No Snubbers

ABB Switzerland Ltd - 2

6.5kV IGBT RBSOA Performance

6.5kV/2x25A IGBT RBSOA during Turn-off V_{cc} = 4500V, I_c = 100A, R_G = 0ohm, L_s = 20 μ H, T_j = 125°C

Peak Power = 0.25 MW/cm²
No Clamp, No Snubbers

© ABB Switzerland Ltd - 26 -

3 ABB Switzerland Ltd - 27

6.5kV IGBT Short Circuit Performance

6.5kV/25A IGBT SCSOA during Short Circuit V_{cc} = 4500V, I_{cpeak} = 290A, V_{GE} = 18V, L_s = 2.4 μ H, T_j = 25°C

Peak Power = 1.35 MW/cm²
No Clamp, No Snubbers

3.3kV IGBT Module RBSOA Performance

IGCTs

IGCTs – key features

- Thyristor with integrated gate unit
- Low on-state voltage (thyristor)
- Negligible turn-on losses (turn-on snubber)
- No explosive failures
 (fault current limitation by circuit)

Principle of IGCT Operation

Blocking Transistor

IGCT turn-off

© ABB Switzerland Ltd - 32 -

General turn-on waveforms for IGCTs and IGBTs

© ABB Switzerland Ltd

1500 A IGBT turning on 1000 A from 3000 V

© ABB Switzerland Ltd - 34

4000 A IGCT turning on 1000 A from 3000 V

$$E_{on-circuit} = (t_2 - t_0) \bullet V_{dc} \bullet (I_{load} + I_{rr})/2....(1)$$

=1.5 $\mu s \cdot 3000 V \cdot 1900 A / 2 = 4.3 Ws$

Adjustment of dv/dt by lifetime control

Low inductance housing

4 kA/4.5 kV IGCTs

© ABB Switzerland Ltd - 38

© ABB Switzerland Ltd - 39 -

30 MW IGCT Power Management

15 + 15 MW 3-Level Back-to-Back Converter for three-phase to single-phase conversion *Converter efficiency* = 99.2%

4 kA/4.5 kV IGCT at 25 kHz in burst mode

© ABB Switzerland Ltd - 40

IGCT Outlook

IGDT

Structure of IGDT – Integrated Gate Dual Transistor

Dual Gate Turn-off Thyristor

id Ltd - 44 -

91 mm 4.5 kV IGDT turn-off

Dual-gate IGCT @ 85°C - gates triggered simultaneously

$$V_{DC} = 2.8 \text{ kV}$$

$$I_{TGQ} = 3.3 \text{ kA}$$

$$V_{DRM} = 4.5 \text{ kV}$$

$$V_{TM} = 2.1 \text{ V } @ 4 \text{ kA}/125 ^{\circ}\text{C}$$

IGDT Series connection: leakage current reduction

91 mm 4.5 kV IGDT - Leakage current control

IGDT anode gate control of tail current

Increased SOA

IGCT SOA improvement at 4.5 kV

TODAY

250 kW/cm²

250 kW/cm²

38 mm reverse conducting

91 mm asymmetric

TOMORROW

1000 kW/cm²

400 kW/cm²

6.5 kA @ 2.8 kV_{DC} on 91 mm wafer

Developmental 4" 4.5 kV IGCT with improved GU and silicon design allowing 50% SOA improvement

1.3 kA @ 2.8 kV_{DC} on 38 mm RC wafer

© ABB Switzerland Ltd - 51

10 kV IGCT

Engineering Sample of 68 mm 10 kV IGCT

Forward Blocking Characteristics at 25°C

(<17 μA @ 10 kV, 25°C)

ABB Switzerland Ltd - 55 -

Forward Blocking Characteristics at 125°C

(8-13 mA @ 6 kV, 125°C, P_L =50W-80W (5%-10% of P_{RP})

Turn-off Waveforms (SOA)

Operating conditions:

 $V_{DC} = 7kV, I_A = 1000A, T_i = 85^{\circ}C$

Switching characteristics:

 $E_{off} = 14.8 \text{ J}, V_{AK,max} = 8 \text{ kV}, t_{off} = 8\mu\text{s}, t_{f} = 1\mu\text{s}, t_{tail} = 5\mu\text{s}, 250 \text{ kW/cm}^{2}$

© ABB Switzerland Ltd - 56

Conclusions

SOA Limits of HV Devices are increasing

- Under RBSOA operational conditions
 - Devices withstands dynamic avalanche mode
 - IGBTs withstands "SSCM" mode
 - Devices achieve the ultimate square SOA behaviour

Switching-Self-Clamping-Mode "SSCM"

IGBT SOA turn-off waveforms including SSCM

devices start to limit voltage during turn-off

over-voltage safely reaches the static breakdown after turn-off

- For high power conversion, only two devices possible today:
 - IGBT
 - IGCT
- Safe Operating Area is increasing from 250 kW/cm² to 1 MW/cm²
- IGDT offers possibility of high voltage devices with low losses (future?)

Challenges

Challenges for HV Power ToDs

- High voltage devices present following challenges:
 - Dynamic Avalanche ruggedness (for reliable operation)
 - Short Circuit Failure Modes (IGBT) and fault interruption (IGCT)
 - Design Trade-off between Losses and SOA
 - Critical Punch-Through voltages (for controllable voltage, low EMI)
 - High DC link voltage (leakage stability, cosmic ray withstand)
 - Large inductance and overshoot voltages in HV power systems
 - High frequency (limited by losses, T_J)

ABB Switzerland Ltd - 63

Challenges for this decade

- 10 kV switches with 1 kHz snubberless operation (for the 6.9 kV_{RMS} MV line for drives and power conditioners)
- Snubberless series operation (static and dynamic for MV lines > 6.9 kV_{RMS})
- Power supply free operation (autogenous power supply for series connection)
- System cost-reduction (e.g. pay-back times ≈ 1 year for MV Drives)
- Reduced thermal resistance and increased T₁
- Reduced losses?

#