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SASE FEL Electron Beam Requirements:SASE FEL Electron Beam Requirements:
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Bunch compressorsBunch compressors

(RF & magnetic)(RF & magnetic)

Laser Pulse shapingLaser Pulse shaping

Emittance Emittance compensationcompensation

Cathode  Cathode  emittanceemittance
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Short Wavelength SASE FEL Electron Beam
Requirement: High Brightness Bn > 1015 A/m2



500 kV pulsed thermionic gun for SCSS

Stable operation  with uniform beam quality

Low thermal emittance single crystal CeB6 (Cerium Hexaborite)

Low accelerating gradient     ==> Low charge density 
(10 MV/m)               ==> Free from dark current

Courtesy Courtesy T. T. ShintakeShintake



RF photoinjectors
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Phase space of a parallel laminar beam
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Phase space laminar beam
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Phase space of non laminar beam
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Ellipse equation



Phase space evolution at injector exit
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rms beam envelope:

Define rms emittance:

such that:

Since:

it follows:
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It holds also the relation:

Substituting             we get
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We end up with the definition of rms emittance in terms  of the
second moments of the distribution:
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Assuming that each particle is subject only to a linear focusing
force, without acceleration:
take the average over the entire particle ensemble
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Envelope Equation without AccelerationEnvelope Equation without Acceleration
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Now take the derivatives:

And simplify:

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term
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What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?

Assuming a generic            correlation of the type:
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Space Charge: What does it mean?Space Charge: What does it mean?
The net effect of the CoulombCoulomb interactions in a multi-particle system can be

classified  into two regimes:

1)1) Collisional Collisional RegimeRegime ==> dominated by binary collisionsbinary collisions caused by close
particle encounters ==> Single Particle EffectsSingle Particle Effects

2) 2) Space Charge RegimeSpace Charge Regime ==> dominated by the self fieldself field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects,Collective Effects,
Single Component Cold PlasmaSingle Component Cold Plasma



Neutral Plasma

Magnetic focusing

Magnetic focusing

Single Component
Cold Relativistic Plasma

•Oscillations

•Instabilities

•EM Wave propagation



γ= 1 γ = 5 γ = 10

L(t)
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Longitudinal and Transverse Space charge Fields
In a uniform charged cilindrical bunch
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Lorentz Lorentz ForceForce
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The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect.

is a linearlinear function of the transverse coordinate
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Envelope Equation with Space ChargeEnvelope Equation with Space Charge
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Space Charge de-focusing force

Single particle transverse motion:
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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Including all the other terms the envelope equation reads:
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Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator
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Potential space charge emittance growth

ρ = 1ρ = 1

εth = 0.6 µm

Eacc = 25 MV/m



Space Charge induced emittance oscillations

in a laminar beam



Simple Case: Transport in a Long SolenoidSimple Case: Transport in a Long Solenoid ks =
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==> Equilibrium solution ? ==>

! 

" eq s,#( ) =
ksc s,#( )
ks

! 

" =" eq ! 

" " # + ks
2# =

ksc s,$( )
#



! 

" " # + ks
2# =

ksc s,$( )
#

! 

" #( ) =" eq s( ) +$" s( )

! 

" # # $ + ks
2 $ eq +"$( ) =

ksc s,%( )
$ eq

1& "$
$ eq

' 

( 
) ) 

* 

+ 
, , 

! 

" # # $ s( ) + 2ks
2"$ s( ) = 0

Small perturbations around the equilibrium solutionSmall perturbations around the equilibrium solution
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Plasma frequency

Perturbed trajectories oscillate around the equilibrium with the
same frequency but with different amplitudes



Emittance Emittance Oscillations are driven by space charge differentialOscillations are driven by space charge differential
defocusing in core and tails of the beamdefocusing in core and tails of the beam
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Perturbed trajectories oscillate around thePerturbed trajectories oscillate around the
equilibrium with theequilibrium with the

same frequencysame frequency  but withbut with  different amplitudesdifferent amplitudes



Emittance evolution for different pulse shapes

Optimum injection in to the linac with:
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Bunch compressorsBunch compressors

(RF & magnetic)(RF & magnetic)

Laser Pulse shapingLaser Pulse shaping

Emittance Emittance compensationcompensation

Cathode  Cathode  emittanceemittance
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Short Wavelength SASE FEL Electron Beam
Requirement: High Brightness Bn > 1015 A/m2



The paradox of relativistic bunch compression
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Length contraction?Low energy electron bunch injected in a
linac:

Why do we need a
bunch compressor?



Magnetic compressor (Chicane)
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Velocity bunching concept (RF Compressor)
If the beam  injected in a long accelerating structure at the crossing field phase
and it is slightly slower than the phase velocity of the RF wave ,  it will slip back to
phases where the field is accelerating,  but at the same time it will be chirped and
compressed.

The key point is that compression and acceleration take place at the same time
within the same linac section, actually the first section following the gun, that
typically accelerates the beam, under these conditions, from a few MeV (> 4) up to
25-35 MeV.
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Longitudinal beam dynamics

Such a system is solved using the variable separation technique to yield a
constant of the motion (total energy):
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Peak current vs RF compressor phase
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240 fs

Pulse length versus Velocity Bunching phase 



C-factor versus injection phase 
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Envelope Equation with Longitudinal AccelerationEnvelope Equation with Longitudinal Acceleration
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Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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Beam subject to strong acceleration
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Looking for an Looking for an ““equilibriumequilibrium”” solution solution
==> all terms must have the same dependence on ==> all terms must have the same dependence on γγ
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Space charge dominated beam (Laminar)Space charge dominated beam (Laminar)

Emittance Emittance dominated beam (Thermal)dominated beam (Thermal)



This solution represents aThis solution represents a  beam equilibrium modebeam equilibrium mode  thatthat
turns out to be the transport mode for achievingturns out to be the transport mode for achieving
minimum minimum emittance emittance at the end of theat the end of the  emittanceemittance
correction processcorrection process
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Constant phase space angle:

An important property of the laminar beamAn important property of the laminar beam
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Potential space charge emittance growth

ρ = 1ρ = 1

εth = 0.6 µm

Eacc = 25 MV/m



! 

" '  =  0

Matching Conditions with a TW Matching Conditions with a TW LinacLinac
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Emittance Emittance Compensation in a Compensation in a PhotoinjectorPhotoinjector::
Controlled Damping of Plasma OscillationsControlled Damping of Plasma Oscillations

•• ε εnn oscillations are driven by Space Charge oscillations are driven by Space Charge

••propagation close to the laminar solution allows controlpropagation close to the laminar solution allows control
of of εεnn oscillation  oscillation ““phasephase””

••εεn n sensitive to SC up to the transition energysensitive to SC up to the transition energy
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Thermal Thermal emittanceemittance

Emittance Emittance evaluation close to the cathode evaluation close to the cathode sourfacesourface::


