Linac Driven Free Electron Lasers (II)

Massimo.Ferrario@Inf.infn.it

SASE FEL Electron Beam Requirements: High Brightness B_n

R. Saldin et al. in *Conceptual Design of a 500 GeV e+e- Linear Collider with Integrated X-ray Laser Facility*, DESY-1997-048

Short Wavelength SASE FEL Electron Beam Requirement: High Brightness $B_n > 10^{15} A/m^2$

Bunch compressors (RF & magnetic)

Laser Pulse shaping Emittance compensation Cathode emittance

500 kV pulsed thermionic gun for SCSS

SPring. 8

Stable operation with uniform beam qualityLow thermal emittance single crystal CeB₆ (Cerium Hexaborite)Low accelerating gradient=>> Low charge density(10 MV/m)=>> Free from dark current

RF photoinjectors

Phase space of a parallel laminar beam

Phase space laminar beam

Phase space of non laminar beam

Ellipse equation

Phase space evolution at injector exit

<u>rms Envelope Equations and rms Emittance</u>

rms beam envelope:

$$\sigma_x^2 = \left\langle x^2 \right\rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, x') dx dx'$$

Define rms emittance:

$$\gamma x^{2} + 2\alpha x x' + \beta x'^{2} = \varepsilon_{rms}$$

 σ_x

such that:

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$
$$\sigma_{x'} = \sqrt{\langle {x'}^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$

Since:
$$\alpha = -\frac{\beta'}{2}$$

$$\alpha = -\frac{p}{2}$$

it follows:
$$\alpha = -\frac{1}{2\varepsilon_{rms}} \frac{d}{dz} \langle x^2 \rangle = -\frac{\langle xx' \rangle}{\varepsilon_{rms}} = -\frac{\sigma_{xx'}}{\varepsilon_{rms}}$$

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$
$$\sigma_{x}' = \sqrt{\langle x^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$
$$\sigma_{xx'} = \langle xx' \rangle = \alpha \varepsilon_{rms}$$

It holds also the relation:

$$\gamma\beta - \alpha^2 = 1$$

Substituting α, β, γ we get

$$\frac{\sigma_{x'}^2}{\varepsilon_{rms}} \frac{\sigma_x^2}{\varepsilon_{rms}} - \left(\frac{\sigma_{xx'}}{\varepsilon_{rms}}\right)^2 = I$$

We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)}$$

$$\varepsilon_n = \langle \beta \gamma \rangle \varepsilon_{rms}$$

Envelope Equation without Acceleration

Now take the derivatives:

$$\frac{d\sigma_x}{dz} = \frac{d}{dz}\sqrt{\langle x^2 \rangle} = \frac{1}{2\sigma_x}\frac{d}{dz}\langle x^2 \rangle = \frac{1}{2\sigma_x}2\langle xx' \rangle = \frac{\sigma_{xx'}}{\sigma_x}$$

$$\frac{d^2\sigma_x}{dz^2} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_x} = \frac{1}{\sigma_x}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{1}{\sigma_x}\left(\langle x'^2 \rangle - \langle xx'' \rangle\right) - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{\sigma_{xx'}^2}{\sigma_x^3} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

And simplify:

$$\sigma_x'' = \frac{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}{\sigma_x^3} - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3} - \frac{\langle xx'' \rangle}{\sigma_x}$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x'' + k_x^2(z)x = 0$ take the average over the entire particle ensemble $\langle xx'' \rangle = -k^2 \langle x^2 \rangle$

$$\sigma_x'' + k_x^2 \sigma_x = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term What does rms emittance tell us about phase space distributions under linear or non-linear forces acting on the beam?

Assuming a generic x, x' correlation of the type: $x' = Cx^n$

$$\varepsilon_{rms}^{2} = C^{2} \left(\left\langle x^{2} \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^{2} \right)$$

When $n \neq 1 => \varepsilon_{rms} \neq 0$

Space Charge: What does it mean?

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

 Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects, Single Component Cold Plasma

Neutral Plasma

- Oscillations
- Instabilities
- EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

Magnetic focusing

Longitudinal and Transverse Space charge Fields In a uniform charged cilindrical bunch

$$E_{z}(0,s,\gamma) = \frac{I}{2\pi\gamma\epsilon_{0}R^{2}\beta c}h(s,\gamma)$$

$$E_{r}(r,s,\gamma) = \frac{Ir}{2\pi\epsilon_{0}R^{2}\beta c}g(s,\gamma)$$

$$\gamma = 1$$

$$\gamma = 1$$

$$\gamma = 5$$

$$\gamma = 10$$

$$\int_{0.005}^{10} \int_{0.001}^{10} \int_{0.001}^{10} \int_{0.001}^{10} \int_{0.005}^{10} \int_{0.001}^{10} \int_{0.005}^{10} \int_{0.001}^{10} \int_{0.001}^{10}$$

$$B_{\vartheta} = \frac{\beta}{c} E_r$$

Lorentz Force

$$E_r(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s,\gamma)$$

$$F_{r} = e(E_{r} - \beta cB_{\vartheta}) = e(1 - \beta^{2})E_{r} = \frac{eE_{r}}{\gamma^{2}}$$

is a **linear** function of the transverse coordinate

$$\frac{dp_r}{dt} = F_r = \frac{eE_r}{\gamma^2} = \frac{eIr}{2\pi\gamma^2\varepsilon_0 R^2\beta c} g(s,\gamma)$$

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect.

$$F_{x} = \frac{eIx}{2\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

Envelope Equation with Space Charge

Single particle transverse motion:

$$\frac{dp_x}{dt} = F_x \qquad p_x = p_o x' = \beta \gamma m_o c x'$$
$$\frac{d}{dt} (p_o x') = \beta c \frac{d}{dz} (p_o x') = F_x$$
$$x'' = \frac{F_x}{\beta c p_o}$$

Generalized perveance

$$k_{sc}(s,\gamma) = \frac{2I}{I_A(\beta\gamma)^3} g(s,\gamma)$$

$$I_A = \frac{4\pi\varepsilon_o m_o c^3}{e} = 17kA$$

Now we can calculate the term $\langle xx'' \rangle$ that enters in the envelope equation

$$\langle xx'' \rangle = \frac{k_{sc}}{\sigma_x^2} \langle x^2 \rangle = k_{sc}$$
 $\sigma_x'' = \frac{\varepsilon_{rms}^2}{\sigma_x^3} - \frac{\langle xx'' \rangle}{\sigma_x}$

Including all the other terms the envelope equation reads:

The beam undergoes two regimes along the accelerator

0<<]

Thermal Beam

Laminarity parameter

$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma'^2}$$

Transition Energy (p=1)

$$\gamma_{tr} = \frac{2I}{\gamma' I_A \varepsilon_n}$$

Space Charge induced emittance oscillations in a laminar beam

Simple Case: Transport in a Long Solenoid

$$k_s = \frac{qB}{2mc\beta\gamma}$$

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s,\gamma)}{\sigma}$$

$$\sigma = \sigma_{eq} \implies \text{Equilibrium solution ? ==>} \quad \sigma_{eq}(s, \gamma) = \frac{\sqrt{k_{sc}(s, \gamma)}}{k_s}$$

Small perturbations around the equilibrium solution

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s,\gamma)}{\sigma}$$

$$\sigma(\zeta) = \sigma_{eq}(s) + \delta\sigma(s)$$

$$\delta\sigma'' + k_s^2 \left(\sigma_{eq} + \delta\sigma\right) = \frac{k_{sc}(s,\gamma)}{\sigma_{eq}} \left(1 - \frac{\delta\sigma}{\sigma_{eq}}\right)$$

$$\sigma_{eq}(\zeta) = \frac{\sqrt{k_{sc}(s,\gamma)}}{k_s}$$

$$\delta\sigma''(s) + 2k_s^2\delta\sigma(s) = 0$$

$$\delta\sigma'' + 2k_s^2 \delta\sigma = 0$$

$$\sigma = \sigma_{eq} + \delta\sigma$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

$$\sigma(s) = \sigma_{eq}(s) + (\sigma(s) - \sigma_{eq}(s)) cos(\sqrt{2}k_s z)$$

$$\sigma'(s) = -\sqrt{2}k(\sigma(s) - \sigma_{eq}(s)) sin(\sqrt{2}k_s z)$$

Plasma frequency

Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam

Envelope oscillations drive Emittance oscillations

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)} \approx \left|\sin\left(\sqrt{2}k_s z\right)\right|$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

Emittance evolution for different pulse shapes

Short Wavelength SASE FEL Electron Beam Requirement: High Brightness $B_n > 10^{15} A/m^2$

Bunch compressors (RF & magnetic)

Laser Pulse shaping Emittance compensation Cathode emittance

The paradox of relativistic bunch compression

Low energy electron bunch injected in a linac:

Length contraction?

Why do we need a bunch compressor?

$$L_b'' = \gamma L_b = 30m$$
$$L_b = \frac{L_b''}{\gamma} = 3mm$$
$$I = 100A$$

$$\gamma \approx 1$$

 $L_b = 3mm = L'_b$
 $I = 100 A$

Magnetic compressor (Chicane)

Magnetic compressor (Chicane)

Velocity bunching concept (RF Compressor)

If the beam injected in a long accelerating structure at the crossing field phase and it is slightly slower than the phase velocity of the RF wave, it will slip back to phases where the field is accelerating, but at the same time it will be chirped and

compressed.

The key point is that compression and acceleration take place at the same time within the same linac section, actually the first section following the gun, that typically accelerates the beam, under these conditions, from a few MeV (> 4) up to 25-35 MeV.

Longitudinal beam dynamics

$$\frac{d}{dz}(\gamma m_o c^2) = eE \sin(kz - \omega t + \varphi_o)$$

$$\frac{d}{dz} = \frac{eE}{m_o c^2} \sin(kz - \omega t + \varphi_o)$$

$$\frac{d}{dz} = \alpha k \sin(\varphi(z,t)) \qquad \alpha = \frac{eE}{km_o c^2}$$

$$\frac{d}{dz} = \alpha k \sin(\varphi)$$

$$\frac{d}{dz} = \alpha k \sin(\varphi)$$

$$\frac{d}{dz} = k \left(1 - \frac{\gamma}{\sqrt{\gamma^2 - 1}}\right)$$

$$\frac{d}{dz} = k \left(1 - \frac{\gamma}{\sqrt{\gamma^2 - 1}}\right)$$

$$\frac{d}{dz} = k \left(1 - \frac{\gamma}{\sqrt{\gamma^2 - 1}}\right)$$

Such a system is solved using the variable separation technique to yield a constant of the motion (total energy):

$$H = \gamma - \sqrt{\gamma^2 - 1} - \alpha \cos(\phi)$$

$$\frac{1}{C} = \frac{\Delta \varphi_{\infty}}{\Delta \varphi_{o}} = \frac{\sin \varphi_{o}}{\sin \varphi_{\infty}} + \frac{1}{2\alpha \gamma_{o}^{2} \sin \varphi_{\infty}} \frac{\Delta \gamma_{o}}{\Delta \varphi_{o}}$$

$$H = \gamma - \sqrt{\gamma^2 - 1} - \alpha \cos(\phi)$$

$$-\alpha\cos\phi_{\infty} = \gamma_0 - \sqrt{\gamma_0^2 - 1} - \alpha\cos\phi_0$$

$$\phi_{\infty} \cong \cos^{-1} \left[\cos \phi_0 - \frac{1}{2 \alpha \gamma_0} \right]$$

$$\alpha \sin \varphi_{\infty} \Delta \varphi_{\infty} = \alpha \sin \varphi_{o} \Delta \varphi_{o} + \frac{1}{2\gamma_{o}^{2}} \Delta \gamma_{o}$$

φ (radians)

$$\Delta\phi_{\infty} = \frac{\sin\phi_0}{\sin\phi_{\infty}}\Delta\phi_0 + \frac{1}{2\alpha\gamma_0^2\sin\phi_{\infty}}\Delta\gamma_0$$

Peak current vs RF compressor phase

Pulse length versus Velocity Bunching phase

C-factor versus injection phase

Compression curve (measurements of 2/04/2009) 16 ACC1 phase 95 deg 14 Measurements 12 Compression factor simulations Time (ps н 10 8 ACC1 phase 87 deg (Compression factor 3) No compression 6 4 2 , H 0 -85 -105 -100 -95 -90 -80 -75 -70 Phase shift S1 (deg)

References:

-M. Reiser, Theory and design of charged particle beams, Wiley, 1994
-J.B. Rosenzweig, Fundamentals of beam physics, Oxford, 2003
-B. E. Carlsten, NIM A 285, 311-319 (1989).
-L. Serafini, J. B. Rosenzweig, Phys. Rev. E 55, 7565-7590 (1997).
-M. Ferrario et al., Phys. Rev. Letters, 99, 234801 (2007).
-C.-x. Wang et al., Phys. Rev. ST Accel. Beams 10, 104201 (2007)
-L. Catani et al, Rev. of Sci. Inst. 77, 93301 (2006).
-Cianchi et al., PRST-AB, 11, 032801 (2008).
-Vicario, et al., Optics Letters 31, 2885 (2006).
-Mostacci et al., Review of Scientific Instruments 79, 013303 (2008).

 $x_B = \frac{\pi f_{RF} L L_B V_\perp}{c E / e}$

 $V_{\perp} = \frac{\sigma_x c E / e}{\pi f_{RF} L L_{res}}$

Experimental Demonstration of Emittance Compensation with Velocity Bunching

M. Ferrario,¹ D. Alesini,¹ A. Bacci,³ M. Bellaveglia,¹ R. Boni,¹ M. Boscolo,¹ M. Castellano,¹ E. Chiadroni,¹ A. Cianchi,² L. Cultrera,¹ G. Di Pirro,¹ L. Ficcadenti,¹ D. Filippetto,¹ V. Fusco,¹ A. Gallo,¹ G. Gatti,¹ L. Giannessi,⁴ M. Labat,⁴ B. Marchetti,² C. Marrelli,¹ M. Migliorati,¹ A. Mostacci,¹ E. Pace,¹ L. Palumbo,¹ M. Quattromini,⁴ C. Ronsivalle,⁴ A. R. Rossi,³ J. Rosenzweig,⁵ L. Serafini,³ M. Serluca,⁶ B. Spataro,¹ C. Vaccarezza,¹ and C. Vicario¹

Envelope Equation with Longitudinal Acceleration

Beam subject to strong acceleration

$$\sigma_x'' + \frac{\left(\beta\gamma\right)'}{\beta\gamma}\sigma_x' + k_{RF}^2\sigma_x = \frac{\varepsilon_n^2}{\left(\beta\gamma\right)^2\sigma_x^3} + \frac{k_{sc}^o}{\left(\beta\gamma\right)^3\sigma_x}$$

We must include also the RF focusing force $k_{RF} = \frac{1}{4} \left(\frac{\gamma'}{\gamma} \right)$

$$k_{sc}^{o} = \frac{2I}{I_{A}}g(s,\gamma)$$

Looking for an "equilibrium" solution $\sigma_{inv} = \sigma_o \gamma^n$ ==> all terms must have the same dependence on γ

Laminar beam
$$\rho >> 1 \Rightarrow n = -\frac{1}{2}$$
 $\sigma_q = \frac{\sigma_o}{\sqrt{\gamma}}$ Thermal beam $\rho << 1 \Rightarrow n = 0$ $\sigma_{\varepsilon} = \sigma_o$

Space charge dominated beam (Laminar)

Emittance dominated beam (Thermal)

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process

An important property of the laminar beam

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

$$\sigma'_{q} = -\sqrt{\frac{2I}{I_{A}\gamma^{3}}}$$

1

Constant phase space angle: $\delta =$

$$\delta = \frac{\gamma \sigma_q}{\sigma_q} = -\frac{\gamma}{2}$$

1

Laminarity parameter

$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma'^2}$$

Transition Energy (p=1)

$$\gamma_{tr} = \frac{2I}{\gamma' I_A \varepsilon_n}$$

<u>Emittance Compensation in a Photoinjector:</u> <u>Controlled Damping of Plasma Oscillations</u>

 $\bullet \epsilon_n$ oscillations are driven by Space Charge

-propagation close to the laminar solution allows control of ϵ_n oscillation "phase"

 $\bullet \varepsilon_n$ sensitive to SC up to the transition energy

Thermal emittance

$$\varepsilon_{rms} = \langle \beta \gamma \rangle \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}$$

Emittance evaluation close to the cathode sourface:

