Resonances

introduction: driven oscillators and resonance condition
smooth approximation for motion in accelerators

field imperfections and normalized field errors
perturbation treatment

Poincare section

stabilization via amplitude dependent tune changes
sextupole perturbation & slow extraction

chaotic particle motion



Introduction: Damped Harmonic Oscillator

B equation of motion for a damped harmonic oscillator:
2 -1 2
Lw(t) +w, - O S w(t) + " w(t) =0

Q 1s the damping coefficient

—— (amplitude decreases with time)

w, 1s the Eigenfrequency of the HO

B example: weight on a spring (Q = «)

k
I j—;W(f)+k‘W(f) = () —»W({) = a'SiIl(\/E'f+¢o)



Introduction: Driven Oscillators

BN an external driving force can ‘pump’ energy into the system:

: F
Lw(t)+wy O™ L w(t) + @, W(1) = —+cos(e"1)

B oeneral solution:
g W(t) = Wtr (t) + Wst (t)

BN stationary solution:

w, () =W (w)-cos[w -t —a(w)]

- where ‘w’ 1s the driving angular frequency!
and W(w) can become large for certain frequencies!



Introduction: Driven Oscillators

B stationary solution

stationary solution follows the frequency of the driving
force:
w,(t) =W (w)-cos[w t—a(w)]

o(w) !

7t/2

W )

B oscillation amplitude can become large for weak damping



Introduction: Pulsed Driven Resonances Example

B higher harmonics:

B cxample of a bridge:

20d harmonic: 3)“d harmonic: 4th harmonic:
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B peak amplitude depends on the excitation frequency and damping



Introduction: Instabilities

B resonance catastrophe without damping:

W (@) =W (0) :
\/[1_(1&)2 ]2+(_QL)2
W Qo
B weak damping: resonance condition: = @ = @,

3 I [

Tacoma Narrow bridge
1940

excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances in
Accelerators

B rcvolution frequency:

— periodic kick

'\ — excitation with f_

ﬁF (., =2mwf )

Icv Ircv

B Dbetatron oscillations: :
Eigentrequency: m, = 2m f;

D% . /
Q — W/ Wiey
—— driven oscillator
ﬁ F — weak or no damping!

(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

B co-moving coordinate system:

=» choose the longitudinal
t\ y coordinate as the free
parameter for the equations

S of motion
X

B cquations of motion:

d _ds.d . as _
di = dt ds with: dr =V

9) 2
> d_=V2,d_

dt? ds>



Smooth Approximation: Equation of Motion I

B Smooth approximation for Hills equation:

K(s) = const d2

W(S)+K(S) w(s)=0 — 13 W(S)+CUO w(s)=0

(constant B-function and phase advance along the storage ring)

— w(s)=A-cos(w, s +¢,) w, =210,/ L
(Q 1s the number of oscillations during one revolution)

B perturbation of Hills equation:

A5 w(s)+w," w(s) = F(w(s),5) /(v p)

in the following the force term will be the Lorenz force of a Lo
charged particle in a magnetic field: F=q-vxB



Field Imperfections: Origins for Perturbations

B lincar magnet imperfections: derivation from the design dipole
and quadrupole fields due to powering and alignment errors

B time varying fields: feedback systems (damper) and wake
fields due to collective effects (wall currents)

B non-linear magnets: sextupole magnets for chromaticity
correction and octupole magnets for Landau damping

B beam-beam interactions: strongly non-linear field!

B non-linear magnetic field imperfections: particularly difficult
to control for super conducting magnets where the field quality
1s entirely determined by the coil winding accuracy



Field Imperfections: Localized Perturbation

B pcriodic delta function:

€0 —
for s’ =s,

6L(S—S0)={(1) chL(S—SO)dS=1

otherwise

B cquation of motion for a single perturbation in the storage ring:

5? w(S)+a)O W(s)=0,(s=s,) - F(w,s)/(v:p)

Fourier expansion of the periodic delta function:

jvz w(s)+ @, w(s) =+ iCOS(’“z’T'S/L)’F(W»S)/(V'P)

J=—0C0

— infinite number of driving frequencies



Field Imperfections: Constant Dipole

B normalized field error: F =q- VXB _ up >q-Bl/p=k,
V'p vV'p
B cquation of motion for single kick:
612 2 lko “ .2' . /l;
— ﬁw(s) +@, w(s)=—7- E cos(r-2m-s/L)

y=—00

.. e Wy =270y /L _
—— resonance condition: w, =r-27m /L >0y =71

——| avoid integer tunes!

—— remember the example of a single dipole imperfection
from the ‘Linear Imperfection’ lecture yesterday!



Field Impertections: Constant Quadrupole

B cquations of motion: j—;x(s)+a)x2 x(s) = k - x(s)
y(s)=0
with: &, = 195,
p ox
B ;{f x(8)+ (@ —k)-x(s) =0

— change of tune but no amplitude growth due to resonance
excitations!



Field Imperfections: Single Quadrupole Perturbation

B assumey=0and B _=0: F(s)/(v-p)=0,(s=5y) 1k x

— ;,’;2 x(s)+w, x(s)=% ECOS(Z]‘L"F'S/L)'X(S)

y =—00

[X(S)=A’COS(000'S)] e =—Ecos(2.7r r-siLxw,-s)- x(s)

y=—00

., . =270, /L
B resonance condition: @ _,=r-2x/L+ @ ,—2=ELl S0 =r/2

avoid half integer tunes plus resonance width from tune modulation!

Bl cxact solution: variation of constants = see the lecture yesterday



Field Imperfections: Time Varying Dipole Perturbation

B time varying perturbation:

F(f) = F,-cos(w,,, 1) —=>F, -cos(27 -2+ 5/ L) [(v* p)

;;?2 w(s) + a’oz w(s) = lzi}j 2008(2777 lrxw,, /o, 1s/L)/(v:p)

r=—OO

resonance condition:

=210,/ L
w0=2n.(ria)kick/wrev)/l’ T >fkick=.fl.fev.(QOir)

—— | avoid excitation on the betatron frequency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge
in the introduction example)



Field Imperfections: Several Bunches

- F(t) = B ) Cos(wkick ) t);a)kick = a)rev :

ﬁ/\\/ﬁF:

<

machine circumference

- F(t) =B- Cos(a)kick ‘ ZL);a)kick ~2- a)rev :

AN N
T

—> higher modes analogous to bridge illustration




Field Imperfections: Multipole Expansion

B Taylor expansion of the magnetic field:

: - 1 , 97+ B
B, +iB, = oo f, (x+)" it f, = —
n=0

multipole | order| B, B,

dipole 0 0 B,

quadrupole | 1 1y fiox

sextupole | 2 f,oxy 11 (x> =vy?)

octupole 3 %'/[3'(3)/)62—)/3) %'f3’(x3—3xy2)

Bl normalized multipole gradients:

_ =c]°(17xl§) k =1. k =03- fn[T/mn] 1= 1
F(S)/(V P) (v'p) n » f;a n p[GeV/c] [ n] mn+1




Field Imperfections: Dipole Magnets

B dipole magnet designs:

LEP dipole magnet: LHC dipole magnet:
conYentional magnet design air coll magnet design relying
relying on pole face accuracy on precise current distribution

of a Ferromagnetic Yoke

CROSS SECTION OF THE DIPOLE MAGNET WITH THE VACUUM CHAMBER

Prestressing __Support _Thermal
rods bars insulation Support
bars

Caa[ing crete/ Profile o the F/

“Ion
pump;
nels t oke Ma 9

m g y (lam, I/ons



Field Imperfections: Multipole Illustration

B upright and skew field errors
1

ioht: - skew:
uprig /:(Q\\
n=0 v
- .
n=2 %




Field Imperfections: Multipole Illustrations
B quadrupole and sextupole magnets

LEP Sextupole

ISR quadrupole




Field Impertections: Super Conducting Magnets
Bl time varying field errors in super conducting magnets
Luca Bottura CERN, AT-MAS

|

11743A
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Perturbation Treatment: Resonance Condition

L equations of motion: (n order Polynomial in x and y for n™ order multipole)

w(s)+a)0 W(s)=¢€- Ea -y -cos(2m-r-s/L)

[+m<n,
r

: with: W=X,)
B pcrturbation treatment:

2
w(s)=wy+e w +&w, + ...+ OE") 600=THQ0

with: wy(8)=w, cosma-Q, s/L+ ¢,)

w = X.

d2

— 5 xl+a)O ‘X, = E COS(— 10 Q.o +mQ, o +r] S)

1<l ,m<m



Perturbation Treatment: Tune Diagram I

" 27 ~ 2
Bl resonance condition: 7(1 Q. +m-Q, +1)= — O
— [ Q,+m-Q, =7 avoid rational tune values!
1
B tune diagram: Q,
|
up to 11 order (p+1<12) 98
\
0.6 SSeN
there are resonances — 3 = @%&%
everywhere! 04 i
: e S
(the rational numbers S
lie dens within the 03 N §§W§
real number) §§ §§ §
0



Perturbation Treatment: Tune Diagram II

B regions with few resonances:

[-Q.+m-Q, =7

— < 12% order for a
proton beam
without damping

—— < 31 & 5thgrder for
electron beams with
damping

B coupling resonance:

regions without low
order resonances
are relatively small!

avold low order resonances!
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Perturbation Treatment: Single Sextupole Perturbation

B perturbed equations of motion: F(s)/(v- p) = 5 (s=5,) Ik, x°

2 1 I ©
> js x(s)+w,’ xl(s)=5°lk2°x02°zr=2wcos(2n°r°s/L)

with:  xy(s) = A4-cos(w, , "s +¢@,) and Wy, =210 ,/L

lkl

-) xl(s)+(2nQ O/L) X, (§) =51 4" icos@n-r-s/L)

Ik -
8L ‘A Ecos(2n°[ri2Qx,0]°s/L)



Perturbation Treatment: Sextupole Perturbation

B resonance conditions:

— 20, =21 (N—0,, =7

270, =21 (r£20, ) ——==0 , =r/3

r+20.0
B=4X =T

- avoid integer and r/3 tunes!

B pcrturbation treatment:

contrary to the previous examples no exact solution exist!
this 1s a consequence of the non-linear perturbation
(remember the 3 body problem?)

=» graphic tools for analyzing the particle motion




Poincare Section: Definition

B Poincare Section:

X2 - record the particle
¢ coordinates at one
g X location 1n the
- [ .
s / storage ring
X t x'/ o,

B resonance in the Poincare section:

9 A¢turn = 2‘75 | Q %

fixed point condition: Q =n/r 2 1

v

points are mapped onto themselves after ‘r’ turns



Poincare Section: Linear Motion

B unperturbed solution:

x(8)= JR- cos(¢p)  with di¢ =W,

A)

, _d .
X =—x=-VR w, sin(¢)
ds
B phase space portrait: tx/
= the motion lies on an ellipse
=» linear motion is described by

a simple rotation ¢

=> consecutive intersections lie WR
on closed curves




Poincare Section: Non-Linear Motion

Mg

B momentum change due to perturbation: F (s)

Bl single n-pole kick: Ax' = l'-lkn - x"
n!

BB phase space portrait with single sextupole: | * /@

> Ax'=%-lk2°x2

= sextupole kick changes the
amplitude and the phase —

advance per turn! \

AQturn X X2 R‘|‘




Poincare Section: Stability?

B instability can be fixed by ‘detuning’:

=» overall stability depends on the balance between amplitude
increase per turn and tune change per turn:

AQ,,,(x) =>  motion moves eventually off resonance

AR, (x) =»  motion becomes unstable

B sextupole kick:
amplitudes increases faster then the tune can change

-> overall instability!



Poincare Section: Illustration of Topglogy

B Poincare section:

e
F(s)/(v-p)= (5 (s=5,) Ik, x° (

B small amplitudes: =» regular motion

B large amplitudes: =» instability & particle loss

B fixed points and seperatrix ~ border between stable and unstable
motion =» chaotic motion



Poincare Section: Simulatiosn for a Sextupole Perturbation

B Poincare Section right after %
the sextupole kick

= for small amplitudes the 305
intersections still lie on closed  2e06
curves =¥ regular motion! 006 |

=» separatrix location depends on  -1e0s t
the tune distance from the exact ..
resonance condition (Q <n/3)

-3e-06 ' : : . . Sy,
-0.008 -0.006 -0.004 -0.002 0  0.002 0004 0.006

for large amplitudes and near the separatrix the intersections A

fill areas in the Poincare Section = chaotic motion;
=>» no analytical solution exist!



Stabilization of Resonances

Bl instability can be fixed by stronger ‘detuning’:

> if the phase advance per turn changes uniformly with
increasing R the motion moves off resonance and stabilizes

B octupole perturbation: F(s)/(v-p) ‘

BN perturbation treatment:  X(8) = X,($) + € x,(s) + .

-> ds x1(5)+(2-75Q O/L) xl(S)_ Uy - x5 - x,

2
> x,=A-cos(w, s+¢,)=x, =A7-[1+cos(2a)0 S +2¢,)]

2 (s)+[(270,, /L) —] ()= 5 cos2,5)

2:6




Stabilization of Resonances

9

X

B resonance stability for octupole:

1.5e-06

= an octupole perturbation generate =% | L
phase independent detuning and ~ seo7 ||

amplitude growth of the same ol i
order i
-5e-07  |({/(/!If
= amplitude growth and detuning ~ "**[
are balanced and the -1.5¢-06
overall motion i1s stable! 2¢-06

-0.005 | ~O.(l)03 ‘ -0.601 0 0.(‘)01 | 0.603 | 0.005
X
=» this is not generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!



Chaotic Motion

9

B octupole + sextupole perturbation: X

2e-06

= the interference of the octupole 1se06 |
and sextupole perturbations
generate additional resonances
=»additional island chains in
the Poincare Section!

le-06
S5e-07 t
ol
-5e-07 |
=> intersections near the resonances . |
lie no longer on closed curves =
local chaotic motion around . |

the separatrix & instabilities 0006 0004 0002 0 0002 0004 0.006
=>»slow amplitude growth (Arnold diffusion) X

Se-06

=» neighboring resonance islands start to ‘overlap’ for large
amplitudes =» global chaos & fast instabilities



Chaotic Motion

4 ° 9 o
] Russian Doll’ effect: X’
9
X 2606 le-06 s
1.5e-06 r »
9.5¢-07
le-06
9e-07
S5e-07 t
0+ 8.5¢-07 |
-S5e-07 +
8e-07 +
-1e-06 t
75e-07 | §
-1.5e-06 ;
2e-06 : ' : ' : 7e-07 I iy : F\
0.006 -0.004 -0.002 0 0002 0004 0.006 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006

X X

=» magnifying sections of the Poincare Section reveals always the same
pattern on a finer scale =» renormalization theory!



Summary

B ficld imperfections drive resonances

B higher order than quadrupole field imperfections generate
non-linear equations of motion (no closed analytical solution)

(three body problem of Sun, Earth and Jupiter)
=» solutions only via perturbation treatment
B Poincare Section as a graphical tool for analyzing the stability
B slow extraction as example of resonance application in accelerator

B island chains as signature for non-linear resonances

B island overlap as indicator for globally chaotic & unstable motion



