

Collective Effects & its Diagnostics part 1

Vladimir Kornilov GSI Darmstadt, Germany

Introduction

Collective Effects: forces due to many-particle system "swarm" motion of a many-particle system Single-particle Collective (incoherent) (coherent) observations oscillations oscillations

G S

Oscillations in Beams

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Oscillations in Beams

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Oscillations, Forces

incoherent

coherent

G S

Introduction

Introduction

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Oscillations: waves

Waves can be unstable or damped

The wave frequency is complex: $\omega = \omega_r + i\omega_i$ The wave physical parameter: $A(t) = A_0 \cos(\omega_r t) \ e^{\omega_i t}$ unstable

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Collective Oscillations

We observe, and we are interested, only in special collective oscillations: EIGENMODES

GS

Eigenmodes

Eigenmodes: intrinsic orthogonal oscillations of the dynamical system, with the fixed frequencies (eigenfrequencies)

We often talk about the shift: $\Delta \Omega = \Omega - \Omega_{ ext{eigenfrequency}}$

Eigenmodes of a tuning fork. Pure tone at eigenfrequencies.

Eigenmodes

Example: Transverse eigenmodes in a coasting beam

$$x(s,t)=x_{0}e^{ins/R-i\Omega t}$$

n is the mode index. Wave length: C/n

Frequencies:

slow wave $\Omega_{
m s}~=~(n-Q_{eta})\omega_0$

fast wave $\ \Omega_{
m f} \ = \ (n+Q_eta)\omega_0$

Angular rotation (
$$\Omega_{
m s}$$
): $\Omega_{
m ang} = \left(1 - rac{Q_eta}{n}
ight)\omega_0$

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

GS

Eigenmodes in a coasting beam

Experimental observations of the coasting-beam waves

SIS18 synchrotron at GSI Darmstadt

V. Kornilov, O. Boine-Frankenheim, GSI-Acc-Note-2009-008, GSI Darmstadt (2009) Space Structure: n=4, as expected for Q=3.25, with correct Ω_s and Ω_{ang}

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Eigenmodes in a coasting beam

Experimental observations of the coasting-beam waves

SIS18 synchrotron at GSI Darmstadt

V. Kornilov, O. Boine-Frankenheim, GSI-Acc-Note-2009-008, GSI Darmstadt (2009)

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Frequency Structure: f=159.9kHz, as expected (1-0.25)f₀ for Q=3.25

G S

Eigenmodes in bunched beams

Transverse collective oscillations in bunched beams: Head-Tail Modes

BPM Δ–signal along the bunch, overlapped over several turns: Wiggles and Nodes

Eigenmode:

Eigenmodes in bunched beams

Head-Tail Modes are measured in many machines, the first observation in CERN PSB (1974):

GS

Here we consider mostly the dipole transverse oscillations. For the others: the physics and the formalism are similar.

Impedances

- Leading charge
- Trailing charges
- Leading charge generates electromagnetic fields
- Leading charge is loosing energy
- Trailing charge is gaining/loosing energy

ds -15 -10 -5 0 $z/(2\chi)^{1/3}b$

Electric field pattern for a resistive wall pipe A.Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, 1993

G S]

Dipolar wakes: (driving) $F_{x2} \sim \Delta x_1$ the same for the whole trailing slice: coherent

Quadrupolar wakes: (detuning)

 $F_{x2} \sim \Delta x_2$ different for individual particles: incoherent

trailing leading

The facility impedances have coherent and incoherent effects

G 5)

In order to describe the effect of the wake fields, we define the "wake function".

The energy loss/gain of the trailing charge.

The longitudinal Wake Function:

$$egin{array}{rl} \int F_\parallel ds &=& \Delta {\cal E}_2 = -q_1 q_2 W_\parallel(z) \ F_\parallel(s,z) &=& q_2 E_z(s,z) \end{array}$$

The "lumped" (localized) impedance: one interaction per turn. Field integral is over the structure elements.

In order to describe the effect of the wake fields, we define the "wake function".

The energy loss/gain of the trailing charge.

The transverse Wake Function:

$$egin{array}{rcl} \int F_x ds &=& \mathcal{E}_0 \Delta x_2' = -q_1 q_2 W_x(z) x_1 \ F_x(s,z) &=& q_2 E_x(s,z) + q_2 ig\{v imes Big\}_x(s,z) \end{array}$$

 $\frac{z}{1}$ Trailing Leading charge q₂ charge q₁

The dipole impedance: the offset of the leading particle produces the wake, which does not depend on the trailing particle offset.

X₁ —

Impedances

An accelerator facility can have a complicated impedance spectrum

Example: real part of the transverse impedance in SIS100 of FAIR, Darmstadt

GSI

Impedances

Impedances:

- an intensity effect (larger $q \rightarrow$ stronger fields)
- can be coherent and incoherent
- affect the coherent and the incoherent frequencies (both can be observed)
- a beam-external effect

Measurements

Different diagnostics for coherent and for incoherent oscillations

BPM Signal = 0; Schottky Monitor signal \neq 0

Seems to be easy: by measuring ΔQ_{coh} the impedance is determined

But then, how to understand this:

Single bunch tune measurements at the CERN SPS, J. Gareyte, EPAC2002

What has been measured? The horizontal impedance was surely non-zero.

Laslett coefficients for coasting beams:

$$\Delta Q_{
m inc} = -\zeta \lambda_0 \frac{\varepsilon_1}{h^2}$$

 $\Delta Q_{
m coh} = -\zeta \lambda_0 \left[\frac{\beta^2 \varepsilon_1}{h^2} + \frac{\xi_1}{\gamma^2 h^2} \right]$
 ξ_1 : symmetries, coherent
 ε_1 : unsymmetries, incoherent
 $1/\gamma^2$: *E-B* cancellation

Handbook of Acc. Physics and Eng. 2013, 2.4.5 K.Y.Ng, Phys. of Intensity Dep. Beam Instab., 2006 P.Bryant, CAS1986, CERN 87-10, p.62

Perfectly conducting pipe. Different terms for:

Elliptical pipe, $h=b_v$ is the half-height.

Low frequencies (ac magnetic field)

Magnet poles

Partial neutralization

$$\zeta = rac{2r_pR^2}{eta^2\gamma Q_0}$$

G 57 1

The bunching factor, the cancellation, β^2 appear in a non-straightforward way

Handbook of Acc. Physics and Eng. 2013, 2.4.5 K.Y.Ng, Phys. of Intensity Dep. Beam Instab., 2006 P.Bryant, CAS1986, CERN 87-10, p.62

GS]

Intensity Effects & Tune Shifts

From the first-order expansion of the forces for small perturbations, a symbolic relation:

this is why there are incoherent effects in the coherent tune shift

$$\Delta Q_{
m coh} \;=\; -\zeta\lambda_0iggl[rac{eta^2arepsilon_1}{h^2}+rac{\xi_1}{B\gamma^2h^2}iggr]$$

Handbook of Acc. Physics and Eng. 2013, 2.4.5 K.Y.Ng, Phys. of Intensity Dep. Beam Instab., 2006 P.Bryant, CAS1986, CERN 87-10, p.62

Intensity Effects & Tune Shifts

Electric field due to the charged beam particles

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

G 51

Transverse "betatron" oscillations of a single particle, amplitudes a_x , a_y , frequencies: tunes Q_x , Q_y

Due to the electric field of the "space charge", tunes are decreased by ΔQ_x , ΔQ_y : tune shifts

- is a collective effect: many particles produce the field
- affects the incoherent oscillations: the field moves with the beam center
- is a beam-internal interaction

G 5

Space charge is a beam-internal interaction. The effects of space charge are different from the external ones.

Baron Münchhausen

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

This is space charge

$$\Delta Q_{
m sc} = -g_a rac{\lambda_0 r_p R}{4 \gamma^3 eta^2 arepsilon_x}$$

Space charge tune shift:

- 1. is always negative
- 2. proportional to the intensity (λ)
- 3. depends on the transverse distribution (g_a)
- 4. $1/\gamma^2$: *E***-***B* cancellation
- 5. $1/a^2$: transverse beam size (emittance ε)
- 6. different for every particle (tune spread)

Vertical Tune Q_y

Example for tune spreads: SIS100 (FAIR, Darmstadt)

Resonances in the transverse oscillations: $kQ_x+mQ_y = n$

2nd order, quadrupole 3rd order, sextupole 4th order, octupole

Black dot: set tunes $Q_x=18.84$, $Q_y=18.73$

Green area: tune spread due to the chromaticity ξ

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Compare the incoherent (space-charge) tune shift and the coherent (due to impedance) tune shift

$$\Delta Q_{
m sc} = -rac{\lambda_0 r_p}{\gamma Q_0} rac{1}{\gamma eta} rac{Q_0 R}{4 arepsilon_{x
m n}}$$

$$\Delta Q_{
m coh}$$
 =

$$rac{\lambda_0 r_p}{\gamma Q_0} rac{i Z^\perp}{Z_0/R}$$

- both depend linearly on the intensity
- decrease at the ramp as $1/\gamma$
- space-charge: additional $1/\gamma\beta$

 ϵ_{xn} : normalized rms emittance $r_p=q^2/(4\pi\epsilon_0mc^2)$ $Z_0=1/(\epsilon_0c)$

Special impedance: image charges

$$Z_{
m IC}^{\perp} = -i rac{Z_0 R \xi_{
m geom}}{eta^2 \gamma^2 h^2}$$

- decreases faster than space-charge: $1/\gamma^2\beta^2$
- related to space-charge: induced fields in the pipe
- should not be confused with space-charge

Beam Transfer Function (BTF)

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

- BTF is: Useful diagnostics; the tune, δp , chromaticity, beam distribution
 - A fundamental function in the beam dynamics
 - Necessary to describe the beam signals and Landau damping

BTF: a standard measurement with a network analyser

- Collective response to the excitation
- Observe the incoherent spectrum
- Still, the beam is stable: Landau Damping!

V.Kornilov, et al, GSI-Acc-Note-2006-12-001, GSI Darmstadt (2006)

G S]

BTF provides a direct measure of the impedance & space charge

Measurements of the transverse BTF in the Fermilab Main Ring

V. Kornilov, CAS, 2-15 June 2018, Tuusula, Finland

Measurements of the transverse BTF in the SIS18, GSI

Stability diagram (1/BTF) is shifted by space charge

S.Paret, et al, PRSTAB 13, 022802 (2010)

GSI

Part 2 tomorrow:

- Shottky signals with collective effects
- Head-Tail modes
- Decoherence
- Instabilities

