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Feedback applications in accelerators

• An accelerator, which relies on active beam feedback to get basic performance, 
is a based on a questionable concept.
Feedbacks should not be used to fix equipment, that can be fixed or redesigned.

• Typically feedbacks are employed to achieve ultimate performance and long 
term stability.

• Feedbacks are used in the transverse and longitudinal plane.

• We concentrate on feedback systems based on beam signals 
(almost every technical equipment has internal feedback controllers 
….power converters, RF systems, instrumentation…)

• Beam feedbacks:  
1) Transverse and/or longitudinal damping against beam instabilities
2) Injection damping
3) Slow control of machine parameters (orbit, tune, chromaticity)
1 +2 have hard real time constraints (turn by turn), 3 has lower bandwidth

• Apart from showing one example, we focus on feedback types 1 and 2



Design sketch of nested LHC orbit, tune & chromaticity control

(R. Steinhagen (GSI) et al.)
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beam instabilities /motivation for feedback

Transverse (betatron) and longitudinal (synchrotron ) oscillations 
- strongly damped by radiation damping in lepton accelerators (lightsources)
- undamped in proton accelerators (disregarding 100 TeV designs)

 Interaction of the electromagnetic field with metallic surroundings (“wake fileds”)

 Wake fields act back on the beam and produces growth of oscillations

 If the growth rate is stronger than the natural damping the oscillation gets unstable

 Consequences are emittance increase or particle loss.

 Since wake fields are proportional to the bunch charge, the onset of instabilities and their 
amplitude are normally current dependent

 Another “instability”, i.e. large beam oscillation is due to errors at the moment of injection:
rather uncritical for lepton machines (radiation damping)
vital for hadron machines (filamentation and emittance increase  loss in luminosity)

 People always aim at higher brightness beams or higher luminosity collisions, which means
- maximum beam/bunch intensity
- minimum beam emittance

 Sooner or later feedbacks are employed to gain the last factors of performance.



Measurement example of damping of intrinsically unstable beams

High intensity proton beam injected into the SPS:
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 Much shorter than the filamentation time, the injection oscillation must be damped.



The feedback action adds a damping term Dfb to the equation of motion

In order to introduce damping, the feedback must provide a kick proportional to the 
derivative of the bunch oscillation

A multi-bunch feedback detects an instability by means of one or more Beam Position 
Monitors (BPM) and acts back on the beam by applying electromagnetic ‘kicks’ to the bunches

Since the oscillation is sinusoidal, the kick signal for each bunch can be generated by 

shifting by π/2 the oscillation signal of the same bunch when it passes through the kicker 

Such that  D-G+Dfb > 0

Feedback Damping Action

DETECTOR

PROCESSING

KICKER

X’’(t) + 2(D-G+Dfb) X’(t) + ω2 X(t) =0
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Illustration of Damping process in phase space (for integer tune)
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• Why do we distinguish between 

1) transverse (multibunch) feedback
2) injection damping
3) intrabunch feedback

•  Identical concept, but
 Large differences for the required dynamic ranges of 
components (ADC, DAC, digital processing, actuator 
strength, bandwidth):

1) assumption that a stable bunch is kept stable; No large position 
excursions, use ADC range for high resolution position measurements 
down to small fractions of a beam sigma; moderate actuator power 
requirements in CW mode
2) Almost inverse requirements to 1) : Large initial amplitudes (exceeding 
one sigma), Huge peak power on actuator, then no power requirements
3) as 1) but with at least a factor 10 higher bandwidth



Multi-bunch modes

Typically, betatron tune frequencies (horizontal and vertical) are higher than the
revolution frequency, while the synchrotron tune frequency (longitudinal) is lower than
the revolution frequency

Although each bunch oscillates at the tune frequency, there can be different modes
of oscillation, called multi-bunch modes depending on how each bunch oscillates with
respect to the other bunches

0                           1                           2                            3                           4
Machine Turns

Ex.

Vertical

Tune = 2.25

Longitudinal

Tune = 0.5



Multi-bunch modes

Let us consider M bunches equally spaced around the ring

Each multi-bunch mode is characterized by a bunch-to-bunch phase difference of:

m = multi-bunch mode number (0, 1, .., M-1)
M

m
2



Each multi-bunch mode is associated to a characteristic set of frequencies:

00 )(   mMp

Where: 

p is and integer number    - <  p < 

0 is the revolution frequency

M0 = rf is the RF frequency (bunch repetition frequency)

 is the tune

Two sidebands at ±(m+)0 for each multiple of the RF frequency



Multi-bunch modes

The spectrum is a repetition of frequency lines at multiples of the bunch repetition

frequency with sidebands at ±0:  = prf ± 0 - < p <  ( = 0.25)

Since the spectrum is periodic and each mode appears twice (upper and lower side band) in a

rf frequency span, we can limit the spectrum analysis to a 0-rf/2 frequency range

The inverse statement is also true:

Since we ‘sample’ the continuous motion of the beam with only one pickup, any other frequency

component above half the ‘sampling frequency’ (i.e the bunch frequency rf ) is not accessible
(Nyquist or Shannon Theorem)

-2rf-3rf 0

.  .  .  .  . .  .  .  .  .

rf 2rf 3rf-rf



Multi-bunch modes: example1

Vertical plane.  One single stable bunch

Every time the bunch passes through the pickup ( ) placed at coordinate 0, a pulse with
constant amplitude is generated. If we think it as a Dirac impulse, the spectrum of the
pickup signal is a repetition of frequency lines at multiple of the revolution frequency:

p0 for - < p < 

0 20 30

.  .  .  .  . .  .  .  .  .

-0-20-30 0

Pickup 
position



Multi-bunch modes: example2

One single unstable bunch oscillating at the tune frequency 0: for simplicity we 

consider a vertical tune  < 1, ex.  = 0.25.          M = 1  only mode #0 exists

The pickup signal is a sequence of pulses modulated in amplitude with frequency 0

Two sidebands at ±0 appear at each of the revolution harmonics

0 20 30

.  .  .  .  . .  .  .  .  .

-0-20-30 0

Pickup



Multi-bunch modes: example3

Ten identical equally-spaced stable bunches filling all the ring buckets (M = 10)

The spectrum is a repetition of frequency lines at multiples of the bunch repetition

frequency: rf = 10 0 (RF frequency)

.  .  .  .  . .  .  .  .  .

rf 2rf 3rf-rf-2rf-3rf 0

Pickup



Multi-bunch modes: example4

Ten identical equally-spaced unstable bunches oscillating at the tune frequency 0 ( = 0.25)

M = 10   there are 10 possible modes of oscillation

Ex.: mode #0 (m = 0)    =0      all bunches oscillate with the same phase 

M
m

2


Pickup

m = 0, 1, .., M-1



Multi-bunch modes: example5

Ex.: mode #1 (m = 1)     = 2/10    ( = 0.25)

 = prf ± (+1)0 - <  p < 

rf/20 0 20 40

Mode#1

30

Pickup



rf/20 0 20 40

Mode#2

30

Multi-bunch modes: example6

Ex.: mode #2 (m = 2)     = 4/10      ( = 0.25)

 = prf ± (+2)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#3

30

Multi-bunch modes: example7

Ex.: mode #3 (m = 3)     = 6/10    ( = 0.25)

 = prf ± (+3)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#4

30

Multi-bunch modes: example8

Ex.: mode #4 (m = 4)     = 8/10       ( = 0.25)

 = prf ± (+4)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#5

30

Multi-bunch modes: example9

Ex.: mode #5 (m = 5)     =               ( = 0.25)

 = prf ± (+5)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#6

30

Multi-bunch modes: example10

Ex.: mode #6 (m = 6)     = 12/10       ( = 0.25)

 = prf ± (+6)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#7

30

Multi-bunch modes: example11

Ex.: mode #7 (m = 7)     = 14/10            ( = 0.25)

 = prf ± (+7)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#8

30

Multi-bunch modes: example12

Ex.: mode #8 (m = 8)     = 16/10       ( = 0.25)

 = prf ± (+8)0 - <  p < 

Pickup



rf/20 0 20 40

Mode#9

30

Multi-bunch modes: example13

Ex.: mode #9 (m = 9)     = 18/10          ( = 0.25)

 = prf ± (+9)0 - <  p < 

Pickup



Multi-bunch modes: uneven filling

If the bunches have not the same charge, i.e. the buckets are not equally filled (uneven
filling), the spectrum has frequency components also at the revolution harmonics (multiples

of 0). The amplitude of each revolution harmonic depends on the filling pattern of one
machine turn

0 rfrf/20 20 40

9

30

8 7 6 51 2 3 40

60 70 90

4

80

3 2 1 06 7 8 95



ELETTRA Synchrotron: frf=499.654 Mhz, bunch spacing≈2ns, 432 bunches, f0 = 1.15 MHz

hor= 12.30(fractional tune frequency=345kHz), 

vert=8.17(fractional tune frequency=200kHz)

00 )(   mMp

Spectral line at 512.185 MHz

Lower sideband of 2frf, 200 kHz apart 
from the 443rd revolution harmonic

 vertical mode #413

200 kHz

Rev. harmonic

Vertical mode 
#413

Real example of multi-bunch modes



Feedback systems

A multi-bunch feedback system detects the instability using one or more Beam Position
Monitors (BPM) and acts back on the beam to damp the oscillation through an
electromagnetic actuator called kicker

DETECTOR
FEEDBACK

PROCESSING
POWER

AMPLIFIER

BPM
Kicker

BPM and detector measure the beam oscillations

The feedback processing unit generates the correction signal

The RF power amplifier amplifies the signal

The kicker generates the electromagnetic field



Mode-by-mode feedback

A mode-by-mode (frequency domain) feedback acts separately on each unstable mode

POWER
AMPLIFIER

An analog electronics generates the position error signal from the BPM buttons

A number of processing channels working in parallel each dedicated to one of the controlled
modes

The signals are band-pass filtered, phase shifted by an adjustable delay line to produce a
negative feedback and recombined



f3 delay3

+f2 delay2

f1 delay1

.

.

.
BPM Kicker

TRANSVERSE FEEDBACK



Bunch-by-bunch feedback

A bunch-by-bunch (time domain) feedback individually steers each bunch by applying small
electromagnetic kicks every time the bunch passes through the kicker: the result is a damped
oscillation lasting several turns

The correction signal for a given bunch is generated based on the motion of the same bunch

POWER
AMPLIFIER



Channel1

.

.

.
BPM

Channel2

Channel3

Kicker

TRANSVERSE FEEDBACK

delay

Damping the oscillation of each bunch is equivalent to damping all multi-bunch modes

Example of 
implementation 
using a time 
division scheme

Every bunch is measured and corrected at every machine turn but, due to the delay of the
feedback chain, the correction kick corresponding to a given measurement is applied to the
bunch one or more turns later



Analog bunch-by-bunch feedback: one-BPM feedback

POWER
AMPLIFIER


BPM

Transverse feedback

The correction signal applied to a given bunch must be proportional to the derivative of the 

bunch oscillation at the kicker, thus it must be a sampled sinusoid shifted π/2 with respect 
to the oscillation of the bunch when it passes through the kicker

The signal from a BPM with the appropriate betatron phase advance with respect to the 
kicker can be used to generate the correction signal

DelayDetector

The detector down converts the high frequency (typically a multiple of the bunch
frequency frf) BPM signal into base-band (range 0 - frf/2)

The delay line assures that the signal of a given bunch passing through the feedback chain 
arrives at the kicker when, after one machine turn, the same bunch passes through it

Kicker



Analog bunch-by-bunch feedback: two-BPM feedback

POWER
AMPLIFIER


BPM2

Delay

Detector

Detector


BPM1

+
Att.

Att.

Delay

Kicker

The two BPMs can be placed in any ring position 
with respect to the kicker providing that they 

are separated by π/2 in betatron phase

Their signals are combined with variable 
attenuators in order to provide the required 
phase of the resulting signal a1

a2

BPM1 

BPM2 

Transverse feedback case



Analog feedback: revolution harmonics suppression

POWER
AMPLIFIER


BPM2

Delay

Detector

Detector


BPM1

+
Att.

Att.

Transverse feedback case

The revolution harmonics (frequency components at multiples of 0) are useless 
components that have to be eliminated in order not to saturate the RF amplifier

This operation is also called “stable beam rejection”

Delay

Similar feedback architectures have been used to built the transverse multi-bunch 
feedback system of a number of light sources: ex. ALS, BessyII, PLS, ANKA, …

Notch
Filters

Kicker



Digital bunch-by-bunch feedback

Transverse and longitudinal case

The combiner generates the X, Y or S signal from the BPM button signals

The detector (RF front-end) demodulates the position signal to base-band

”Stable beam components” are suppressed by the stable beam rejection module

The resulting signal is digitized, processed and re-converted to analog by the digital processor

The modulator translates the correction signal to the kicker working frequency (long. only)

The delay line adjusts the timing of the signal to match the bunch arrival time

The RF power amplifier supplies the power to the kicker

RF POWER
AMPLIFIER

Kicker

Detector

Combiner

BPM

ADC

Digital
Signal

Processing
DACStable Beam 

Rejection DelayModulator
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Digital vs. analog feedbacks

ADVANTAGES OF DIGITAL FEEDBACKS

 reproducibility: all parameters (gains, delays, filter coefficients) are  NOT subject 

to temperature/environment changes or aging

 programmability: the implementation of processing functionalities is usually made 

using DSPs or FPGAs, which are programmable via software/firmware

 performance: digital controllers feature superior processing capabilities with the 

possibility to implement sophisticated control algorithms not feasible in analog

 additional features: possibility to combine basic control algorithms and additional 

useful features like signal conditioning, saturation control, down sampling, etc.

 implementation of diagnostic tools, used for both feedback commissioning and 

machine physics studies

 easier and more efficient integration of the feedback in the accelerator control 

system for data acquisition, feedback setup and tuning, automated operations, etc.

DISADVANTAGE OF DIGITAL FEEDBACKS

 High delay due to ADC, digital processing and DAC



Rejection of stable beam signal

The turn-by-turn pulses of each bunch can have a constant offset (stable beam signal) due to:

 transverse case: off-centre beam or unbalanced BPM electrodes or cables

 longitudinal case: beam loading, i.e. different synchronous phase for each bunch

In the frequency domain, the stable beam signal carries non-zero revolution harmonics

These components have to be suppressed because don’t contain information about multi-bunch 
modes and can saturate ADC, DAC and amplifier

Examples of used techniques:

Trev delay

- . . .

o 2o0

From the 
detectorComb filter using delay lines and combiners: the

frequency response is a series of notches at

multiple of 0, DC included

Att.

Att.

BPM To the detector

Balancing of BPM buttons: variable attenuators on
the electrodes to equalize the amplitude of the
signals (transverse feedback)

Digital DC rejection: the signal is sampled at frf, the
turn-by-turn signal is integrated for each bunch,
recombined with the other bunches, converted to
analog and subtracted from the original signal

FPGA ADCDAC

-
From the 
detector

Delay



Digital processing

The A/D converter samples and digitizes the signal at the bunch repetition frequency: each

sample corresponds to the position (X, Y or ) of a given bunch. Precise synchronization of
the sampling clock with the bunch signal must be provided

The digital samples are then de-multiplexed into M channels (M is the number of bunches):
in each channel the turn-by-turn samples of a given bunch are processed by a dedicated
digital filter to calculate the correction samples

The basic processing consists in DC component suppression (if not completely done by the
external stable beam rejection) and phase shift at the betatron/synchrotron frequency

After processing, the correction sample streams are recombined and eventually converted
to analog by the D/A converter

ADC

Filter #1

DACError 
signal

Clock Clock

Filter #2

Filter #3

Filter #4

Filter #5
...

Correction 
signal

D
e
m
u
x

M
u
x



Amplifier and kicker 

The kicker is the feedback actuator. It generates a
transverse/longitudinal electromagnetic field that steers the
bunches with small kicks as they pass through the kicker. The
overall effect is damping of the betatron/synchrotron oscillations

The amplifier must provide the necessary RF power to the kicker
by amplifying the signal from the DAC (or from the modulator in
the case of longitudinal feedbacks)

A bandwidth of at least frf/2 is necessary: from ~DC (all kicks of
the same sign) to ~frf/2 (kicks of alternating signs)

The bandwidth of amplifier-kicker must be sufficient to correct
each bunch with the appropriate kick without affecting the
neighbour bunches. The amplifier-kicker design has to maximize
the kick strength while minimizing the cross-talk between
corrections given to adjacent bunches

INP

V
R

2

2



Shunt impedance,
ratio between the
squared voltage
seen by the bunch
and twice the
power at the
kicker input:

Important issue: the group delay of the amplifier 
must be as constant as possible, i.e. the phase 

response must be linear, otherwise the feedback 
efficiency is reduced for some modes and the 

feedback can even become positive

A



0

180°

Anti-damping



Kicker and Amplifier: 
transverse FB

For the transverse kicker a stripline geometry is usually employed

Amplifier and kicker work in the ~DC - ~frf/2 frequency range

Beam

Power
Amplifier

50W

load

50W

load

180°

KICKER

DAC

Low-pass
filter

Power
Amplifier

Low-pass
filter

Shunt impedance of the 
ELETTRA/SLS transverse kickersThe ELETTRA/SLS transverse kicker (by Micha Dehler-PSI)



Digital signal processing

M channel/filters each dedicated to one bunch: M is the number of bunches

To damp the bunch oscillations the turn-by-turn kick signal must be the derivative of the bunch position at
the kicker: for a given oscillation frequency a /2 phase shifted signal must be generated

In determining the real phase shift to perform in each channel, the phase advance between BPM and kicker
must be taken into account as well as any additional delay due to the feedback latency (multiple of one
machine revolution period)

The digital processing must also reject any residual constant offset (stable beam component) from the
bunch signal to avoid DAC saturation

Digital filters can be implemented with FIR (Finite Impulse Response) or IIR (Infinite Impulse Response)
structures. Various techniques are used in the design: ex. frequency domain design and model based design

A filter on the full-rate data stream can compensate for amplifier/kicker not-ideal behaviour

ADC

Filter #1

DACError 
signal

Filter #2

Filter #3

Filter #4

Filter #5
...

Correction 
signal

D
e
m
u
x

M
u
x

Compensation
Filter



Digital filter design: 3-tap FIR filter

The minimum requirements are:
1. DC rejection (coefficients sum = 0)
2. Given amplitude response at the tune 

frequency
3. Given phase response at the tune 

frequency
A 3-tap FIR filter can fulfil these requirements: 

the filter coefficients can be calculated 
analytically

Example:

• Tune  /2 = 0.2

• Amplitude response at tune |H()| = 0.8

• Phase response at tune a = 222°

H(z) = -0.63 + 0.49 z-1 + 0.14 z-2

Z transform of the FIR filter response

In order to have zero amplitude at DC, we must
put a “zero” in z=1. Another zero in z=c is added
to fulfill the phase requirements.

c can be calculated analytically:

k is determined given the required amplitude
response at tune |H()|:

Nominal working point
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x

Applied kicks

Position 
measurements

X’

Problem with feedback over several machine turns

Digital processing imposes a transition 
delay longer than the revolution time of 
normal size synchrotrons (few us).
 Feedback acts N (a few ) turns later
 Particles advance N* Q in phase 

between measurement and kick
 Correction signal needs tune dependend

phase shifter
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http://www.micromodeler.com/dsp/#

http://www.micromodeler.com/dsp/
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Digital filter design: 5-tap FIR filter

With more degrees of freedom additional features can be added to a FIR filter

Ex.: transverse feedback. The tune frequency of the accelerator can significantly change
during machine operations. The filter response must guarantee the same feedback efficiency
in a given frequency range by performing automatic compensation of phase changes.

In this example the feedback delay is four machine turns. When the tune frequency
increases, the phase of the filter must increase as well, i.e. the phase response must have a
positive slope around the working point.

The filter design can be made using the
Matlab function invfreqz()

This function calculates the filter
coefficients that best fit the required
frequency response using the least
squares method

The desired response is specified by
defining amplitude and phase at three
different frequencies: 0, f1 and f2

Nominal working point

f1 f20
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Digital filter design: selective FIR filter

A filter often employed in longitudinal feedback systems is a selective FIR filter which
impulse response (the filter coefficients) is a sampled sinusoid with frequency equal to the
synchrotron tune

The filter amplitude response has a maximum at the tune frequency and linear phase

The more filter coefficients we use the more selective is the filter
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Integrated diagnostic tools

A feedback system can implement a number of diagnostic tools useful for commissioning and
optimization of the feedback system as well as for machine physics studies:

1. ADC data recording: acquisition and recording, in parallel with the feedback operation, of
a large number of samples for off-line data analysis

2. Modification of filter parameters on the fly with the required timing and even individually
for each bunch: switching ON/OFF the feedback, generation of grow/damp transients,
optimization of feedback performance, …

3. Injection of externally generated digital samples: for the excitation of single/multi
bunches

ADC
Filter #n

DAC
Filter #n+1

Filter #n+2

D
E
M
U
X

M
U
X

...

Timing

Control system interface

+
+

1
2 3

3

Diagnostic controller
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Diagnostic tools: excitation of individual bunches

The feedback loop is switched off for one or more 
selected bunches and the excitation is injected in 
place of the correction signal. Excitations can be:

 white (or pink) noise 
 sinusoids
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In this example two bunches are
vertically excited with pink noise in
a range of frequencies centered
around the tune, while the feedback
is applied on the other bunches.
The spectrum of one excited bunch
reveals a peak at the tune frequency

This technique is used to measure
the betatron tune with almost no
deterioration of the beam quality
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Diagnostic tools: multi-bunch excitation

Interesting measurements can be performed by adding pre-defined signals in the output
of the digital processor

1. By injecting a sinusoid at a given frequency, the corresponding beam multi-bunch
mode can be excited to test the performance of the feedback in damping that mode

2. By injecting an appropriate signal and recording the ADC data with filter
coefficients set to zero, the beam transfer function can be calculated

3. By injecting an appropriate signal and recording the ADC data with filter
coefficients set to the nominal values, the closed loop transfer function can be
determined
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Diagnostic tools: transient generation

Different types of transients can be generated, damping times and growth rates can 
be calculated by exponential fitting of the transients:

1. Constant multi-bunch oscillation  FB on: damping transient
2. FB on  FB off  FB on: grow/damp transient
3. Stable beam  positive FB on (anti-damping)  FB off: natural damping transient

. . . .

A powerful diagnostic application
is the generation of transients.
Transients can be generated by
changing the filter coefficients
accordingly to a predefined
timing and by concurrently
recording the oscillations of the
bunches

Time

Start 
recording

Set filter1 Set filter2 Stop 
recording

Oscillation 
amplitude

1 2

t0 t1 t2 t3

3

. .  . .
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Grow/damp transients can be analyzed by means of 3-D graphs

Grow/damp transients: 3-D graphs

Evolution of coupled-bunch unstable
modes during a grow-damp transient

Feedback on

Feedback off

Feedback on

Feedback off

Evolution of the bunches oscillation
amplitude during a grow-damp transient
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Effects of a feedback: beam spectrum

Revolution harmonicsVertical modes

FB OFF FB ON

Spectrum analyzer connected 
to a stripline pickup: 
observation of vertical 
instabilities. The sidebands 
corresponding to vertical 
coupled-bunch modes 
disappear as soon as the 
transverse feedback is 
activated
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Intrabunch Feedback

• Under certain circumstances even single bunches are 
unstable in an accelerator:

- wakes of the head of the beam interacting with the tail
- TMCI: transverse mode coupling instability (later this course)
- micro bunching
…

• Can be damped with an active feedback
 depending on bunchlength very high demands on system bandwidth

10 ns/div

PS TFB OFF

10 ns/div

PS TFB ON

Example: 
CERN PS
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Intrabunch Feedback  : SPS tests

Single high intensity proton bunch, TMCI unstable

Feedback OFF
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Intrabunch Feedback  : SPS tests

Feedback “ON”
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Injection damping (1/3)

Without derivation: emittance growth from injection errors

𝜀0: beam emittance before injection
𝜀 : beam emittance after damped injection oscillation
𝜏𝐷𝐶: damping time of active feedback system
𝜏𝑑: filamentation time
Δx: position error at injection
Δx’ angle error at injection
α,β: twiss parameters at injection point
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Injection damping (2/3)

Even after perfect beam steering not 
all bunches can be injected into the LHC 
without position and/or angle error due 
to pulse-shape of kicker magnets

 unwanted emittance growth

 loss in luminosity/bunch instabilities
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Injection damping (3/3)

Simulated emittance growth on various 
bunches after injection into the LHC:

tolerance is 2.5% emittance growth

only a few bunches above 1% emittance growth

Figures on past three slides from:

Emittance growth at the LHC injection from SPS and LHC 

kicker ripple, G. Kotzian et al, EPAC 2008
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Appendix

1. 3 slides : Power requirements for transverse dampers



power requirements: transverse feedback
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The transverse motion of a bunch of particles not 
subject to damping or excitation can be described 
as a pseudo-harmonic oscillation with amplitude 

proportional to the square root of the -function

The derivative of the position, i.e. 
the angle of the trajectory is:

By introducing we can write:
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At the coordinate sk, the electromagnetic field of the kicker deflects the particle bunch which varies its 

angle by k : as a consequence the bunch starts another oscillation

which must satisfy the following constraints:
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By introducing the two-equation two-unknown-variables system becomes:

The solution of the system gives amplitude and phase 
of the new oscillation:
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The optimal gain gopt is determined by the maximum kick value kmax that the kicker is able to generate. The

feedback gain must be set so that kmax is generated when the oscillation amplitude A at the kicker location is

maximum:
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In the linear feedback case, i.e. when the turn-by-turn kick signal is a sampled sinusoid proportional to the
bunch oscillation amplitude, in order to maximize the damping rate the kick signal must be in-phase with
sin, that is in quadrature with the bunch oscillation
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For small kicks the relative amplitude decrease is 

monotonic and its average is:

The average relative decrease is therefore constant, which means that, in average, the amplitude decrease 

is exponential with time constant t (damping time) given by:
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power requirements: transverse feedback
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For relativistic particles, the change of the transverse momentum p of the bunch passing through the 
kicker can be expressed by:

where

e = electron charge, c = light speed, = fields in the kicker, L = length of the kicker, EB = beam energy

V can be derived from the definition of kicker shunt impedance:
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From the previous equations we can obtain the power required to damp the bunch oscillation with time 

constant t:
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power requirements: transverse feedback


