

Beam Diagnostic Requirements Overview

Gero Kube
DESY (Hamburg)

- Measurement Principles
- Specific Diagnostics Needs for Hadron Accelerators
- Specific Diagnostics Needs for Electron Accelerators

Beam of Particles

HELMHOLTZ

- particle beam (p, $\overline{\mathrm{p}}, \mathrm{e}^{ \pm}, \mathrm{n}, \gamma, \mu^{ \pm}$, heavy ions, \ldots)
> ensemble of N particles in 6-dimensional phase space
$\rightarrow \quad$ based on canonical coordinates $\left(x, y, z ; p_{x}, p_{y} p_{z}\right)$
- phase space in accelerator physics

> use projection onto 3 orthogonal planes
$\rightarrow \quad$ instead of phase space in $\left(x, p_{x}\right)$ use $\left(x, x^{\prime}=p_{x} / p_{0}\right)$
- beam characterization \rightarrow statistical ensemble
) $1^{\text {st }}$ order: beam centroid
mean values $<\mathrm{r}_{\mathrm{i}}$ >
- beam momenta p_{x}, p_{y}, p_{z}
moving along " z "
$\rightarrow \quad p_{z} \approx p_{0}{ }^{>} p_{x} p_{y}$
- beam location $z(t)$
- beam positions $\boldsymbol{x}, \boldsymbol{y}$
> $2^{\text {nd }}$ order: beam distribution
rms values $\left\langle\mathrm{r}_{\mathrm{i}}{ }^{2}\right\rangle$ and correlations $\left\langle\mathrm{r}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}}\right\rangle$
- momentum spread $\sigma_{\Delta p / p}$
- bunch length $\sigma_{\Delta z}$
- beam sizes σ_{x}, σ_{y}
- beam divergences $\sigma_{x^{\prime}}, \sigma_{y^{\prime}}$
- ... correlations ...
courtesy:
- beam angles $x^{\prime}=p_{x} / p_{0}, y^{\prime}$

Beam Information Transfer

HELMHOLTZ

- extraction of beam information
) information transfer from beam particles to measuring device
$\rightarrow \quad$ information transfer characterized by interaction
> information transfer / interaction with beam preferably
\rightarrow non-disturbing for beam
$\rightarrow \quad$ strong (good signal quality)

$\rightarrow \quad$ long-range (measuring device in certain distance from beam)
- fundamental particle interactions

Interaction	Gravitational	Weak	Electromagnetic	Strong
acting on	mass-energy	flavor	electric charge	colour charge
particles experiencing	all particles with mass	quarks, leptons	electrically charged particles	quarks, gluons
exchange particle	Graviton (?)	$\mathrm{W}^{ \pm}, \mathrm{Z}^{0}$	γ (photon)	g (gluon)
relative strength	6×10^{-39}	10^{-5}	$1 / 137$	1
range $[\mathrm{m}]$	∞	10^{-18}	∞	10^{-15}

restriction to charged particle beams

Electromagnetism

HELMHOLTZ

- described by Maxwell's equations $\quad \rightarrow \quad$ in SI units
) Gauss' flux theorem

$$
\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=\frac{\rho(\vec{r}, \mathrm{t})}{\varepsilon_{0}}
$$

$$
\oiint_{S} \vec{E}(\vec{r}, t) \cdot \mathrm{d} \vec{S}=\frac{1}{\varepsilon_{0}} \iiint_{V} \rho(\vec{r}, \mathrm{t}) \mathrm{dV}
$$

> Gauss' law for magnetism

$$
\vec{\nabla} \cdot \vec{B}(\vec{r}, t)=0
$$

$$
\oiint_{S} \vec{B}(\vec{r}, t) \cdot \mathrm{d} \vec{S}=0
$$

> Faraday's law of induction

$$
\vec{\nabla} \times \vec{E}(\vec{r}, t)=-\frac{\partial \vec{B}}{\partial t}(\vec{r}, \mathrm{t})
$$

$$
\oint_{C} \vec{E}(\vec{r}, t) \cdot \mathrm{d} \vec{l}=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{S} \vec{B}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}
$$

> Ampère's law + displacement current

$$
\vec{\nabla} \times \vec{B}(\vec{r}, t)=\mu_{0} \vec{J}(\vec{r}, \mathrm{t})+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}(\vec{r}, \mathrm{t})
$$

$$
\oint_{C} \vec{B}(\vec{r}, t) \cdot \mathrm{d} \vec{l}=\mu_{0} \iint_{S} \vec{J}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}+\frac{1}{c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{S} \vec{E}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}
$$

- application to beam particle in accelerator
> consider point-like particle with charge Q, moving with $v=$ const.
$>$ input \rightarrow particle properties (kinematics)

$$
\rho(\vec{r}, \mathrm{t})=\mathrm{Q} \delta[\vec{r}(\mathrm{t})] \quad \vec{J}(\vec{r}, \mathrm{t})=\mathrm{Q} \vec{v} \delta[\vec{r}(\mathrm{t})]
$$

> output \rightarrow electromagnetic fields \rightarrow,,information carrier" about beam

$>$ typical particle accelerator: $v>1 \quad(\rightarrow c)$
take into account relativistic motion

Special Relativity: a Glimpse

- postulates of special relativity
> principle of relativity (relativistic or Lorentz invariance)
\rightarrow laws of physics are invariant under a transformation between two coordinate frames moving at constant velocity w.r.t. each other
> invariance of c
\rightarrow velocity of light is the same for all observers

$$
\begin{gathered}
c=\frac{\left|\vec{r}_{2}-\vec{r}_{1}\right|}{\left(t_{2}-t_{1}\right)}=\frac{\left|\overrightarrow{r \prime}_{2}-\overrightarrow{r \prime}_{1}\right|}{\left(t \prime_{2}-t_{1}\right)}=\left|\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} \vec{r}^{\prime}}{\mathrm{d} t \prime}\right|=\text { const. } \\
\\
\square \mathrm{d}(c t)^{2}-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}=0
\end{gathered}
$$

- Lorentz transformation
$>$ primed frame S^{\prime} moves with velocity v in z-direction w.r.t. fixed reference frame S
) reference frames coincide at $\mathrm{t}=\mathrm{t}^{\prime}=0$
> point z^{\prime} is moving with primed frame
Lorentz transformation (from S to S^{\prime})

$$
\begin{array}{ll}
x^{\prime}=x & z^{\prime}=\gamma \cdot(z-\beta c t) \\
y^{\prime}=y & c t^{\prime}=\gamma \cdot(c t-\beta z)
\end{array}
$$

Quantities used in Accelerator Calculations

HELMHOLTZ

- Lorentz transformation
> reduced velocity:

$$
\beta=\frac{|\vec{v}|}{c}
$$

Lorentz factor:

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

- particle momentum

$$
\vec{p}=m \vec{v}=\gamma m_{0} \vec{v}=\gamma m_{0} \vec{\beta} c
$$

with $\boldsymbol{m}_{\boldsymbol{0}}$: rest mass

- total energy

$$
E=m c^{2}=\gamma m_{0} c^{2}
$$

$\square E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2}$ with $E_{0}=\boldsymbol{m}_{0} \boldsymbol{c}^{2}$: rest mass energy

- kinetic energy

$$
E=T_{k i n}+m_{0} c^{2}
$$

$$
\Longrightarrow \quad T_{k i n}=m_{0} c^{2}(\gamma-1)
$$

- useful formulas

$$
\gamma=\frac{E}{m_{0} c^{2}}=1+\frac{T_{k i n}}{m_{0} c^{2}} \quad \beta=\frac{p c}{E}
$$

- example
> proton with $\mathrm{E}=1 \mathrm{TeV}$
$\rightarrow \quad$ value of β ?
$m_{0} c^{2}$ for proton: 938 MeV

$$
\begin{aligned}
& \gamma=\frac{E}{m_{0} c^{2}}=\frac{1 \mathrm{TeV}}{938 \mathrm{MeV}}=1066.1 \\
& \beta=\sqrt{1-\gamma^{-2}}=0.99999956
\end{aligned}
$$

Relativity and Electro-Magnetic Fields

- kinematics / dynamics
) trajectory transformation:
) Lorentz transformation parameters:
(x, y, z, ct) in rest frame $\boldsymbol{S} \quad \rightarrow \quad\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, \mathrm{ct}^{\prime}\right)$ in moving frame \boldsymbol{S}^{\prime} reduced velocity $\beta \quad$ Lorentz factor γ
- transformation of "information carrier"
> electro-magnetic field transformation
$\rightarrow \quad$ as before: \quad - \quad system \boldsymbol{S}^{\prime} moves with $v=$ const. along z-axis of rest frame \boldsymbol{S}
- (x, y, z, ct) in rest frame $S \quad \rightarrow \quad\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, \mathrm{ct}^{\prime}\right)$ in moving frame S^{\prime}

$$
\begin{array}{ll}
E_{x}^{\prime}=\gamma\left[E_{x}-v B_{y}\right] & B_{x}^{\prime}=\gamma\left[B_{x}+\frac{v}{c^{2}} E_{y}\right] \\
E_{y}^{\prime}=\gamma\left[E_{y}+v B_{x}\right] & B_{y}^{\prime}=\gamma\left[B_{y}-\frac{v}{c^{2}} E_{x}\right] \\
E_{z}^{\prime}=E_{z} & B_{z}^{\prime}=B_{z}
\end{array}
$$

) transformation from moving frame S^{\prime} to rest frame $S: \quad \vec{v} \longrightarrow-\vec{v}$
$\rightarrow \quad$ convention:

- rest frame S : LAB frame
- moving frame $S^{\prime}: \quad$ rest frame of moving charge
> comment: different structure of transformation for space-time coordinates and fields
\rightarrow field vectors: cannot form 4-vectors (E-field: polar vector, B-field: axial vector)

Electro-Magnetic Field of moving Charge

- example
> point charge Q : moving with $\boldsymbol{v}=$ const. along z -axis
> task: electro-magnetic fields in LAB frame
- rest frame S^{\prime} of point charge
) pure electro-static problem
$\rightarrow \quad$ radial symmetric Coulomb field

$$
\overrightarrow{E^{\prime}}\left(\vec{r}^{\prime}\right)=\frac{Q}{4 \pi \varepsilon_{0}} \frac{\overrightarrow{r^{\prime}}}{r^{\prime 3}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{\left[x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right]^{3 / 2}}\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

- electromagnetic fields in LAB frame \boldsymbol{S} (rest frame)
> apply Lorentz transformation equations using $\vec{v} \longrightarrow-\vec{v}$
> $1^{\text {st }}$ step: Lorentz transformation for fields

$$
\Rightarrow \quad \vec{E}\left(\vec{r}^{\prime}\right)
$$

$>2^{\text {nd }}$ step: Lorentz transformation for space-coordinates
$\Rightarrow \quad \vec{E}(\vec{r})$

$$
\vec{E}(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{\gamma Q}{\left[x^{2}+y^{2}+\gamma^{2}(z-v t)^{2}\right]^{3 / 2}}\left(\begin{array}{c}
x \\
y \\
z-v t
\end{array}\right)
$$

Electro-Magnetic Field of moving Charge (2)

- snap-shot
) point charge in origin of S and S^{\prime} : t = 0

$$
\begin{array}{ll}
& \vec{E}(x, y, z)=\frac{1}{4 \pi \varepsilon_{0}} \frac{\gamma Q}{\left[x^{2}+y^{2}+\gamma^{2} z^{2}\right]^{3 / 2}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\text { relativistic modification of Coulomb field: } & \square \vec{E}(\vec{r})=\frac{1-\beta^{2}}{\left(1-\beta^{2} \sin ^{2} \vartheta\right)^{3 / 2}} \cdot \frac{Q}{4 \pi \varepsilon_{0}} \cdot \frac{\vec{r}}{r^{3}} \\
\vartheta: \Varangle(z, \vec{r})
\end{array}
$$

- field components
longitudinal: $\quad \vartheta=0 \quad \Rightarrow \quad E_{\|}=\frac{1}{\gamma^{2}} \cdot \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}$
\Rightarrow transverse: $\quad \vartheta=\frac{\pi}{2} \quad \Rightarrow \quad E_{\perp}=\gamma \cdot \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}$

Electro-Magnetic Field of moving Charge (3)

- magnetic field
) E-field in particle rest frame S^{\prime} generates B-Field in LAB frame S
\rightarrow consequence of transformation properties:

$$
B_{x}=-\gamma \frac{v}{c^{2}} E_{y}^{\prime} \quad B_{y}=\gamma \frac{v}{c^{2}} E_{x}^{\prime} \quad B_{z}=0
$$

) combined

$$
\vec{B}(\vec{r}, t)=\frac{\mu_{0} Q}{4 \pi} \frac{\gamma v}{\left[x^{2}+y^{2}+\gamma^{2}(z-v t)^{2}\right]^{3 / 2}}\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)
$$

$>$ snapshot $(\mathrm{t}=0)$ in non-relativistic limit: $\gamma \rightarrow 1$

$$
\vec{B}(\vec{r})=\frac{\mu_{0} Q}{4 \pi} \frac{v}{\left[x^{2}+y^{2}+z^{2}\right]^{3 / 2}}\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)=\frac{\mu_{0}}{4 \pi} \mathrm{Q} \frac{1}{r^{3}}\left(\begin{array}{c}
-v y \\
v x \\
0
\end{array}\right)
$$

> re-writing

$$
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} Q \frac{\vec{v} \times \vec{r}}{r^{3}}
$$

Biot Savart law for point charge

Interim Conclusion

- information transfer from / to particle beam
> electro-magnetic interaction
\rightarrow restriction to charged particle beams
- electro-magnetic field of beam particles
$>$ acts as information carrier about beam properties
- description of particle field
> basic knowledge of Maxwell equations and special relativity
- electro-magnetic field of relativistic point charge
> electric field almost transversal

$$
E_{\|} \propto \frac{1}{\gamma^{2}}, \quad E_{\perp} \propto \gamma
$$

> magnetic field \rightarrow generated due to particle motion

- monitor for charge particle beam diagnostics
> has to extract information from charged particle beam via electro-magnetic interaction
(i) coupling to particle electro-magnetic field carried by moving charge
(ii) coupling to particle electro-magnetic field separated from moving charge (freely propagating)
(iii) exploiting energy deposition due to particle electro-magnetic field interaction with matter
(iv) exploiting interaction of external electro-magnetic field with charged particle

Coupling to Particle Electro-Magnetic Field carried by Moving Charge

- Beam Charge and Beam Current Measurements
- Beam Position Monitoring
-

...

Tuusula (Finland), 2-15 June 2018

Non-propagating Particle Field

- concept of Wall Image Current
> charged particle travels through metallic beam pipe of accelerator
\rightarrow beam pipe: evacuated tube, bounded by electrically conducting material
> moving charged particle
\rightarrow generates electro-magnetic field: electric field \leftrightarrow charge, magnetic field \leftrightarrow charge movement
\rightarrow relativistic motion: Lorentz boost \leftrightarrow electric field contracts in direction of motion
> E-field induces image charge
\rightarrow generated at inner diameter of vacuum chamber
\rightarrow opposite sign
> moving charge
\rightarrow induced image charge is dragged
\rightarrow creation of Wall Image Current (WIC)
- no electrical field outside vacuum chamber
, Gauss' flux theorem: $\oiint_{S} \vec{E}(\vec{r}, t) \cdot \mathrm{d} \vec{S}=\frac{1}{\varepsilon_{0}} \iiint_{V} \rho(\vec{r}, \mathrm{t}) \mathrm{dV}$
\rightarrow charge and image charge cancels outside beam pipe

D. Belohrad, Proc. DIPAC2011,

Hamburg (2011) 564
no coupling to E-field outside vacuum chamber

Non-propagating Particle Field (2)

- magnetic field
> Ampère's law

$$
\oint_{C} \vec{B}(\vec{r}, t) \cdot \mathrm{d} \vec{l}=\mu_{0} \iint_{S} \vec{J}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}
$$

\rightarrow integration path: circle C around beam tube
> WIC: equal magnitude but opposite sign to beam current (in $1^{\text {st }}$ order)
\rightarrow sum of beam and image current cancels out
\rightarrow magnetic field outside the beam tube is cancelledno coupling to B-field outside vacuum chamber

- field strength reduction
> corresponds to attenuation of EM-wave propagating through conductor
\rightarrow characteristic length: skin depth (amplitude reduction $\mathrm{e}^{-1} \rightarrow-8.69 \mathrm{~dB}$) non-magnetic, electrically good conductor:

$$
\delta[\mathrm{m}]=\frac{\sqrt{10^{7}}}{2 \pi} \sqrt{\frac{\rho[\Omega / \mathrm{m}]}{f[\mathrm{~Hz}]}}
$$

D. Belohrad, Proc. DIPAC2011,

$$
\text { Hamburg (2011) } 564
$$

- consequences for beam monitors
> no access to particle electro-magnetic field outside metallic beam pipe

coupling to beam field inside vacuum chamber
allow beam field to extend outside

Principles of Signal Extraction

HELMHOLTZ

- no electro-magnetic field outside beam pipe
> place coupling antenna inside vacuum chamber
- charged particle possesses electric / magnetic field
> 2 different coupling schemata:
\rightarrow coupling to electric field: capacitive coupling
\rightarrow coupling to magnetic field: inductive coupling
- capacitive coupling

- inductive coupling

Capacitive versus Inductive Coupling

- capacitive coupling
) output signal \rightarrow displacement current

$$
i_{c a p}(t)=\varepsilon_{0} \frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{S} \vec{E}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}
$$

- inductive coupling
$>$ output signal \rightarrow Faraday's law of induction

$$
u_{i n d}(t)=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{S} \vec{B}(\vec{r}, \mathrm{t}) \cdot \mathrm{d} \vec{S}
$$

- consider relation between E/B-field:
) here: $\quad \vec{v}=v \hat{e}_{z}$
relativistic case: $\quad \vec{E} \approx E \hat{e}_{r}=E_{r}$

$$
\begin{aligned}
& E=\frac{\mathrm{Q}}{\varepsilon_{0} \cdot S} \quad \leftrightarrow \quad Q=\varepsilon_{0} \cdot S \cdot E \\
& \text { with } i(t)=\dot{Q} \quad \Rightarrow \quad i(t)=\varepsilon_{0} \cdot S \cdot \dot{E}
\end{aligned}
$$

comparison

$$
\begin{aligned}
& \left|\frac{i_{\text {cap }}(t)}{u_{\text {ind }}(t)}\right|=\frac{c}{\beta} \varepsilon_{0} \frac{\frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{\text {electrode surface }} E_{r} \mathrm{~d} S}{\frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{\text {loop area }} E_{r} \mathrm{~d} S} \quad \rightarrow \quad \text { practical design: } \quad \frac{\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{\text {electrode surface }} E_{r} \mathrm{~d} S}{\frac{\mathrm{~d}}{\mathrm{~d} t} \iint_{\text {loop area }} E_{r} \mathrm{~d} S} \approx 1 \\
& >\text { broadband signal processing } \rightarrow \quad \rightarrow \quad \text { impedance } R=50 \Omega \\
& \hline \frac{R \cdot i_{\text {cap }}(t)}{u_{\text {ind }}(t)}\left|=\left|\frac{u_{\text {cap }}(t)}{u_{\text {ind }}(t)}\right| \approx \frac{R c \varepsilon_{0}}{\beta}=\frac{0.133}{\beta}\right.
\end{aligned}
$$

- practical reasons
capacitive coupling $\quad \rightarrow \quad$ less prone to stray fields

WIC alternative Path

HELMHOLTZ

- no electro-magnetic field outside beam pipe
> provide alternative path for Wall Image Current (WIC)
\rightarrow conducting path in metallic vacuum chamber has to be broken
- technical realization
> non-conducting material (usually ceramic) inserted electrically in series with metallic beam pipe
\rightarrow interruption forces WIC to find new path
> beam diagnostics
\rightarrow alternative path under instrument designer's control, outside of vacuum chamber
- example
> Wall Current Monitor
\rightarrow broadband ($\geq 5 \mathrm{GHz}$) beam charge measurement

(ceramic gap)
D. Belohrad, Proc. DIPAC2011, Hamburg (2011) 564

Cavity Resonators

- beam signal generation using passive cavity resonator
) passive (beam driven) cavity resonator
\rightarrow electro-magnetic discontinuity in beam pipe
\rightarrow charged particle passing resonator excites (several) resonator modes
> example
\rightarrow E-field excitation in pillbox cavity
- advantage of resonator
) electro-magnetic energy dissipation for one period
\rightarrow small compared to accumulated energy

> signal averaging over long time
\rightarrow good signal quality, high accuracy

- task for beam diagnostics
> design cavity for high signal level in
resonator mode of interest
\rightarrow suppress contribution from disturbing modes

Environment Modification

HELMHOLTZ

- application: Electro Optical (EO) techniques
> bunch length diagnostics
\rightarrow fsec electron bunches
> placing EO crystal into beam pipe
\rightarrow direct measurement of Coulomb field from ultra-relativistic bunches in time-domain
\rightarrow Coulomb-field carried by sub-psec bunches reaches in THz region
> Coulomb field induces refractive index change in birefringent crystal
\rightarrow Pockels effect in optically active crystal (e.g. $\mathrm{ZnTe}, \mathrm{GaP}$)
birefringence:
splitting ray into 2 parallel
rays polarized perpendicular
$>$ probing of refractive index change by short-pulse (fsec), high bandwidth (some tens of nm) laser
\rightarrow detect linearly polarized light intensity variation

Coupling to freely propagating Particle Electro-Magnetic Field

- Bunch Length Measurements
- transverse Beam Profile Diagnostics
-

-...

Tuusula (Finland), 2-15 June 2018

Propagating Particle Field

- freely propagating particle field
> electro-magnetic field not bound to charged particle

emitted as radiation (preserving information from beam)
- radiation generation via particle electro-magnetic field
) particle electro-magnetic field

> relativistic boost characterized by Lorentz factor

$$
\gamma=\frac{E}{m_{0} c^{2}} \quad \begin{aligned}
& E: \quad \text { total energy } \\
& m_{0} c^{2}: \text { rest mass energy }
\end{aligned}
$$

proton: $\quad m_{p} c^{2}=938.272 \mathrm{MeV}$
electron: $\quad m_{e} c^{2}=0.511 \mathrm{MeV}$

- limiting case: $\gamma \rightarrow \infty$ \square plane wave
> $m_{0} c^{2}=0 \mathrm{MeV}: \quad$ light \rightarrow,,real photon"
> ultra relativistic energies :
idealization \rightarrow „virtual photon" (basis of Weizsäcker-Williams method)

Separation of Particle Field

HELMHOLTZ

- electro-magnetic field bound to particle
observation in far field (large distances)

$\}$
separate field from particle

- separation mechanisms
> bending of particle via magnetic field
synchrotron radiation
circular accelerators
linear accelerator \rightarrow no particle bending...

- separation mechanisms at linear accelerators
> diffraction/reflection of particle electro-magnetic field at material structures
exploit analogy between real/virtual photons:
- light reflection/refraction at surface \leftrightarrow backward/forward transition radiation (TR)
- light diffraction at edges
- light diffraction at grating
- light (X-ray) diffraction in crystal
$\leftrightarrow \quad$ diffraction radiation (DR)
$\leftrightarrow \quad$ Smith-Purcell radiation
$\leftrightarrow \quad$ parametric X-ray radiation (PXR) ...

Radiation Generation and Mass Shell

HELMHOLTZ

- consider mass hyperboloid
> hyperboloid in energy-momentum space describing the solutions to equation

$$
E^{2}=(\vec{p} c)^{2}+\left(m_{0} c^{2}\right)^{2}
$$

> charged particle behavior governed by this equation
\rightarrow sitting on the mass shell

- energy loss via radiation emission
> transition from initial $\mid i>$ to final $\mid f>$ state
) photon: massless particle $\longrightarrow E=p c$
- energy / momentum conservation has to be fulfilled
> missing momentum remains

- Cherenkov radiation as special case
> direct transition from initial $|i\rangle$ to final $|f\rangle$ state without external momentum
\rightarrow slope of photon line decreased:
$c \rightarrow c / n$
(n : index of refraction)

Synchrotron Radiation

- circular accelerator: radiation source available for free
> bending magnet (wiggler, undulator)
- minimum-invasive
) unavoidable losses
- strong collimation (vertical)
\rangle opening angle: $\Psi \propto 1 / \gamma$
- emission over wide spectral range

- polarized
> define vertical angular divergence

SR Field: Standard Text Book

HELMHOLTZ

- source field: particle field described by Liénard-Wiechert potentials: (in cgs units)

$$
\varphi(t)=\left(\frac{Q}{R(1-\hat{n} \cdot \vec{\beta})}\right)_{\tau}, \quad \vec{A}(t)=\left(\frac{Q \vec{\beta}}{R(1-\hat{n} \cdot \vec{\beta})}\right)_{\tau}
$$

) field derivation: $\quad \vec{E}(t)=-\vec{\nabla} \varphi(t)-\frac{1}{c} \dot{\vec{A}}(t), \quad \vec{H}(t)=\vec{\nabla} \times \vec{A}(t)$

$$
\Rightarrow \vec{E}(t)=Q\left(\frac{\left(1-\beta^{2}\right)(\hat{n}-\hat{\beta})}{R^{2}(1-\hat{n} \cdot \vec{b})^{3}}+\frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{c R(1-\hat{n} \cdot \vec{\beta})^{3}}\right)_{\tau}, \quad \vec{H}(t)=(\hat{n} \times \vec{E})_{\tau}
$$

, Fourier transform: $\quad \vec{E}(\omega) \approx \frac{i \omega Q}{c R} \int_{-\infty}^{+\infty} \mathrm{d} \tau[\hat{n} \times[\hat{n} \times \vec{\beta}]] e^{i \omega(\tau+R(\tau) / c)}$

- special case: charged particle moving on circular orbit

$$
\begin{aligned}
& E_{x}(\omega)=E_{\sigma}=A_{\sigma} \frac{\hbar \omega}{2 \hbar \omega_{c}}\left(1+\gamma^{2} \Psi^{2}\right) \cdot \mathrm{K}_{2 / 3}\left[\frac{\hbar \omega}{2 \hbar \omega_{c}}\left(1+\gamma^{2} \Psi^{2}\right)^{3 / 2}\right] \\
& E_{y}(\omega)=E_{\pi}=A_{\pi} \frac{\hbar \omega}{2 \hbar \omega_{c}} \gamma \Psi \sqrt{1+\gamma^{2} \Psi^{2}} \cdot \mathrm{~K}_{1 / 3}\left[\frac{\hbar \omega}{2 \hbar \omega_{c}}\left(1+\gamma^{2} \Psi^{2}\right)^{3 / 2}\right]
\end{aligned}
$$

$$
\text { with } \quad \hbar \omega_{c}=\frac{3}{2} \hbar c \frac{\gamma^{3}}{\rho}
$$

\Rightarrow analytical field description

- comments: (i) approximative field description \rightarrow far field approximation
(ii) emission from single point on orbit \rightarrow additional contributions: depth of field, orbit curvature

Synchrotron Radiation Field

HELMHOLTZ

- second representation: starting point again Liénard-Wiechert potentials
O.Chubar and P.Elleaume,

Proc. EPAC96, Stockholm (1996) 1177

$$
\varphi(t)=\left(\frac{Q}{R(1-\hat{n} \cdot \vec{\beta})}\right)_{\tau}, \quad \vec{A}(t)=\left(\frac{Q \vec{\beta}}{R(1-\hat{n} \cdot \vec{\beta})}\right)_{\tau}
$$

> Fourier transform of potentials:

$$
\varphi(\omega)=Q \int_{-\infty}^{+\infty} \mathrm{d} \tau \frac{1}{R(\tau)} e^{i \omega(\tau+R(\tau) / c)}, \quad \vec{A}(\omega)=Q \int_{-\infty}^{+\infty} \mathrm{d} \tau \frac{\vec{\beta}(\tau)}{R(\tau)} e^{i \omega(\tau+R(\tau) / c)}
$$

field derivation: $\begin{array}{r}\vec{E}(\omega)=\frac{i \omega Q}{c} \int_{-\infty}^{+\infty} \mathrm{d} \tau\left[\frac{(\vec{\beta}-\hat{n})}{R(\tau)}-\frac{i c}{\omega} \frac{\hat{n}}{R^{2}(\tau)}\right] e^{i \omega(\tau+R(\tau) / c)} \\ \text { with } \tau=\int_{0}^{z} \frac{\mathrm{~d} z}{c \beta_{z}(z)}=\frac{1}{c} \int_{0}^{z} \mathrm{~d} z\left[1+\frac{1+\left(\gamma \beta_{x}\right)^{2}+\left(\gamma \beta_{y}\right)^{2}}{2 \gamma^{2}}\right]\end{array}$

$\begin{array}{ll}\Rightarrow & \text { knowledge of arbitrary particle orbit: } \\ \vec{E}(\omega) \text { determined } \\ \overrightarrow{y y} \text { arbitrary magnetic field configuration: } & \text { determines orbit and } \vec{E}(\omega)\end{array}$

- comments:
(i) exact field description $\quad \rightarrow \quad$ numerical near field calculation
(ii) includes depth of field \& curvature \rightarrow no additional contributions, only field propagation
(iii) free codes available $\quad \rightarrow \quad$ easy field calculation, even field propagation!

SR for Heavy Particles

HELMHOLTZ

- synchrotron radiation spectrum
> characterized by critical energy / wavelength

$$
\hbar \omega_{c}=\frac{3}{2} \hbar c \frac{\gamma^{3}}{\rho} \quad \Leftrightarrow \quad \lambda_{c}=\frac{4 \pi}{3} \frac{\rho}{\gamma^{3}}
$$

- heavy particles (protons)
) large mass (protons: factor 1836 larger than for electrons)
γ : Lorentz factor
ρ : bending radius

$$
\Rightarrow \quad \text { small Lorentz factor } \quad \gamma=E / m_{0} c^{2}
$$

- comparison of SR spectra

$$
T_{k i n}=20 \mathrm{GeV}, \quad \rho=370 \mathrm{~m}
$$

- example
> HERA-p: $E=40 \ldots 920 \mathrm{GeV}$
$\rightarrow \lambda_{c}=55 \mathrm{~mm} \ldots 4.5 \mu \mathrm{~m}$
\square large diffraction broadening, expensive optical elements,...
\square smaller λ achieveable ???

SR Single Particle Time Structure

HELMHOLTZ

- geometrical interpretation

- radiation field in time domain

6 GeV electron, field in orbit plane
spectrum defined by time interval from maximum to zero crossing (ω_{c})

- comparison with protons

Time Squeezing

- introduce sharp "cut-off" in time domain

$$
\frac{\mathrm{d}^{2} N}{\mathrm{~d} \Omega \mathrm{~d} \omega / \omega} \propto\left|\vec{E}_{\omega}\right|^{2} \quad \text { with } \quad \vec{E}_{\omega}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{d} t \vec{E}(\mathrm{t}) e^{i \omega}
$$

Constant Linear Motion

- source field
$>$ point charge with constant velocity $\mathrm{v} \quad \rightarrow \quad$ Liénard-Wiechert fields
$\Rightarrow \vec{E}(t)=Q\left(\frac{\left(1-\beta^{2}\right)(\hat{n}-\vec{\beta})}{R^{2}(1-\hat{n} \cdot \vec{\beta})^{3}}+\frac{\hat{n} \times[(\hat{n}-\vec{\beta}) \ngtr \neq \bar{\beta}]}{c R(1-\hat{n} \cdot \vec{\beta}]^{3}}\right)_{\tau}, \quad \begin{gathered}\vec{H}(t)=(\hat{n} \times \vec{E})_{\tau} \\ \text { no acceleration term }\end{gathered}$

> common representation \rightarrow cylindrical coordinate system
$\Rightarrow \vec{E}(\rho, \varphi, z, \omega)=\frac{Q \alpha}{\pi v} e^{i \frac{\omega}{v} z}\left(K_{1}(\alpha \rho) \hat{e}_{\rho}-\frac{i}{\gamma} K_{0}(\alpha \rho) \hat{e}_{Z}\right) \quad$ with $\quad \alpha=\frac{\omega}{\gamma v}=\frac{2 \pi}{\lambda \beta \gamma}$

> ultra-relativistic particles ($\gamma \gg 1$)
$\rightarrow \quad$ neglect longitudinal field component
\rightarrow pure transverse ,,pancake" structure
\rightarrow radial extension: $\alpha \rho \approx 1$

$$
\rho=\frac{\lambda \beta \gamma}{2 \pi} \approx \gamma \lambda
$$

virtual photon range
separation of field $\rightarrow \quad$ different radiation sources

> angular distribution

Transition Radiation

- transition radiation: electromagnetic radiation emitted when a charged particle crosses boundary between two media with different optical properties
- visible part:
- beam diagnostics:
- advantage:
- disadvantage:

Optical Transition Radiation (OTR)
backward OTR
typical setup: image beam profile with optical system

- field separation mechanism
$\rightarrow \quad$ reflection at boundary (perfect conductivity)

Diffraction Radiation

HELMHOLTZ

- problem OTR: screen degradation / damage
$\rightarrow \quad$ limited to only few bunch operation, no permanent observation
- Optical Diffraction Radiation (ODR): non-intercepting beam diagnostics
> DR generation via interaction between particle EM field and conducting screen
\rightarrow diffraction of „virtual photons"

screen: half-plane

> radial field extension
$\rightarrow \operatorname{radius} \lambda \beta \gamma / 2 \pi \approx \lambda \gamma$
> limiting cases
$a \gg \lambda$: noradiation
$a \cong \lambda \gamma: \mathrm{DR}$
$a \ll \lambda \gamma:$ TR

Parametric X-Ray Radiation (PXR)

HELMHOLTZ

- idea: higher photon energies $\hbar \omega$
> better resolution
> insensitive on coherent effects
- real photons
> X-rays $\leftrightarrow \quad$ Bragg reflection, crystals
- virtual photons
> field separation by Bragg reflection at crystal lattice
$\rightarrow \quad$ radiation field: Parametric X-Ray Radiation (PXR)
- crystal periodicity (3D)
) discrete momentum transfer (reciprocal lattice vector $\vec{\tau}_{h k l}$)
$\rightarrow \quad$ emission of line spectrum

$$
\begin{aligned}
& \vec{p}_{i}=\vec{p}_{f}+\hbar \vec{k}+\hbar \vec{\tau}_{h k l} \\
& \delta E=\left(\vec{p}_{i}-\vec{p}_{f}\right) \cdot \vec{v}=\hbar \vec{k} \cdot \vec{v}+\hbar \vec{\tau}_{h k l}=\hbar \omega
\end{aligned}
$$

$$
\hbar \omega_{h k l}=\hbar c \frac{\left|\vec{\beta} \cdot \vec{\tau}_{h k l}\right|}{1-\sqrt{\varepsilon} \vec{\beta} \cdot \hat{k}}
$$

$$
\varepsilon=1-\left|\chi_{0}\right|
$$

$$
\text { dielectric constant }(\approx 1)
$$

courtesy: M.J. Winter
(Science Photo Library)

$$
\sin \Theta_{B}=\frac{\lambda}{2 d_{h k l}}
$$

Si crystal
$E=855 \mathrm{MeV}$
$\Theta_{B}=22.5^{\circ}$
K.H. Brenzinger et al.,
Z. Phys. A 358 (1997) 107

Smith-Purcell Radiation

HELMHOLTZ

- idea: dispersive radiation generation for bunch length diagnostics
> Coherent Radiation Diagnostics (CRD)
\rightarrow compact setup (combined radiator / analysator)
- Smith-Purcell radiation (SPR)
> field separation
$\begin{aligned} \rightarrow & \text { virtual photon diffraction at 1D } \\ & \text { Bravais-structure (grating) } \\ \rightarrow & \text { grating provides 1D discrete momentum }\end{aligned}$
momentum conservation:

$$
\begin{aligned}
& \vec{p}_{i}=\vec{p}_{f}+\hbar \vec{k}+\hbar n \frac{2 \pi}{D} \hat{v} \\
& \left(\vec{p}_{i}-\vec{p}_{f}\right) \cdot \vec{v}=\hbar \omega=\hbar \vec{k} \cdot \vec{v}+\hbar n \frac{2 \pi}{D} \hat{v} \cdot \vec{v} \\
& 2 \pi \frac{c}{\lambda}=\frac{2 \pi}{\lambda} v \cos \theta+n \frac{2 \pi}{D} v
\end{aligned}
$$

$$
n \lambda=\mathrm{D}\left(\frac{1}{\beta}-\cos \theta\right)
$$

$$
\rightarrow \text { SPR dispersion relation }
$$

Particle Electro-Magnetic Field Interaction with Matter

- Beam Loss Monitoring
- Beam Charge Measurements (Faraday Cup)
- Beam Profile Measurements (Wire Scanner, SEM, Scintillator)
- ...

Tuusula (Finland), 2-15 June 2018

Charged Particle Interaction with Matter

- energy deposition of charged particles in matter
) applied for beam monitoring \rightarrow scintillating light generation, secondary electron emission, \ldots
- types of particle interaction
$>$ charged particle transmits some of its energy to particles in medium $\quad \rightarrow \quad$ excitation of medium particles via:
\rightarrow ionization

$\rightarrow \quad$ excitation of optical states

- level of particle-particle interaction: important modes of interaction
elastic scattering \rightarrow incident particle scatters off target particle, total $\mathrm{T}_{\text {kin }}$ of system remains constant
$>$ inelastic scattering \rightarrow incident particle excites atom to higher electronic/nuclear state
) annihilation
> Bremsstrahlung emission
> Cherenkov \& Transition Radiation, ...

Interaction of Heavy Charged Particles

HELMHOLTZ

- "heavy" particles: $\mathrm{A} \geq 1 \quad(\mathrm{p}, \alpha$, ions,$\ldots$)
\square
2 electro-magnetic interaction channels ...
- interaction modes
(1) Rutherford (Coulomb) scattering \rightarrow elastic scattering
$>$ Coulomb force interaction between incident particle and target nucleus \rightarrow not applied for beam diagnostics
(2) passage of particles through matter
> number of electronic/nuclear mechanisms, through which charged particle can interact with medium particles
) net result of all interactions \rightarrow reduction of particle energy
> underlying interaction mechanisms are complicated
$\rightarrow \quad$ rate of energy loss fairly accurately predicted by semi-empirical relations
\square relevant for beam diagnostics
- energy transfer from projectile to target \rightarrow dominated by elastic collisions with shell electrons
$>$ projectile \rightarrow beam particle $\quad>$ maximum energy transfer \rightarrow head-on collision
> target \rightarrow atomic shell electron

$\frac{\Delta E_{\text {max }}}{T_{\text {kin }}}=4 \frac{m_{e} M}{\left(m_{e}+M\right)^{2}} \xrightarrow{M \gg m_{e}} 4 \frac{m_{e}}{M}$ proton beam: $\quad \frac{\Delta E_{\max }}{T_{\text {kin }}}=4 \cdot \frac{1}{1836} \sim \frac{1}{500}$
small energy transfer in single collision

Energy Loss by lonization - Bohr

- classical derivation by Bohr (1913):
) particle with charge Ze moves with velocity \boldsymbol{v} through medium with electron density \boldsymbol{n}
> electrons are conidered free and initially at rest (assumption of elastic collisions \rightarrow losses in fact inelastic)
- momentum transfer to single electron

$$
\begin{aligned}
& \Delta \vec{p}_{\perp}=\int \mathrm{d} t \vec{F}_{\perp}=\int \mathrm{d} x \vec{F}_{\perp} \frac{\mathrm{d} t}{\mathrm{~d} x}=\int \vec{F}_{\perp} \frac{\mathrm{d} x}{v}=e \int \vec{E}_{\perp} \frac{\mathrm{d} x}{v} \\
& \Delta \vec{p}_{\|}: \text {averages to zero } \rightarrow \text { symmetry }
\end{aligned}
$$

$$
\begin{aligned}
& \text { apply Gauss' flux theorem (in cgs units): } \quad \int \vec{E} \cdot \mathrm{~d} \vec{S}=4 \pi Z e \\
& \qquad \int \vec{E}_{\perp} \cdot 2 \pi b \mathrm{~d} x=4 \pi Z e \quad \Rightarrow \quad \int \vec{E}_{\perp} \mathrm{d} x=\frac{2 Z e}{b}
\end{aligned}
$$

- energy transfer to single electron, located at transverse distance \boldsymbol{b}

$$
\Delta E(b)=\frac{\Delta \vec{p}^{2}}{2 m_{e}}
$$

$$
\Rightarrow \quad \Delta E(b)=\frac{2 Z^{2} e^{4}}{m_{e} v^{2} b^{2}}
$$

- integration over all electrons in medium
\rangle consider cylindrical barrel with N_{e} electrons

$$
N_{e}=n 2 \pi b \mathrm{~d} b \mathrm{~d} x
$$

Energy Loss by lonization (2) - Bohr

- energy loss per path length $\mathbf{d} \boldsymbol{x}$ for distance between \boldsymbol{b} and $\boldsymbol{b}+\mathbf{d} \boldsymbol{b}$ in medium with electron density \boldsymbol{n} :

$$
\begin{aligned}
& -\mathrm{d} E(b)=\frac{\Delta p^{2}}{2 m_{e}} N_{e}=\frac{4 \pi Z^{2} e^{4}}{m_{e} v^{2}} n \frac{\mathrm{~d} b}{b} \mathrm{~d} x \\
& \Rightarrow \quad-\frac{\mathrm{d} E}{\mathrm{~d} x}=\frac{4 \pi Z^{2} e^{4}}{m_{e} v^{2}} n \int_{b_{\min }}^{b_{\max }} \frac{\mathrm{d} b}{b}=\frac{4 \pi Z^{2} e^{4}}{m_{e} v^{2}} n \ln \frac{b_{\max }}{b_{\min }}
\end{aligned}
$$

- determination of relevant \boldsymbol{b} range
$\boldsymbol{b}_{\text {min }}$: for head-on collisions in which kinetic energy transfer is maximum $\quad W_{\max }=2 m_{e} c^{2} \beta^{2} \gamma^{2}$

$$
\Delta E_{\max }\left(b_{\min }\right)=\frac{2 Z^{2} e^{4}}{m_{e} v^{2} b_{\min }^{2}} \stackrel{\text { def }}{=} W_{\max } \quad \Rightarrow \quad b_{\min }=\frac{Z e^{2}}{\gamma m_{e} v^{2}}
$$

> $\boldsymbol{b}_{\text {max }}$: principle of adiabatic invarianc \rightarrow e- bound to atom, circulating nucleus with mean orbital frequency \bar{v}
\rightarrow energy transfer: time interval of distortion \leq period duration

$$
\Delta t=\frac{b}{\gamma v} \leq \tau=\frac{1}{\bar{v}} \quad \Rightarrow \quad b_{\max }=\frac{\gamma v}{\bar{v}}
$$

$$
\longrightarrow-\frac{\mathrm{d} E}{\mathrm{~d} x}=\frac{4 \pi n Z^{2} r_{e}^{2} m_{e} c^{2}}{\beta^{2}} \ln \left(\frac{\gamma^{2} m_{e} v^{3}}{Z e^{2} \bar{v}}\right)
$$

with $\quad r_{e}=\frac{e^{2}}{4 \pi \varepsilon_{0} m_{e} c^{2}} \rightarrow$ classical electron radius, $\quad n=N_{A} \rho \frac{Z_{T}}{A_{T}} \rightarrow \quad$ electron density

Bethe-Bloch (-Sternheimer) Formula

- quantum mechanical based calculation of collisional energy loss:

$$
-\left\langle\frac{\mathrm{d} E}{\mathrm{~d} x}\right\rangle_{\text {coll }}=4 \pi N_{A} r_{e}^{2} m_{e} c^{2} \cdot \rho \frac{Z_{t}}{A_{t}} \cdot \frac{Z_{p}^{2}}{\beta^{2}} \ln \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{I}-\beta^{2}-\frac{\delta}{2}-\frac{C}{Z_{t}}\right)
$$

fundamental constants

$r_{e}:$	classical electron radius
$m_{e}:$	mass of electron
$N_{A}:$	Avogadro's number
$c:$	speed of light

) absorber medium

$I:$	mean ionization potential
$Z_{t}:$	atomic number of absorber
$A:$	atomic weight of absorber
$\rho:$	density of absorber
$\delta:$	density correction
$C:$	shell correction

> incident particle
Z_{p} : charge of incident particle
β : reduced velocity
γ : Avogadro's number
$W_{\text {max }}=2 m_{e} c^{2} \beta^{2} \gamma^{2}$
max. energy transfer in single collision
\rightarrow density correction δ :
shielding of distant electrons because of polarization
\rightarrow shell correction C :
(high energies)
depends on electron orbital velocities (low energies)
$-$
general form

$$
\frac{\mathrm{d} E}{\mathrm{~d} x} \propto \frac{Z_{p}{ }^{2}}{\beta^{2}} \ln \left(a \beta^{2} \gamma^{2}\right)
$$

Bethe-Bloch Formula (2)

HELMHOLTZ

- collisional energy loss rates for different materials

Bethe-Bloch and Particle Range

- comments
$>$ instead of energy loss per distance \rightarrow frequently use of $\frac{\mathbf{1}}{\boldsymbol{\rho}} \frac{\mathbf{E}}{\mathbf{d} \boldsymbol{x}} \quad$ with mass distribution $\mathrm{d} x=\rho \mathrm{d} s$ Mass Stopping Power S with $\mathrm{d} s$ in $[\mathrm{cm}], \quad \rho$ in $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$
$>\frac{1}{\rho} \frac{\mathrm{~d} E}{\mathrm{~d} x}$ for MIP weakly depends on absorber matereial $\quad \rightarrow \quad$ typically $\sim 2 \mathrm{MeVg}^{-1} \mathrm{~cm}^{2}$
$>$ description of mean energy loss due to ionization and excitation for all charged particles \rightarrow exception: $\mathbf{e}^{ \pm}$ for $\mathbf{e}^{ \pm}$: equal particle masses \rightarrow different impact kinematics
- average distance heavy charged particle will travel \rightarrow range
$>$ energy loss \rightarrow statistical process
> heavy charged particles loose only small fraction of their energy in collisions with atomic electrons
\rightarrow experience only slight deflection from scattering with electrons
\rightarrow travel in nearly straight lines through matter
> small gradual amount of energy transferred from beam particle to absorber
\rightarrow particle passage treated as continuous slowing down process
- mean particle range
> Continuous Slowing Down Approximation
\rightarrow CSDA-range

$$
R_{C S D A}(T)=\int_{0}^{T} \mathrm{~d} T\left[-\frac{\mathrm{d} E}{\mathrm{~d} x}\right]^{-1}
$$

Particle Range of Heavy Particles

- transmitted fraction / energy loss as function of penetration depth

courtesy: D. Futyan
(Geneva University, Switzerland)

- application: tumor therapy
> possibility to deposit rather precise dose at well defined depth
(body) by variation of beam energy
\rightarrow initially with protons
\rightarrow later also with heavier ions (e.g. ${ }^{12} \mathrm{C}$)
M. Cianchetti and M. Amichetti, International Journal of Otolaryngology, Vol. 2012, Article ID 325891

$\mathbf{e}^{+} / \mathbf{e}^{-}$Interaction - Basic Considerations

- $\mathrm{e}^{+} / \mathrm{e}^{-}$are "quickly" relativistic
) small rest mass energy $\mathrm{E}_{0}=\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=511 \mathrm{keV}$
\rightarrow relativistic effects have to be taken into account to deduce meaningful results
- large energy transfer possible
> simple (non-relativistic) kinematical consideration:
maximum energy transfer \rightarrow head-on collision

$$
\frac{\Delta E_{\max }}{T_{\text {kin }}}=4 \frac{m_{e} M}{\left(m_{e}+M\right)^{2}} \xrightarrow{M=m_{e}} 1
$$

- incident electron and target electron are indistinguishable
> convention:
electron with higher energy \rightarrow "beam particle"
> maximum energy transfer $\rightarrow \mathbf{T / 2}$
different energy loss for electrons and positrons
- incident positron can transfer all energy to target electron in single collision
$>$ maximum energy transfer $\rightarrow \boldsymbol{T}$
- large angular deviations possible due to large energy transfer > curled electron / positron trajectories
- radiative losses > emission of Bremsstrahlung

$10 \mathrm{MeV} \mathrm{e}, \mathrm{p}$ and α in silicon

Electron / Positron Interaction with Matter

HELMHOLTZ

- interaction modes
(1) ionization
\rightarrow distant collisions (small transferred energy), same procedure as for Bethe-Bloch equation
(2) Møller $\left(e^{ \pm}-e^{ \pm}\right)$scattering
$\rightarrow \quad$ close collisions (large transferred energy), taking into account relativistic, spin and exchange effect
(3) Bhabha $\left(e^{-}+e^{+} \rightarrow e^{-}+e^{+}\right)$scattering
$\rightarrow \quad$ similar to Møller scattering
(4) electron-positron annihilation
(5) Bremsstrahlung

el.-magn. radiation emission by an electron in Coulomb field of nucleus

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Collisional Stopping Power

HELMHOLTZ

- modified Bethe-Bloch formula
> not only includes inelastic impact ionization process
\rightarrow also scattering mechanisms such as Møller or Bhabha scattering

$$
S_{\text {coll }}=-\left\langle\frac{1}{\rho} \frac{\mathrm{~d} E}{\mathrm{~d} x}\right\rangle_{\text {coll }}=4 \pi N_{A} r_{e}^{2} m_{e} c^{2} \cdot \frac{Z_{t}}{A_{t}} \cdot \frac{1}{\beta^{2}}\left[\ln \left(\frac{T}{I}\right)+\frac{1}{2} \ln \left(1+\frac{\tau}{2}\right)^{1 / 2}+F^{\mp}(\tau)-\frac{\delta}{2}\right]
$$

with $\quad T$: kinetic energy of electron / positron

$$
\tau=\frac{T}{m_{e} c^{2}}
$$

) electrons:

$$
F^{-}(\tau)=\frac{1-\beta^{2}}{2}\left[1+\frac{\tau^{2}}{8}-(2 \tau+1) \ln 2\right]
$$

) positrons:

$$
F^{+}(\tau)=\ln 2-\frac{\beta^{2}}{24}\left[23+\frac{14}{\tau+2}+\frac{10}{(\tau+2)^{2}}+\frac{4}{(\tau+2)^{3}}\right]
$$

- free codes / tables available
> collisional, radiative, nuclear stopping power and more for e, p, α particles

Radiative Stopping Power

HELMHOLTZ

- Bremsstrahlung
) photon emission by charged particles, accelerated in Coulomb field of nucleus
\rightarrow QED process (Fermi 1924, Weizsäcker-Williams 1938)
- energy loss / stopping power
$>$ screening of nucleus due to atomic electrons not taken into account
\rightarrow only valid for large particle energies E

$$
S_{r a d}=-\left\langle\frac{1}{\rho} \frac{\mathrm{~d} E}{\mathrm{~d} x}\right\rangle_{r a d}=4 \alpha N_{A} \underbrace{\left(\frac{e^{2}}{m c^{2}}\right)^{2}} \cdot \frac{Z_{t}\left(Z_{t}+1\right)}{A_{t}} \cdot E \cdot \ln \left(\frac{183}{Z_{t}^{1 / 3}}\right)
$$

r_{e}
C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

$$
\Rightarrow \quad S_{r a d} \propto Z_{t}^{2} \frac{E}{m^{2}} \quad \rightarrow \text { light particles }\left(\mathrm{e}^{ \pm}\right), \text {high energies } E
$$

- critical energy: $\quad S_{r a d}\left(E_{c}\right) \stackrel{\text { def }}{=} S_{\text {coll }}\left(E_{c}\right)$
> different approximations

$$
\begin{aligned}
E_{c} & =\frac{800 \mathrm{MeV}}{Z_{t}+1.2} \quad \text { B. Rossi, High Energy Particles, Prentice-Hall Inc., } 1952 \\
E_{c} & =\frac{610 \mathrm{MeV}}{Z_{t}+1.24} \quad \text { for solids, } \quad E_{c}=\frac{710 \mathrm{MeV}}{Z_{t}+0.92} \quad \text { for gas }
\end{aligned}
$$

Total Stopping Power and Range

HELMHOLTZ

- total stopping power: sum of individual contributions

$$
\Rightarrow \quad S_{t o t}=S_{\text {coll }}+S_{\text {rad }}
$$

- range
> notion „range of electrons" not so clear than for heavy particles
\rightarrow e-trajectory cannot be considered as straight line
\rightarrow large angular deviations possible
\rightarrow important fraction of energy may be lost in single collision
> penetration depth / trajectory length
\rightarrow random with large distributions $\quad \rightarrow \quad$ straggling
, CSDA range: $\quad R_{c S D A}(T)=\int_{0}^{T} \mathrm{~d} T\left[S_{\text {tot }}\right]^{-1}$
\rightarrow overestimates penetration depth
) several alternative range definitions
\rightarrow extrapolated range $r_{e x}$ often in use

> different parametrizations for $\boldsymbol{r}_{\boldsymbol{e x}}$

e.g.: T. Tabata et al., NIM B119 (1996) 463

Quintessence

HELMHOLTZ

- particle interaction in matter difficult to treat analytically
> approximative expressions and parametrizations exists
\rightarrow good for first insight \rightarrow have a feeling what's going on...
- typical domain of simulation toolkits
> depending on task / lab strategy / personal interest...
$\rightarrow \quad$ different codes with different pros and cons
> Geant

http://geant4.web.cern.ch/
http://www.fluka.org/fluka.php
http://rcwww.kek.jp/research/egs/egs5.html

cóp
 The CERN Accelerator School

Particle Interaction with external Electro-Magnetic Field

- Bunch Length Measurements
- transverse Beam Profile Diagnostics (Laser Wire)
- ...

Tuusula (Finland), 2-15 June 2018

Interaction with external EM Fields

HELMHOLTZ

- external electromagnetic field acting as
> signal source: photon scattered at beam particles
$\rightarrow \quad$ probing beam shape with external laser (laser wire)
) beam manipulator
\rightarrow atomic excitations of ion beams
\rightarrow force acting on charged particle beam
- scattering of photons on charged particles
> Compton effect: photon scattered on a „quasi free" electron

$$
\gamma+\text { Atom } \rightarrow \gamma+e^{-}+\text {Ion }^{+}
$$

$\rightarrow \quad$ photon energy large compared to binding energy of electron
\rightarrow photon is deflected and wavelength λ changes due to energy transfer $\rightarrow \quad$ photon loses energy

) cross section: Klein-Nishina formula

$$
\frac{\frac{\mathrm{d} \sigma_{c}}{\mathrm{~d} \Omega}=\frac{1}{2} \underbrace{\left(\frac{e^{2}}{m_{0} c^{2}}\right)^{2}\left\{\frac{1}{1+\varepsilon(1-\cos \theta)}\right\}^{2}\left[1+\cos ^{2} \theta+\frac{\varepsilon^{2}(1-\cos \theta)^{2}}{1+\varepsilon(1-\cos \theta)}\right]}_{r_{e}} \text { with } \quad \varepsilon=\frac{\hbar \omega}{m_{0} c^{2}}}{r^{2}}
$$

$$
\Rightarrow \frac{\mathrm{d} \sigma_{c}}{\mathrm{~d} \Omega} \propto \frac{1}{\left(m_{0} c^{2}\right)^{2}}
$$

only relevant for $\mathrm{e}^{ \pm}$

Inverse Compton Scattering

HELMHOLTZ

- electron / positron accelerator
> target particles not at rest
\rightarrow application of Klein-Nishina only in particle rest frame \rightarrow Lorentz boost to LAB frame
- inverse situation at accelerator
> high energy ${ }^{ \pm} \quad$ (beam particles)
> low energy photons (optical laser)
photon gains energy in scattering process

- inverse Compton scattering

) cross section

$$
\frac{\mathrm{d} \sigma_{i c}}{\mathrm{~d} \varpi}=\frac{3}{8} \frac{\sigma_{T}}{\epsilon_{1}}\left[\frac{1}{1-\varpi}+1-\varpi+\left\{\frac{\varpi}{\epsilon_{1}(1-\varpi)}\right\}^{2}-\frac{2 \varpi}{\epsilon_{1}(1-\varpi)}\right]
$$

T. Shintake, Nucl. Instrum. Meth. A311 (1992) 453
with

$$
\begin{array}{ll}
\sigma_{T}=\frac{8 \pi r_{e}{ }^{3}}{3}: & \text { Thomson cross section } \\
\epsilon_{1}=\frac{\gamma \hbar \omega_{0}}{m_{e} c^{2}}: & \text { normalized energy of laser photons } \\
\varpi=\frac{\hbar \omega_{\gamma}}{E}: & \text { normalized energy of emitted photons }
\end{array}
$$

Beam Manipulation with EM Fields

- no direct beam diagnostics
> preparation for beam diagnostics measurement
\rightarrow beam current (difference), beam profile, ...
- laser based photoejection of H^{-}beams
) proton accelerator $\rightarrow \mathrm{H}^{-}$gun
$>$ stripping for \boldsymbol{p} generation \rightarrow charge exchange via foil
\rightarrow laser (2 electron photoejection)
> laser photo neutralization for beam diagnostics
$\rightarrow \quad$ e.g. difference in bunch charge before / after neutralization
- Transverse Deflecting Structure (TDS)
> iris loaded RF waveguide structure
> designed to provide hybrid deflecting modes $\left(\mathrm{HEM}_{1,1}\right)$
$\rightarrow \quad$ linear combination of $\mathrm{TM}_{1,1}$ and $\mathrm{TE}_{1,1}$ dipole modes
$\rightarrow \quad$ resulting in transverse force that act on synchronously moving relativistic particle beam
) used as RF deflector \rightarrow intra-beam streak camera
(bunch length diagnostics)
binding energy $=0.756 \mathrm{eV}$

$$
H^{-}+\hbar \omega \rightarrow H^{0}+e^{-}
$$

