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Machine Tune

* Machine Tune

o Characteristic Frequency

QF : :
of the Magnetic Lattice
Given by the strength of the
Quadrupole magnets

QD QF

QF

SD SD

 Parameters per plane
— Q : Full betatron tune
0=11.25 — ( : Fractional tune (operating point)

qg=0.25

« Real life more complex
— horizontal & vertical oscillations couple
— betatron motion at large amplitudes non-linear
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Betatron motion and the Tune
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Betatron motion and the Tune

e Beam size

— defined by incoherent betatron motion of
all particles

- beam size | « Particles have momentum spread

= — gives spread in focussing by quadrupoles

2 f e : )

g —h gives rise to spread in the frequency of
the betatron oscillations (chromaticity)

« Coherent oscillations will de-cohere
— Hadrons do not forget!
— once hit they oscillate (practically) forever
— any excitation must be kept very small

M. Gasior (CERN)
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Tune Measurement

YASP DV LHCRING / INJ-TEST-NB / beam 1

* Integer tune
— seen in orbit response
— ~550 dual plane BPMs
— H: 59, V: 64 for LHC e ’

* Fractional tune (q)
— Seen from turn-by-turn signal of single BPM if beam is given a kick
— Fast Fourier Transform (FFT) of oscillation data gives resonant frequency (q)

amplitude [a.u.]
magnitude [a.u.]

800 1000 . . 0.3 0.4 0.5
turn number frequency [f _ ]
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Tune Measurement — the principle
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beam response

» A stimulus is needed to globally excite the beam
— Resulting betatron oscillations observed on a position pick-up

— Time domain signals usually converted to frequency domain
 Displays which frequencies are present in the oscillations




Tune Measurement — the principle

* Observable is the turn-by-turn position from a BPM

* BPM electrode signal has temporal shape related to the
temporal structure (intensity profile) of the passing beam
— Most of the signal produced is linked to intensity

* On top we look for very small variations linked to position
— Such signals are very difficult to simulate in the lab

2R\
)

M. Gasior (CERN)
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(&) Tune Measurement — the principle

« Atypical perfect detection scheme

M. Gasior (CERN)

« Dynamic range issues
— Signals related to betatron oscillations are small with respect to beam offset signals
— Even for centred beam leakage is of order 1-10 % (of 100V!) for ns beam pulses




BaseBand Tune (BBQ) Measurement System

* Direct Diode Detection — the advantages
— Single RF Schottky diode can handle up to 50 V pulses
« Higher with a few diodes in series (LHC detector has 6 diodes)

— Betatron modulation downmixed to below the revolution frequency
 Allows efficient signal processing with inexpensive, high resolution ADCs

— Just AM radio receiver — so what’s new?
» Slow discharge & use of low noise, high impedance amplifiers
 Brutal filtering of revolution line & everything outside band of interest

M. Gasior (CERN)

pick-up —>’% diode peak detectors (S&H)
high frequency
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LHC BBQ System Performance
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Real-Time Tune Display
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PLL Tune Measurement

kicker

piCk—Up : — &= 1000 Hz
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Excitation Detection 0.0 k - —
A sin (270, .1) B sin (2nQ ..t + ¢) ' o

But g, = q,s for forced harmonic oscillator (our beam) = %2AB [ cos (-¢ )] (DC value)
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PLL Tune Measurement

plck—up : — a= 1000 Hz
2 ; | — b=1100H=z
— & *b=2100 & 100 Hz

Excitation Detection 0.0 k - —
A sin (270, .1) B sin (2nQ ..t + ¢) ' o

Low Pass

But g, = q,s for forced harmonic oscillator (our beam) = %2AB [ cos (-¢ )] (DC value)
Feed back this value to change exciter frequency (voltage controlled oscillator)

when q,.; = Qune then ¢ = /2 for harmonic oscillator : ¥2AB[cos (-n/2)]=0
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lllustration of PLL tune locking

) PLL locks on 90°
point of Beam
Transfer Function

.
N
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lllustration of PLL tune tracking

A PLL then tracks
tune as it moves
keeping the phase

locked on 90°
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PLL Tune Tracking Example

« Early example of PLL Tune tracking at RHIC during a ramp
— Comparison to kicked tune measurement (green & blue solid dots)

« Advantage
— Much lower excitation frequency possible due to known detection frequency
— Allows continual tracking without significant emittance blow-up

« Disadvantage

— Can lock to synchrotron sidebands or spurious peaks
« Same is also true of peak fitter for standard FFT measurement

Fractional Tune

Time
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Chromaticity Measurement
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Introduction

 Machine Chromaticity
Spread in the Machine
Optics Analogy: Lens

[Quadrupole] Tune due to Particle

Energy Spread
Controlled by Sextupole
magnets

Focal length is
Achromatic incident light energy dependent
[Spread in particle energy]

Generalised

First Order
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Measurement Techniques

Tune change for different beam

Standard method used on all machines.

momenta <> | Can be combined with PLL tune tracking
to give on-line measurement
Width of tune peak or Model dependent, non-linear effects, not
damoing time P <= | compatible with active transverse
Ping damping
Amolitude ratio of svnchrotron Difficult to exploit in hadron machines
i d(l,oban ds y <& | with low synchrotron tune,
Influence of collective effects
Used on many machines & ideally suited
Width ratio of Schottky sidebands <> | to unbunched or ion beams.
Measurement is typically very slow
Bunch spectrum variations durin Difficult to disentangle effects from all
betatronposcillations J <> | other sources — e.g. bunch filling
patterns, pick-up & electronics response
Head-tail phase advance Good results on several machines but
(same as above, but in time <= |requires kick stimulus = emittance

domain)

growth!
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RF Momentum Modulation Techniques

 DC Change in Momentum

— Typically used on fast cycling machines

— Measure the tune throughout cycle
« Requires continuous tune measurement capability

— Compare results for 2 or 3 cycles with slight energy
offset to calculate chromaticity

A(Q <—— measured tune change

Ap / p ~*+—— RFinduced momentum change (known)

“Chromaticity

Ea0e EAEDLEE00E e ENE @,

e aeeammnnnl Old example from CERN-SPS
|

| | — Q difference during the ramp for 2
g Su = = N radial steering (Ap/p) settings
s | "w’} — Complete picture of chromaticity

throughout the cycle
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RF Momentum Modulation Techniques

 Slow RF Variation

— Apply time varying RF modulation

— Continuously measure the tune
« Amplitude of tune variation proportional to chromaticity

E;;l\"iewsv B m| 2= Calk

QBEAML, H [10/10/13 07:00:23]

B More |38

E §7 | QBEAML, V [10/10/15 07:00:23]

06:59:30 06:59:40 06:5%:50 07:00:00 07:00:10 07:00:20
Time

06:5%:30 06:59:40 0&:5%:50 07.00:00 07:00:10 07.00:20
Time

06:59:30  06:39:40

06:59:30 06:3%:40 06:39:50 07:00:00 07:00:10 07:00:20

Time

06:39:50  07:00:00 070010 07:00:20

Time

Example from the LHC

— Sinusoidal RF modulation
at 0.05Hz

— Tune continuously tracked
In all planes of both beams

— Chromaticity calculated
once acquisition complete
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RF Momentum Modulation Techniques

 Slow RF Variation

— Apply time varying RF modulation
— Continuously measure the tune

« Amplitude of tune variation proportional to chromaticity

B o¥e 9.1V B18T8 5 Lave 10bue

‘ s=—-== Example from CERN-LEP
gy 4 e ee—==——=== — Triangular RF modulation
AR — Allows sign to be easily
et Ay determined
CONTROL. oL 20nm RERSN

Applied Frequency Shift

Q;, & Q, Variation
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RF Momentum Modulation Techniques

« Slow RF Variation
— Apply time varying RF modulation

— Continuously measure the tune
« Amplitude of tune variation proportional to chromaticity

— Need to make sure of delays in RF modulation & acquisition
chains to obtain correct sign when using symmetrical
modulation function

Early example from RHIC

— Phase slip between excitation
& acquisition sometimes
leads to incorrect sign of
chromaticity
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RF Momentum Modulation Techniques

« Dynamic Measurement Examples

— LHC Ramp

* RF continuously modulated
« Tune measured using the sensitive Base Band Tune (BBQ) system

« Tune calculated from peak fitting of resulting frequency spectrum
« Chromaticity calculated from amplitude of tune modulation

B1V_result

Wﬂmﬁ .

_‘_-.'."‘ ‘.I||\".‘|‘I‘I||II|.J.J.’1‘|;W.';';“. p I / ]
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RF Momentum Modulation Techniques

 RF Phase Modulation
Proposed by D. McGinnis (FNAL)
Phase modulate the RF instead of frequency modulation
« Possible to achieve faster modulation
Measure demodulated tune signal

« Tune tracker supplies carrier frequency but does not need to track modulation
Tevatron Results for 5° modulation @ 23Hz

TRACE A: Chi PM Spectrun
278 BR Marker 23.00 Hz 219.495 Hrodrms

radrms

McGinnis* Method vs Expected x

—— AO_‘ = 10‘
| Aﬂ.u:s.

McGinnis* Method

el Al

Start: O Hz Stop: 100 Hz
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Summary of RF Momentum Modulation

* Frequency modulation

— Standard chromaticity measurement technique for all machines
« Usually using DC frequency offset or slow frequency modulation

— On-line calculation requires continuous tune measurement

— Typical parameters
« RF momentum modulation of 104 to 102 @ < 1Hz
— Generally acceptable orbit changes of 0.1 to 1mm for 1m dispersion
« Chromaticity resolution of 1 unit requires tune resolution of 10~ to 10

« Can be achieved by
— Demodulating at correct frequency
— Averaging tune measurements or adapting PLL bandwidth

+ Trade-off between RF modulation amplitude and frequency

* Phase modulation
— Promising initial tests but not applied operationally
— May be limited by RF power required at higher frequencies
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Measurement Techniques

Tune change for different beam

Standard method used on all machines.

momenta <> | Can be combined with PLL tune tracking
to give on-line measurement
Width of tune peak or Model dependent, non-linear effects, not
damoing time P <= | compatible with active transverse
Ping damping
Amolitude ratio of svnchrotron Difficult to exploit in hadron machines
i def)ban ds 4 <= | with low synchrotron tune,
Influence of collective effects
Used on many machines & ideally suited
Width ratio of Schottky sidebands <> | to unbunched or ion beams.
Measurement is typically very slow
Bunch spectrum variations durin Difficult to disentangle effects from all
betatronposcillations J <> | other sources — e.g. bunch filling
patterns, pick-up & electronics response
Head-tail phase advance Good results on several machines but
(same as above, but in time <= |requires kick stimulus = emittance

domain)

growth!
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Amplitude of Synchrotron Sidebands

« Chromaticity gives rise to synchrotron sidebands around tune
— Tune variation with longitudinal motion at the synchrotron frequency

30711/00 15:59:57
Tail Dat
(-19.0 |

amplitude [a.u.]
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Amplitude of Synchrotron Sidebands

« Background

— Presented by R.H. Siemann

* Physics of Particle Accelerators (1989)
— Demonstrated in the Tevatron

« G. Jackson (1989)

« Chromaticity calculated from ratio of synchrotron sidebands

— Sidebands follow Bessel functions with chromaticity term
— Relies on absence of collective effects

Tevatron Results

4db ﬂ 'mi
M\.ﬁ\

MJ“ AP My ) b s B

,=04  £,=07

21. 395 MHz (g, = 0.4152)

B
}—7 2.5kHz (AqB = 0.0524) —-{
Av,

= 6.3 H2
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Amplitude of Synchrotron Sidebands

* Recent measurement - DIAMOND Light Source (UK)

— RF modulation changes orbit - not compatible with user operation

— Looking for technique to measure chromaticity on-line

 Measure Beam Transfer Function (BTF) on single bunch
— Using transverse bunch by bunch feedback system
— Emittance blow-up of single bunch irrelevant

G. Rehm (DIAMOND)

10

~ Normalised Beam Transfer Function (BTF)
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Relative amplitude of upper sideband
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Amplitude of Synchrotron Sidebands

 From Empirical Fit to Theoretical Approach @ DIAMOND
— Use expression for sideband amplitude that is ratio of Bessel functions

— As relationship cannot be inverted analytically, use a piecewise fit with
a square root and a 9 order polynomial

— The only other knowledge required is energy spread
« Measured from beam size in two locations

sideband amplitudes AL, AR, Ac conversion to s=Qx'*cE/QS

vertical chromaticity, single bunch, -24dB, dwell 100, backwards
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Amplitude of Synchrotron Sidebands

« Dealing with High Intensity Effects @ GSI (DE)
— Modification of tune spectra by space charge & impedance
— Measured using Base Band Tune system

— Relative heights & mode structure given by chromaticity
« Can be calculated with simplified analytical models

0§

031 032 033 034

Power P/ dB ' dB

0§ &

Power .

051 03 033 0.4
R. Singh (GSI)




Measurement Techniques

Tune change for different beam

Standard method used on all machines.

momenta <> | Can be combined with PLL tune tracking
to give on-line measurement
Width of tune peak or Model dependent, non-linear effects, not
damoing time P <= | compatible with active transverse
Ping damping
Amplitude ratio of svnchrotron Difficult to exploit in hadron machines
i delzoban ds y <= | with low synchrotron tune,
Influence of collective effects?
Used on many machines & ideally suited
Width ratio of Schottky sidebands <= | to unbunched or ion beams.
Measurement is typically very slow
Bunch spectrum variations durin Difficult to disentangle effects from all
betatronposcillations J <> | other sources — e.g. bunch filling
patterns, pick-up & electronics response
Head-tail phase advance Good results on several machines but
(same as above, but in time <& | requires kick stimulus = emittance

domain)

growth!
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Chromaticity from Schottky Spectra

« Schottky a powerful tool for non-invasive measurements
— ldeally suited to coasting (unbunched) beams & heavy ions (Z?2 relationship)

— Rely on detecting statistical fluctuations in position of finite number of particles
» Acquisition times are therefore typically long

— Bunched beam Schottky challenge
« Measurement of small signals in presence of revolution lines up to 100000 times higher

£ TevTuneShottky Plots

-- Proton Horizontal --

=
=
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@
(=]
o
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Frequency kHz

Raw WFit

‘® Freeze Updating Updates requested
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Chromaticity from Schottky Spectra

« Chromaticity from Schottky spectra

— From difference in widths of lower & upper sidebands on given
revolution (fo) harmonic (n)

A
Af+—fo Pl + o + 0¢8] ~ fpp[nxniQ’]

— ldeally detect at n where Q' of same order as n x n
« Width variations are then dominated by chromaticity

e Constraints

— Need to avoid band overlap where sidebands merge
« Keep n low

— Need to be outside coherent bunch spectrum for bunched beams
« Keep n high to minimise revolution components

— Trade-off may not be optimal for chromaticity measurements

« E.g. LHC where n ~ 430000 (4.8 GHz & f,= 11 kHz) gives n x n ~ 140
« One unit of chromaticity represents < 2% variation in width difference
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Chromaticity from Schottky Spectra

 Bunched beam Schottky example from the LHC
— Variation in sideband widths as chromaticity is changed from 2 to 15

Tune = 0.285 +- 0.00
Chrom. 6.3 +- 0.2

Frequency offset from revolution harmonic at 4.81 GHz [kHz]
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Measurement Techniques

Tune change for different beam

Standard method used on all machines.

momenta <> | Can be combined with PLL tune tracking
to give on-line measurement
Width of tune peak or Model dependent, non-linear effects, not
damoing time P <= | compatible with active transverse
Ping damping
Amplitude ratio of svnchrotron Difficult to exploit in hadron machines
i delzoban ds y <= | with low synchrotron tune,
Influence of collective effects
Used on many machines & ideally suited
Width ratio of Schottky sidebands <> | to unbunched or ion beams.
Measurement is typically very slow
Bunch spectrum variations durin Difficult to disentangle effects from all
betatronposcillations J <> | other sources — e.g. bunch filling
patterns, pick-up & electronics response
Head-tail phase advance Good results on several machines but
(same as above, but in time <= | requires kick stimulus = emittance

domain)

growth!
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Head-Tail Chromaticity Measurement

« Developed at CERN in late 1990’s for fast chromaticity
measurement & possible alternative to RF modulation in LHC
— Kick all particles in bunch to same initial phase
— Measure subsequent phase difference of head & tail over synchrotron period

Simulated Bunch Evolution for Zero Chromaticity

/\/\/\/\ 0 50 100 150 200 250 300 350 400

Turn Number

Positive Chromaticity Ap/p
Below Transition |

Q> Qy

7
=
=

S

=

=
o
2 =
=
=3
73

S

o

-
(9]

Pick-up Response (arb)
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Head-Tail Chromaticity Measurement

e Demonstrated in CERN-SPS & Tevatron but had limitations

— Needed strong kick to overcome static orbit offsets
» Various electronic means attempted to overcome this with little success

— Affected by space charge at low energy
— Can suffer from short decoherence times (< synchrotron tune)

« Should also work with continuous excitation (S. Fartoukh)
— Requires sensitive tune measurement gated on head & tail of bunch
— Attempts to adapt base band tune system for this not successful to date
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o Y N " | T
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Chromaticity Summary

Many techniques available to measure chromaticity

RF frequency modulation most widely used
— Sufficient for majority of machines

— Possibility for on-line measurement
* Requires sensitive, continuous tune measurement system

— Main limitations

* Induced orbit change prohibits on-line measurement at synchrotron light
sources & high intensity colliders

* Relatively slow measurement rate

Schottky diagnostics
— ldeal for unbunched beams & heavy ion machines
— Challenging for bunched beams

Several techniques could do with another look
— Fast RF phase modulation with tune spectrum demodulation
— Low excitation strength Head-Tail measurements
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Coupling Measurement
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Coupling

 Start with decoupled machine
— Only horizontal tune shows up in horizontal FFT (& vertical in vertical FFT)

« Gradually increase coupling (skew quadrupole field)
— Vertical mode shows up in horizontal FFT & frequencies shift

Set Tunes

Vl lH

Ver

>

@)

Amplitude

_—)_
Hor

FFT of Horizontal A J \
Frequency

Acquisition Plane
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Coupling

Measured Tunes 1 Set Tunes
[ \ f . \ 2
QI,II =E Qx'l'Qyi\/(Qx_Qy) + |C_|2

 Measured tunes - the physical observables seen in FFT
— Often called the ‘normal modes’ or ‘eigenvalues’

e Settunes
— What the tunes would be in absence of coupling

— Tune splitA=(Q,-Q,)
» Difference between the set horizontal & vertical tunes

« Magnitude of the coupling coefficient |C|
— The closest Q, & Q,, can approach each other - ‘closest tune approach’
— Any closer is a ‘forbidden zone’ in a system of coupled oscillators
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Measuring Coupling

3 Main Methods

— Orbit changes

- Change orbit in one plane by exciting steering correctors or by
changing injection conditions & measure effect in other plane

* Large coupling sources identified as locations where horizontal
orbit change generates a vertical kick & vice versa

* Acquire large numbers of orbits for excitation of different
correctors to determine skew quadrupole component of each
magnet

— Closest tune approach
» Approach horizontal & vertical tunes until they cross
« Coupling derived from how close tunes can approach

— Kick response

» Kick in one plane & measure in other using
— Tune FFT or Phase Locked Loop
— Pairs of BPMs to derive Resonance Driving Terms
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Measuring Coupling — Closest Tune Approach

Measured Tunes 1 Set Tunes
[ \ f A \ 2
QI,II =E(Qx+Qyi\/(Qx_Qy) + |C_|2)

« Measure tunes while changing the quadrupole strength
— Coupling Measurement in LEP using Phase Locked Loop tune measurement
— Coupling measurement in LHC using base band tune measurement

TUNFHTSTORYC Lune
hortzoestal & werlical

47,1001
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Time [ms]
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Measuring Coupling — Kick Response

« Kick Beam in one plane and measure oscillations in other

— Observe with tune measurement system
— Magnitude of local coupling can be derived from amplitude ratios of tune peaks
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Measuring Coupling — Kick Response

* Resonant Driving Terms

— Using the amplitude & phase of FFT spectrum RDTs
proportional to the coupling strength can be calculated
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Coupling via Resonant Driving Terms

« Using a single BPM
— The Normal FFT (tune measurement) Ry Ay
— Spectrum is mirrored around half revolution «_ = _- < \\)
« Cannot distinguish phase of oscillation -

* Using a pair of BPMs
— Produce a complex variable

— Can reconstruct both amplitude & phase
T. Persson (CERN)
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Coupling via Resonant Driving Terms

« Example from the LHC
— Kick Beam & measure oscillations using BPMs throughout the ring
— Reconstruct local coupling at each BPM location

— Clear difference between local & average “global” coupling

« FFT based on tune measurement system (single location) would not have
detected such a structure

Rhodri Jones — CERN Beam Instrumentation Group Tune, Chromaticity and Coupling Measurements — Bl CAS 2018



Coupling via Resonant Driving Terms

« Example from the LHC
— Kick Beam & measure oscillations using BPMs throughout the ring
— Reconstruct local coupling at each BPM location

— Clear difference between local & average “global” coupling

« FFT based on tune measurement system (single location) would not have
detected such a structure

— Correct on an arc by arc basis using skew quadrupoles
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Summary

 Tune Measurement
— A basic “must have” diagnostic system

— Emittance preservation an important issue for hadron machines
iImplying low amplitude excitation

— Single kick, single measurement systems now replaced by continuous
measurement systems

» High sensitivity systems making use of um level residual oscillations
« Phase Locked Loops
« Chromaticity Measurement
— Workhorse is tune measurement during RF modulation
— Large array of other techniques available for specific situations

* Coupling Measurement

— Important to decouple machine for beam stability & feedback stability

— Kick response the main technique exploited
* Tune FFT or Phase Locked Loop
« Pairs of BPMs to derive Resonance Driving Terms
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