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Introduction



Accelerator lattice cell
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 An accelerator is usually build using a number of basic ‘cells’.

 The cell layouts of an accelerator come in many subtle variants.

 A simple FODO cell usually contains:

– Dipole magnets to bend the beams,

– Quadrupole magnets to focus the beams,

– Beam position monitors (BPM) to measure the beam position,

– Small dipole corrector magnets for beam steering.

– Sextupole magnets to control off-energy focussing.

Quadrupole 

(focussing)

Quadrupole 

(de-focussing)

Dipole Dipole

Beam 

position 

monitor

Beam 

position 

monitor

Dipole 

corrector

Dipole 

corrector

beam

Schematic of a ½ cell



Dipole magnet
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 The dipole has two magnetic poles and generates a homogeneous field 

providing a constant force on all beam particles – used to deflect the beam.

– A dipole corrector is just a small version of such a magnet, dedicated to steer the 

beam as we will see later.

Fx

x

Horizontal deflection

By
Fy

x

Vertical deflection

Bx

BqF


 v

Lorentz force:

orthogonal to the speed and 

magnetic field directions

x

y



Quadrupole magnet
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 A quadrupole has 4 magnetic poles.

 A quadrupole provides a field (force) that increases linearly with the 

distance to the quadrupole center – provides focussing of the beam.

– Similar to an optical lens, except that a quadrupole is focussing in one plane, 

defocussing in the other plane.

Force pushes the particle 

towards the center

focussing

𝑭𝒚 = 𝒌 𝒚 𝑭𝒙 = −𝒌 𝒙

Force pushes the particle 

away from the center

defocussing



Sextupole
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 With sextupoles we are entering the regime of non-linear dynamics.

 But sextupoles are also used to correct linear optics errors, for example the 

chromaticity (tune change with momentum).

– They may generate linear optics errors through misalignments.

– A sextupole is  a quadrupole with gradient that increases with distance to centre.

𝑭𝒙 (𝒚𝟐− 𝒙𝟐)

𝑭𝒚 𝒙𝒚



A realistic lattice - LHC
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 The LHC arc section are equipped with 107 m long F0D0 cells. Besides our 3 

main elements the LHC cell is equipped with other correction (trim) magnets.

– In modern light sources multipoles are often combined inside the same magnet.

o MB: main dipole

o MQ: main quadrupole

o MQT: trim quadrupole

o MQS: skew trim quadrupole

o MO: lattice octupole (Landau damping)

o MSCB: sextupole + orbit corrector dipole

o MCS: Spool piece sextupole

o MCDO: Spool piece 8 / 10 pole

o BPM: Beam position monitor



Recap on beam optics
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 There are a few quantities related to a beam optics in a circular 

accelerator that we will need for the lecture:

– The betatron function (b) that defines the beam envelope,

• Beam size / envelope is proportional to b

– The betatron phase advance (m) that defines the phase of an oscillation.

LHC optics at injection

zoom

zoom

one cell



Recap on beam optics
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 Consider a particle moving in a section of the accelerator lattice. The 

focussing elements make it bounce back and forth. 

 This periodic oscillation is called a betatron oscillation. 

…

one cell one cell

Another section of the accelerator Another section of the accelerator



Recap on beam optics for pedestrians
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 The number of oscillation periods for one turn of the machine is called the 

machine tune (Q) or betatron tune. 

– In this example Q is around 2.75 – 2 periods and ¾ of a period.

 It is possible to change the coordinates (from the longitudinal position in 

meters to the betatron phase advance in degrees) and transform this 

‘rocky’ oscillation into a sinusoidal oscillation.

– Convenient (and simpler) way to analyse the beam motion. 

1 period
1 period 1 period

Betatron phase m

Longitudinal coord. s

position

position/b



From model to reality - fields
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 The machine model defined by the accelerator designer must be converted 

into electromagnetic fields and eventually into currents for the power 

converters that feed the magnet circuits (for example).

 Field imperfections are introduced when the model is transferred into the real 

machine. For magnetic fields for example the errors are due to:

– Beam momentum, magnet measurements and power converter regulation. 

Example of the LHC main 

dipole calibration curve

Magnet 

strength
Magnetic field

(gradient)

Requested 

current

Beam 

momentum
Magnet 

calibration curve 

(transfer function)

Power converter

Actual 

magnet 

current



From the lab to the tunnel
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From model to reality - alignment
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 To ensure that the accelerator elements are in the correct position the 

alignment must be precise – to the sub-micrometre level for linear colliders !

 The alignment process for a magnet implies:

– Precise measurements of the magnetic axis in the laboratory with reference to 

the element alignment markers used by survey teams.

– Precise in-situ alignment (position and angle) of the element in the tunnel.

 Alignment errors are another common source of imperfections. 



Restoring the model
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 As a consequence of imperfections, the actual accelerator may differ from 

the model to a point where the accelerator may not function well / at all.

– Beam does not circulate due to misalignments,

– Incorrect optics due to field errors and alignment errors,

– Missing beam aperture due to alignment errors,

– ….

 Over the years many tools were developed to measure and correct 

accelerator parameters in control rooms and to restore design models or 

update the actual machine model.

– In many cases the tools are applied iteratively when an accelerator is 

bootstrapped and commissioned.

 This presentation provides an overview of linear imperfections, how to 

measure and correct them.
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Orbit and dispersion



Imperfection – undesired deflection
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 The presence of an unintended deflection along the path of the 

beam is a first category of imperfections.

 This case is also in general the first one that is encountered 

when beam is first injected…

 The dipole orbit corrector is added to the cell to compensate

the effect of unintended deflections.

– With the orbit corrector we can generate a deflection of opposite 

sign and amplitude that compensates locally the imperfection.



Unintended deflection
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 The first source is a field error (deflection error) of a dipole magnet.

 This can be due to an error in the magnet current or in the 

calibration table (measurement accuracy etc).

– The imperfect dipole can be expressed as a perfect one + a small error.

= +
real dipole ideal dipole small dipole error

 A small rotation (misalignment) of a dipole magnet has the same 

effect, but in the other plane.

= +

real dipole ideal dipole
small dipole error



Unintended deflection
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

18

offset quadrupole ideal quadrupole

 The second source is a misalignment of a quadupole magnet.

– The misaligned quadrupole can be represented as a perfectly aligned 

quadrupole plus a small deflection.

small dipole error

No magnetic field on 

the beam axis

Non-zero magnetic field 

on the beam axis !

= +



Linear imperfections table
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 Summary table of linear imperfections

Field type Imperfection Error type Impact

Dipole Field error Dipole Orbit / trajectory

Dipole Tilt Dipole Orbit / trajectory

Quadrupole Field error Quadrupole Tune / optics

Quadrupole Offset Dipole Orbit / trajectory

Quadrupole Tilt Skew quadrupole Coupling

Sextupole Field error Sextupole Chromaticity

Sextupole Offset horizontal Quadrupole Tune / optics

Sextupole Offset vertical Skew quadrupole Coupling



Effect of a deflection
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 We set the machine tune to 

an integer value:

– Q = n N

Turn no 1

Turn no 2

Turn no 3

Turn no 4

Deflection

Particle direction

 When the tune is an integer 

number, the deflections 

add up on every turn !

– The amplitudes diverge, 

the particles do not stay 

within the accelerator 

vacuum chamber.

 We just encountered our 

first resonance – the 

integer resonance that 

occurs when Q = n N



Effect of a deflection
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 We set the machine tune to 

a half integer value:

– Q = n+0.5, n N

Turn no 1

Deflection

Particle direction

 For half integer tune values, 

the deflections 

compensate on every 

other turn !

– The amplitudes are stable.

 This looks like a much 

better working point for Q!

Turn no 2

Turn no 3

Turn no 4



Effect of a deflection
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 We set the machine tune to 

a quarter integer value:

– Q = n+0.25, n N

Turn no 1

Deflection

Particle direction

 For quarter tune values, the 

deflections compensate 

every four turns !

– The amplitudes are stable.

 Also a reasonable working 

point for Q!

Turn no 2

Turn no 3

Turn no 4



Many turns reveal something
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Q = n + 0.5 Q = n + 0.4

Q = n + 0.3 Q = n + 0.2

Q = n + 0.05

 The particles oscillate around a 
stable mean value (Q ≠ n)!

 The amplitude diverges as we 

approach Q = n  integer resonance

Q = n + 0.1

Q = n

 Let’s plot the 50 first turns on top of each other and change Q.

– All plots are on the same scale



The closed orbit
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 The stable mean value around which the particles oscillate is 

called the closed orbit.

– Every particle in the beam oscillates around the closed orbit.

– As we have seen the closed orbit ‘does not exist’ when the tune is 

an integer value.

 The general expression of the closed orbit x(s) in the presence 

of a deflection q is:

q


mmbb qq

)sin(2

)|)(cos(|)(
)(

Q

Qss
sx




oscillating term

kink at the location 

of the deflection

divergence for Q = n

amplitude modulated 

by the envelope b



Closed orbit example
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 Example of the horizontal closed orbit for a machine with tune Q = 6 + q.

 The kink at the location of the deflection () can be used to localize 

the deflection (if it is not known)  can be used for orbit correction.

Q = 6.5

Q = 6.2Q = 6.1

Q = 6.9 Q = 6.7



Orbit & trajectory response
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 The position response Dui of the beam at position i due to a deflection 

Dqj at position j is given in linear approximation by:

jiji Ru qDD
)sin(2

)cos(

Q

Q
R

jiji

ij


mmbb 


jijijiijR mmmmbb  )sin(

jiijR mm  0

functionbetatron b tuneQadvance phasem

Closed orbit

Trajectory/Linac

where:

 To a first approximation we can limit the discussion to deflections 

generated by misaligned quadrupoles (gradient k, length lQ) and by 

steering elements (orbit correctors).

– For quadrupoles with alignment error d, the kick is dq QklD



Orbit & trajectory correction
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 The relation between the positions measured at N BPMs (beam position 

monitors) and the deflections due to M steering elements (in general 

(N ≥ M) can be cast into a matrix format (R = response matrix):





















D

D

D

D

Nu

u

u

u
...

2

1

























NMN

M

M

RR

RRR

RRR

......

............

...

...

1

22221

11211

R





















D

D

D

D

Mq

q

q

q
...

2

1



q


DD Ru

 To steer the beam deterministically this equation must be inverted, 

something like :

mc u


DD 1
Rq 1

R is in general a ‘pseudo’ inverse, a 

real inverse only exists if N=M.

 Response matrix R obviously contains a lot of information on the 

machine optics – later we will see that they are tools to take advantage 

of that fact to determine and correct the lattice functions.



Orbit & trajectory correction II
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

28

 In general the algorithms for beam steering aim to minimize the least 

square error: 

min
2

1 DD 

mc u


Rq

 This equation is rather generic, problems of optics and dispersion 

correction can be cast in a similar form, and the algorithms used for 

steering are also used or adapted to those problems. 

– We assume here that we know the response matrix R well enough to apply a 

correction. 



The early days of orbit correction
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 The problem of correcting the orbit 

deterministically came up a long time 

ago in the first machines.

 B. Autin and Y. Marti of CERN 

published a note in 1973 describing an 

algorithm that is still in use today in 

many machines:

– MICADO*

– One of the first deterministic correction 

algorithms !

(Minimization of the quadratic orbit distortions)



MICADO principle
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 The intuitive principle of MICADO is rather simple.

 Preparation:

– The machine model must be used to build the R matrix,

– Each column of R correspond to the response of all N BPMs to one of the 

correctors.

...

Example of responses for LHC

Each orbit response corresponds to 

one column of R























NMN

M

M

RR

RRR

RRR

......

............

...

...

1

22221

11211

R



MICADO principle II
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 MICADO compares the response of every corrector with the raw orbit.

 MICADO picks out the corrector that hast the best match with the orbit, and 

that will give the largest reduction of

 The procedure can be iterated using the remaining correctors until the orbit 

is good enough (stop after K steps using K correctors) or as good as it can be

by using all available correctors.

…

2
1

mc u


DD 
Rq



Singular Value Decomposition
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 Singular Value Decomposition (SVD) is a generic operation applicable 

to any matrix R that is decomposed into 3 matrices Z, W and V: 

TVWZR 


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
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


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

Mw

w

w

...00

............

0...0

0...0

W
2

1























NMNN

M

M

zzz

zzz

zzz

...

............

...

...

Z

21

22221

11211


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vvv
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............
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 W is a diagonal ‘eigenvalue’ matrix while V is a square matrix that is 

also ortho-normal: 

1VVVV  TT 1ZZ T
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





Nj

j

j

j ww

z

...

z

z

zv
2

1

jjj


R

The columns (vectors) of V are related to the columns (vectors) of Z by the eigenvalues: 

ijd ji vv


1VVVV  TT

The vectors form an ortho-normal 

basis of the ‘corrector space’

 = scalar product

P2 P3



Eigenvectors examples for LHC

No. 137

No. 516

No. 1

As the eigenvalues decrease, 

the associated eigenvectors 

correspond to increasingly 

local ‘structures’

33

Eigenvalues
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Meaning of eigenvectors
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What are those eigenvectors and what is the useful ‘trick’ behind an SVD 

decomposition?

 The response matrix R maps points in ‘corrector space’ to point in ‘beam 

position’ space.

– The natural basis vectors of those spaces are physical monitors and correctors.

Corrector 

Setting

q1

q2

corrector1

co
rr

ec
to

r 2

Beam 

Position

u1

u2

monitor1

m
o

n
it

o
r 2

R

corrector1

co
rr

ec
to

r
2

monitor1

m
o

n
it

o
r

2

R

R

 The problem is that R maps 

orthogonal vectors 

(=correctors) into non-

orthogonal responses in 

monitor space.



Meaning of eigenvectors II
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 The SVD decomposition identifies a new orthonormal basis of the orbit 

corrector space such that their responses are also orthogonal ! 

corrector1

co
rr

ec
to

r 2

monitor1

m
o

n
it

o
r 2

R

R

1v


2v


2z


1z


ijd ji vv
ijd ji zz



 Every corrector setting can be decomposed into the v vectors.

 Every orbit can be decomposed into the z vectors plus a residual un-

correctable remainder:

residualjm uzu





M

i

ic
1

M vectors for a M×M

dimensional space

M vectors for a N×N

dimensional space



Singular Value Decomposition ||
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 SVD can be used to solve the determine a correction using k out of M

eigenvalues.

– The eigenvalues wj are typically sorted in descending order: wj+1 ≤  wj.

  mm

T

c uu


DDD  11 R
~

ZVWq
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
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








00.........0
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......00...

........./10...

.........0...0

0.........0/1 1

1 kw

w

W

 This operation corresponds intuitively to decompose the measured orbit 

into the orbit eigenvectors zi – unique ! – and then to correct the effect of 

the k largest eigenvectors (since zi is associated to vi).

m

T u


DZ ic mj uz


ki 

  m

T u


D ZW 1

ii wc /

  m

T u

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k

i
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SVD - MICADO
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

37

 MICADO picks out individual correctors.

– With a perfect match of model and machine it will help localize local sources.

– Well suited in case of clean measurements to identify a single / dominant 

source.

– MICADO can be in trouble if the R matrix presents singularities, associated 

to poor BPM or corrector layout (poor phase conditions…).

 SVD will always use all correctors.

– With few eigenvalues for the correction, even a local perturbation will be 

corrected with many elements.

• Can be a pro if the strength of correctors is limited.

– The number of eigenvalues controls the locality /quality of the correction. 

With more eigenvalues local structures will be corrected better.

– By limiting the number of eigenvalues it is possible to avoid correcting on 

noise, in particular with eigenvectors that drive large strength and provide 

little position change. 

• See also later the MIA technique.

– Since the SVD correction can be cast into a simple matrix operation, it is well 

suited (and always used) for real-time orbit feedbacks.



Orbit & trajectory – first steps
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 The first problem encountered during machine commissioning is to bring the 

beam to the end of the linac, respectively circulate it in the storage ring.

– Level of difficulty depends on the alignment errors and the length of the machine.

 For small accelerators it is usually not a too serious issue as the number of 

undesired deflections encountered over the length of the accelerator is not 

too large, but for many km long machines this is far for guaranteed.

– Trajectory excursion build up randomly along the path of the beam s.

– For random errors the trajectory amplitudes scale roughly ~ s.

LHC during first turn steering

Beam stopped on a 

collimator



Alignment and initial orbit errors
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 For a typical rms alignment error sa it is possible to estimate the 

resulting rms orbit error sorb for a machine (length L) build with a 

homogenous lattice consisting of Nc FODO cells:

aac

effQ

orb N
Q

lk
ss



b
s 

)sin(4

||

– Example: for the LHC injection optics   20-30. For 

sa ~ 0.3 mm, the expected orbit rms sorb is 6-9 mm. 

Excursions of ±2sorb already exceed the mechanical 

aperture of the vacuum chamber.

– The situation is likely become worse at FCC-hh !

LHC vacuum chamber

44 mm

34 mm

– Example: for the 100 km long FCC-ee with Nc ~ 1500,    45. For sa ~ 0.1 mm, 

the expected orbit rms sorb is ~5 mm. This does not look too bad, but the FCC-

ee lattice is so non-linear (strong focussing) that the beam does not make it 

around, although the vacuum chamber height is ~ twice as large than LHC.

L



LHC orbit correction example
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 The raw orbit at the LHC can have large errors (in this example the 

correctons were unfolded !), but proper correction bring the deviations down 

by more than a factor 20.

MICADO & SVD

LHC vacuum chamber

44 mm

34 mm

50 mm

Corrected horizontal 

orbit of ring 1

Uncorrected horizontal 

orbit of ring 1

50 mm



BPM errors
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 The quality of the BPM measurements used for 

measurements and corrections are affected by: 

– Offsets,

– Scale errors and non-linearities,

– Intensity and beam pattern effects.

 Non-linearities and beam/intensity systematics must be simulated or obtained from 

laboratory measurements.

– Non-linearities are due to electrode geometries and to the electronics. 

– Improper correction of such effect can bias beam based measurements.

LHC button BPM

BPM-NL

Black points: real beam position, 

Red points: distorted positions based 

on a position reconstruction with a 

linear assumption:

21
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SS

SS
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K-modulation
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 BPM offsets, an important nuisance for orbit 

corrections, can be measured by a technique called 

k-modulation:

– The gradient of a selected quadrupole is modulated 

slightly at a frequency fmod,

– The beam position is varied inside the quadrupole using 

orbit bumps. 

 The beam orbit is modulated at fmod, the modulation 

amplitude vanishes when the beam is centred in the 

quadrupole.

K-modulation at LEP

Oscillation amplitude as a function 

of  the orbit bump amplitude

P1



Dispersion
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 The bending of charged particles by magnetic fields depends on the 

momentum (Lorentz force).

 As a consequence for a beam that is subject to a dipole deflection, 

the trajectories of the particles will be sorted by energy: dispersion !

– In a circular accelerator there is always some dispersion.

0
D

p

p

0
D

p

p

0
D

p

p

B


The dispersion measures 

the position difference per 

unit of energy deviation

pp

su
sDu

/

)(
)(

D

D


uD



Dispersion
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 Closely associated to the orbit is the 

dispersion, which is the derivative 

of the orbit wrt energy (u=x,y) :

pp

su
sDu

/

)(
)(

D

D


pp /D

uD

Dispersion in a ring (SPS)

Dispersion in a transfer line

Model dispersion is purely 

horizontal due to the flat ring

Model dispersion also 

present in the vertical plane 

due to vertical bending



Dispersion errors
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

45

 In a storage ring there is always non-zero horizontal dispersion 

(bending!). For flat machines the vertical dispersion is usually ‘0’ by 

design.

– For hadron machines the dispersion is in general not critical. Controlling and 

correcting it follows similar lines to optics correction.

– At e+e- machines the vertical dispersion can lead to significant vertical 

emittance ey growth, and to important luminosity performance loss.

 22

2

''2 yyyyy DDDD
p

p








 D
 e

 Dispersion errors may be driven by:

– Optics errors  handled together with the general optics correction,

– Coupling  mainly from the horizontal to the vertical plane,

– Steering and alignment errors  mainly an issue at e+e- machines where the 

emittances may be spoiled – storage rings and linacs !

 Optics and coupling correction will be discussed later, for the moment we 

focus on the third point, namely steering driven dispersion.



Dispersion free steering
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 A technique combining regular steering and dispersion correction was 

used at SLC and LEP – dispersion free steering (DFS) – will be 

outlined here.

 The principle of DFS relies on the extension of the orbit response matrix 

to dispersion including the dispersion response S and a weight factor 

 between orbit and dispersion:

q


DD Ru q






 




D






 










D

D

S

R)1()1(

uD

u

– The dispersion response may be estimated analytically or from a simulation 

program like MAD etc.

 The combined orbit and dispersion correction system can be solved in 

exactly the same way than the ‘normal’ steering.

– This does however not apply to all sources of dispersion (due to coupling 

between planes for example).

P3

DISP-RES



Dispersion free steering II
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 DFS provides controlled correction of the orbit and the dispersion with the 

dispersion is dominated by deflection (errors).

DFS at LEP

orbit dispersion kicks

Before

After

DFS convergence at LEP

P3

Observe that the orbit rms is degraded while the dispersion rms is improved !
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Tune and coupling



Tune measurement
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 The integer tune N is 

obtained from a poor closed 

orbit or a kick on the orbit.

– In large machine N may be 

wrong before correction !

 The fractional tune q is obtained from the turn-by-turn data (TbT) of a single 

position monitor is the beam is given a kick or is oscillating naturally.

– Fast Fourier Transform (FFT) of oscillation data provides the resonant frequency q.

qNQ 

 The tune (number of betatron

oscillations per turn):

Uncorrected orbit at the LHC



Excitations for tune measurements
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Two common beam excitation methods:

 The single kick method followed by a free oscillation, damped by decoherence

(tune spread due to non-linearities),

 The AC dipole forced excitation at a fixed frequency, usually close to the tune.

– Emittance growth free excitation for hadrons (if distance to tunes sufficient large),

– Long excitation duration (accuracy thanks to many turns).

– As this is a forced oscillation it does not provide the tune – but can be used for coupling 

and optics measurements.

Excitation
Excitation

Single kick and free oscillation (LHC)Forced AC dipole oscillation (LHC)



Excitations for tune measurements (II)
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 Phased locking an excitation-measurement system provides a means to 

track tunes continuously.

– An exciter shakes the beam on the tune, it remains locked on the tune using the 

phase of the beam response wrt excitation.

– ‘Ideal’ for e+e- rings where damping will erase the effect of the excitation.

– Problematic for hadrons as this technique tends to produce emittance blowup.

• Used at RHIC, but not at LHC (too strong transverse feedback). 

Phased locked tune (and chromaticity) 

measurement at LEP

Phased locked tune and coupling (RHIC ramp)

Q-FB-RHIC



Shottky spectra
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 A direct and non-invasive technique to measure the tunes is based the 

Shottky spectrum of the beam.

– Relies on noise in the beam, no excitation is required – ideal for hadrons.

• But small signals: detection electrodes must be close to the beam, or the beam must 

have large charge Z (Shottky signal amplitude ~ Z2).

– Can be problematic for bunched beams due to large coherent signals,

– This devices is also able to provide chromaticity and emittance.

Shottky signals at the LHC

Tune

Q-SHOT-LHC



Tune working points
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 Collider tune working points.

– Hadron machines work usually very close to the diagonal (tune space).

• De-coupling of the planes is important.

– The tune value may depend on the number of IPs. For example for e+e- the tune 

increment from one IP to the next is often chosen to be close to 0.5.



Quadrupole gradient errors
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 What is the impact of a quadrupole gradient error?

– Let us consider a particle oscillating in the lattice. 

Too strong gradient / lens

The oscillation period is affected  change of tune, here Q increases !



Tune change by quadrupole
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 The tune change DQu (u = x,y) induced by a small quadrupole strength 

change Dk is given to first order by:

kLQ Quu DD b
4

1

LQ is the quadrupole length,

bu is the betatron function inside the 

quarupole

 In general the vertical and horizontal betatron functions differ at the 

quadrupole, therefore the tune changes are different for H and V.

 By combining two (groups of) quadrupoles with different bx and by, it is 

possible to construct combinations that affect Q only in one plane.

– Provides a means for orthogonal corrections of the two planes.

– In larger machine there are often distributed trim quadrupoles grouped in two 

(or more) families to spread out the correction and reduce optics errors.

11,1,1,
4

1
kLQ Qxx DD b



11,1,1,
4

1
kLQ Qyy DD b



22,2,2,
4

1
kLQ Qxx DD b



22,2,2,
4

1
kLQ Qyy DD b
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mij = f(bx,1,by,1, bx,2,by,2)



Tilted quadrupole
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 If a quadrupole is rotated by 45º (‘skew quadrupole’) one obtains 

an element where the force (deflection) in x depends on y and 

vice-versa: the horizontal and vertical planes are coupled. 

skew quadrupole

Fx = -k x

Fy = k y

Fx = k y

Fy = -k x
No mixing of 

planes

Full mixing 

of planes

normal quadrupole



Coupling (I)
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 Small quadrupole tilts lead to coupling of the x and y planes.

 The coupling can be corrected by installing dedicated skew 

quadrupoles to compensate for alignment or skew quadrupolar

field errors.

ideal quadrupoletilted quadrupole

=

skew quadrupole

+



Coupling (II)
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 Causes of undesired coupling in machines:

– Element misalignments (for examples tilt angles of quadrupoles),

– Skew quadrupolar field errors,

– Solenoids (experiments, coolers etc),

– Vertical orbit offsets in sextupoles (or misaligned sextupoles)

• Vertical offsets  skew quadrupole  coupling

• Horizontal offset  normal quadrupole  tune, beta-beating

ideal sextupoleoffset sextupole quadrupole

= +



Linear imperfections table
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 Summary table of linear imperfections

Field type Imperfection Error type Impact

Dipole Field error Dipole Orbit / trajectory

Dipole Tilt Dipole Orbit / trajectory

Quadrupole Field error Quadrupole Tune / optics

Quadrupole Offset Dipole Orbit / trajectory

Quadrupole Tilt Skew quadrupole Coupling

Sextupole Field error Sextupole Chromaticity

Sextupole Offset horizontal Quadrupole Tune / optics

Sextupole Offset vertical Skew quadrupole Coupling
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 Summary table of linear imperfections.

 Alignment offsets generate field errors of lower order:

– Quadrupole  dipole,

– Sextupoles  quadrupole,

– Etc..

Field type Imperfection Error type Impact

Dipole Field error Dipole Orbit / trajectory

Dipole Tilt Dipole Orbit / trajectory

Quadrupole Field error Quadrupole Tune / optics

Quadrupole Offset Dipole Orbit / trajectory

Quadrupole Tilt Skew quadrupole Coupling

Sextupole Field error Sextupole Chromaticity

Sextupole Offset horizontal Quadrupole Tune / optics

Sextupole Offset vertical Skew quadrupole Coupling

‘Feed-down’



Coupling measurement
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 In the presence of coupling the beam eigen-modes Q1

and Q2 no longer coincide with Qx and Qy.

 Large coupling can be an issue for the tune working 

point (hadron collider) or for the vertical emittance (e+/e-

machines).

 A first technique to characterise the coupling coefficient C-

consists in measuring the crossed tune peak amplitudes:

– Vertical tune in horizontal spectrum and vice-versa.

– Simple measurement, but no phase information.

– Only the local coupling is obtained, which can differ from the 

global coupling.

Horizontal 

eigenmode Q1,

amplitude A1,x

Vertical 

eigenmode Q2,

amplitude A1,y

x

y

A

A
r

,1

,1

1 

Horizontal tune spectrum at the LHC

y

x

A

A
r

,2

,2

2 
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rr

QQrr
C








Coupling measurement II
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 The global machine coupling can be also determined directly using the 

closest tune approach.

– Requires to move the tunes close to / across each other.

– Provides global coupling information from a single location.

Closest tune measurement at LEP

DQmin

 The closest distance of approach 

DQmin corresponds to the coupling 

parameter C-:

D CQmin

Closest tune measurements at superKEKB

LEP-PERF

Q-COUP-KEKB



Coupling measurement III
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 The coupling can also be determined along the machine using multi-turn 

beam position data (with e.g. AC dipole excitation) using pairs or groups 

of BPMs to reconstruct the coupling locally.

– Provides detailed local coupling information, including phase.

– Global coupling is obtained by integration of the local coupling.

– Provides excellent deterministic corrections, but kicking the beam is required.

Q-COUP-LHCLocal coupling measurement at LHC

O-NL-LHC



Correction of coupling
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The coupling correction scheme depends on machine design.

 Ideally experimental solenoids should be compensated by local anti-

solenoids to correct the coupling source locally.

– At high energy hadron colliders like LHC, the solenoids of the 4 experiments 

contribute very little to he machine coupling (due to the high momentum).

 The global machine coupling is usually corrected with distributed skew 

quadrupoles, either using 2 orthogonal knobs (similar to a tune 

correction) or with more refined local corrections.
– For measurements that do not provide phase information (only global coupling), the two 

orthogonal knobs must be scanned by trial and error to determine a correction.

 As an alternative, orbit bumps in sextupoles may also be used for 

coupling corrections, but this can lead to problems with dispersion etc. 

Requires a careful combined correction of both parameters.
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Chromaticity



Chromaticity measurement
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 The linear chromaticity defines the tune dependence on momentum:

p

dp
QQ 'D

 For a lattice Q’ is usually negative unless Q’ is corrected with sextupoles. 

The typical operation range of Q’ is ~ +1 to +20 above transition, slightly 

negative below transition energy – due to collective effects.

 The chromaticity is measured 

by changing / modulating the 

energy offset dp/p through the 

RF frequency while recording 

the tune change DQ. 

Q’ measurement by RF frequency 

modulation at LHC

RF

RF

RF

RF

f

df

f

df

p

dp






11
1

2















At high energy 

machines,  >> 1



Chromaticity measurement II
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RF frequency

Vertical tunes

Horizontal tunes

Q’ measurement along a ramp by RF frequency modulation at LHC

 Frequency continuously modulated,

 Tune continuously measured,

 Q’ reconstructed offline from the tune 

modulation amplitude.



Chromaticity from Shottky
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 A Shottky monitor can be used to determine Q’ for hadron beams 

without the need for a radial modulation.

– Completely non-invasive measurement.

 Q’ is related to the difference in width of the upper and lower Shottky

side-bands:

Shottky signal at the LHC

Q-SHOT-LHC

At LHC for example, the 

Shottky provides reasonable 

Q’ data at injection for protons, 

and at ~ all energies for ions 

(due to Z2 sensitivity).



Chromaticity and field errors
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 In superconducting machines like Tevatron, LHC or FCC-hh the 

sextupolar field errors (b3) play an important role and may generate 

huge chromaticity errors.

 The field errors are usually generated in the dipoles and due to the 

important integrated length of the dipoles, the b3 errors can add up to 

hundred’s of units of Q’.

 Furthermore superconducting machine are affected by decay and 

snapback phenomena:

– Decay: while the machine ‘sits’ at injection for filling, persistent currents (~ 

eddy currents) flow between the cable strands and may induced large field 

errors, in particular b3 components. This leads to a drift of the chromaticity 

over time.

– Snapback: At the start of the energy ramp, the persistent currents ‘snap 

back’ to their initial value before decay over a very narrow energy range, 

leading to large dynamic swings of Q’.



b3 errors at LHC
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 The b3 errors for the LHC dipole magnets were measured on test 

benches and on the series production magnets.

– Higher order field errors were also measured (up to b7).

Evolution of b3 during the LHC dipole cycle

Injection 

plateau

RampStart of 

ramp

(dipole)

 During injection b3 decays by ~1 

unit  38 units of Q’.

– 1 unit = relative field (error) of 

10-4 at a radius of 17 mm.

 Over the full cycle the swing of b3 

is ~7 units  270 units of Q’.

 Typically one would like to control 

Q’ to a few units (±1-2).

CHROM-B3-LHC



b3 errors at LHC II
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 To control the LHC chromaticity at injection it is not possible to modulate 

the frequency for continuous measurements, a model must therefore be 

available to stabilize Q’.

Time (min)

Evolution of the H chromaticity at injection for LHC

Q’

Measured Q’

Model compensation

Corrected Q’

 Continuous Q’ measurements 

over many hours are used to 

establish models of the decay.
– Parameters depend on the flat top 

energy etc

 A decay model is used to 

stabilize Q’ during injection.

– In general correct within ~ ±2.

 For the snapback a model is 

used to correct Q’ during this 

short phase.

– Lasts ~ 30 s at LHC.



Chromaticity correction
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 The chromaticity is usually corrected with the lattice sextupoles. The 

corrections are usually distributed over all / many sextupoles in the form of 

orthogonal knobs for the two planes.

 For systematic field errors as they appear in large super-conducting 

machines, a correction with the lattice sextupoles may lead to poor 

dynamic aperture due to strong non-linear fields.

 A better compensation of field errors is obtained using dedicated b3 

correctors (~small sextupoles) that are installed next to the dipoles and 

distributed over the entire machine – local corrections.

b3 corrector

dipole dipole dipolequadruple

beam 1

beam 2

LHC arc cell magnet layout



0
5

/0
6

/2
0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

73

Linear optics



Quadrupole gradient errors - recap
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 What is the impact of a quadrupole gradient error?

Too strong gradient / lens

The oscillation period is affected, leading to a change of tune,

The focussing error also affects the beam envelope (b function).



Optics perturbation
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

75

 The focussing error affects not only the tune, but also the beam 

optics and envelope (size) over the entire ring ! 

Nominal optics

Perturbed optics

Example for LHC: one quadrupole gradient is incorrect

Zoom into a subsection



Optics perturbation
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 The beam optics perturbation exhibits an oscillating pattern.

Nominal optics

Perturbed optics



Optics perturbation
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 The error is easier to analyse and diagnose if one considers the ratio of 

the betatron function perturbed/nominal.

 The ratio reveals an oscillating pattern called the betatron function 

beating (‘beta-beating’). The amplitude of the perturbation is the same 

all over the ring !



Optics perturbation
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 The beta-beating pattern comes out even more clearly if we replace the 

longitudinal coordinate with the betatron phase advance.

 The result is very similar to the case of the closed orbit kick, the error 

reveals itself by a kink !

– If you watch closely you will observe that there are two oscillation periods 

per 2 (360 deg) phase. The beta-beating frequency is twice the frequency 

of the orbit !



Optics errors
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 The knowledge of the beam optics is essential for the good performance 

of an accelerator. Tools to measure and correct the optics towards a 

design model are essential at any modern facility.

 The betatron function error (beta-beating) at an observation point j due 

to a number of strength errors Dki is given to first order by: 

i

i

jiij

i

iii

j

j
kBQ

Q

Lk
D

D


D
 |)|22cos(

)2sin(2
mm



b

b

b

 Contrary to the case of orbit kicks, gradient errors have a non-linear 

effect on the betatron function. A correct treatment must be self-

consistent, the equation above is only an approximation.

– The problem may however be linearized using the matrix elements Bji and 

solved iteratively using the SVD / MICADO algorithms based on 

measurements of Dbj. After each correction iteration the matrix elements Bji

must be revaluated.



Optics measurements
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There are three main technique to measure and reconstruct the 

machine optics, and they may be used in combination.

 K-modulation: the strength of individual quadrupoles is modulated to 

determine the local optics function.

 Orbit (trajectory) response: the orbit or trajectory response matrix is 

measured with orbit corrector kicks ( see orbit correction), a fit to the 

response is used to reconstruct and correct the machine model.

 Multi-turn beam position data: the beam is excited and mutli-turn beam 

position data is recorded to determine the betatron phase advance 

between beam position monitors. The betatron function is reconstructed 

from the phase advance information.



K-modulation
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 K-modulation was already described as a means to determine BPM 

offsets wrt quadrupole magnetic centres. 

 This technique can also be used to determine the average betatron

function inside the modulated quadrupole since the tune change DQ due 

to a gradient change Dk is given by:

(integral over the 

quadrupole length l)

 The betatron function in the 

quadrupole is then given by:

 This technique is powerful and simple but requires quadrupoles to be 

powered individually which is often the case on synchrotron light sources 

but applies only to a subset of quadrupoles in large storage rings!

– Large collider arc quadrupoles are generally powered in series.

O-KMOD-LHC

O-MT-LHC2
K-modulation at LHC



Orbit (trajectory) response
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 The concept of orbit / trajectory response is to exploit the large amount of 

information that is encoded in the steering response matrix (ORM).

 The principle, available in the popular LOCO code, is to excite all / many 

steering elements in a ring / line and record the BPM response. This 

provides a measurement of the response matrix folded with BPM

calibration factors bi and orbit corrector deflection calibration factors cj: 

q


DD Mu R
)sin(2

)cos(
,

Q

Qcb
R

jijiji

Mij


mmbb 


 All the elements of RM are observables for a model fit, fit variables include:

– BPM and orbit corrector calibration factors (bi, , cj),

– BPM and orbit corrector roll angles as they generate measurement ‘coupling’,

– Any selection of quadrupole gradient to fit for b, m,

– Skew quadrupoles for coupling.

– …

O-LOCO-BDYN



Orbit (trajectory) response II
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 The ORM matrix is linearized in the form of a vector      :

– The vector size = the number of elements of RM .

jirk ,RR model

ij

meas

ij 










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
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

















M

NN

M

c

r

c

r

c

r

c

r

...

.........

...

G

1

1

1

1

 The fit parameter vector is composed of (for example): 

– BPM calibrations and roll angles, 

– Steering elements calibrations and roll angles,

– Quadrupole gradients (skew and normal),

– …

r


c


 A response matrix G ist constructed with the 

dependence of each ri on any cj.

– Some elements are obtained analytically, 

others need a simulation tool (like MAD, PTC, 

ELEGANT…).



Orbit (trajectory) response III
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 The response analysis is coupled to an accelerator design tool like 

MAD, PTC etc in order to determine the sensitivity wrt to the quadrupole 

gradients etc.

 Once the system is cast in matrix form, it is solved by SVD inversion –

structurally equivalent to an orbit correction.

– The tricks to filter noise by eliminating small eigenvalues as discussed for 

beam steering can be employed here !

– A few iteration may be required to converge. At each iteration G must be re-

evaluated.

min
2

1 D  cr


G

 Note that the size of matrix G grows rapidly !

– For a machine with 100 BPMs and 100 steering elements, there are 10’000 

lines and over 200 columns !



Orbit (trajectory) response III
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Trajectory response for CNGS line at CERN

Orbit response example after fit at SPS

histogram = data

Horizontal orbit corrector calibrations at SPS

Some correctors are damaged by 

radiation (from the time when SPS was 

a lepton injector for LEP !)

O-LOCO-SPS

O-LOCO-CNGS



Trajectory response
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 Example of am inverted BPM plane captured by a response 

measurement in a transfer line.

– The BPM clearly appears for both horizontal and vertical plane 

measurements.

– Data in green, model in magenta.



Orbit (trajectory) response IV
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 Orbit response has been used with a lot of success at synchrotron light sources 

where it is a standard tool.

– Typically ~ 100 BPMs, steerers and quadrupoles.

 At very large machines like LHC and FCC-hh, the data volumes are immense and 

multi-turn methods are faster, therefore the response techniques are mainly 

useful to calibrate BPMs and steerers.

Beta-beating correction with LOCO at SOLEIL

O-LOCO-SOLEIL



Multi-turn optics measurements
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 Multi-turn optics measurements rely on a beam excitation for a certain 

number of turns, typically few x 1000 to obtains sufficient resolution.

 The beam oscillation phase is extracted for each BPM, this phase 

corresponds to the betatron phase m at each BPM.

– The betatron phase advance Dm between BPMs can therefore be extracted in a 

straightforward way.

– The phase measurement does not depend on the BPM calibration (but is 

sensitive to BPM non-linearities).

 Exciting the beam with a single 

kick is often limited by the 

decoherence of the oscillation (or 

by radiation damping).

– Limited no of turns 

measurement error.

 Excitation by an AC-dipole is 

more favourable since the number 

of turns can be increased if 

necessary.

O-REV



Phase advance and beam oscillations
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Df = 39.1

 The betatron phase advance is directly obtained from the phase of the 

oscillation between adjacent BPMs.

– The BPMs must be correctly synchronized to the same turn.

Df = 50.9

)2sin()( 0 f  qAtA

• Turn by turn positions



Multi-turn optics measurements II
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 The betatron function can be reconstructed from the phases measured 

for 3 BPMs – assuming that they are no sources of errors between the 3 

BPMs – but a model is required:

 The raw turn data is often filtered for noise by SVD ( see later) 

before the phase is extracted, and multi-BPM interpolation techniques

have been developed to improve the accuracy of this technique.

– Improved accuracy when the phase advances to neighbouring BPMs are 

unfavourable.

O-REV

O-MULTI-BPM

modelmodel

measmeas
modelmeas

1312

1312
11

cotcot

cotcot

ff

ff
bb

DD

DD




Multi-turn optics measurements III
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 The advantage of the MT technique is that the optics for both planes is 

obtained with two measurements – which can be very fast – and for large 

machines the data size is not as immense as with ORM.

– In addition this method is not sensitive to BPM calibrations.

 The disadvantage of the MT technique is that a fast kicker is required, 

and the beam must be excited to sufficiently large amplitude compared 

to the BPM turn-by-turn resolution.

– Can be an issue when the free aperture for kicking the beam is limited.

– For ORM the BPM noise is in general not an issue (average over many turns).

 Once the data is prepared an optics modelling tool (MAD, PTC etc) must 

to used to fit machine errors to data, respectively establish corrections.

– Alternatively SVD correction can be applied iteratively from the phase or 

betatron function response matrix.

O-REV



Multi-turn optics measurements IV
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 In a collider with a low-beta section where the peak b is >> than the ring 

average, the local optics errors may dominate completely the beta-beating.

 In such a configuration it is favourable to first correct the local errors before 

trying to flatten the beta-beating in the rest of the machine.

O-MT-LHC2

Local beta-beating correction at LHC

Raw b-beating ~ 100%

b-beating with local correction ~10-15%

Final beta-beating correction at LHC

Final b-beating ~ 1-2%



From optics measurements to corrections
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 K-modulation and multi-turn techniques provide measurements of the 

real optics (phases, b-functions).

– To restore the design optics (or at least reduce the deviations), corrections 

must be evaluated in a second step using directly an optics modelling 

program or using correction techniques based on response matrices with 

SVD (or even MICADO) type of algorithms.

 The response matrix technique (LOCO) can directly provide errors on 

gradients etc in the fitting procedure if the appropriate variables are used 

in the procedure.

– To restore the design model it is sufficient to apply the errors as corrections 

to the real machine.

 In all cases, due to measurement uncertainties and to the non-linear 

response of optical functions to gradient changes, iterations may be 

required to converge to a satisfactory situation.
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Appendix: model independent analysis



Model Independent Analysis
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 The properties of the SVD decomposition find an interesting application in 

Model Independent Analysis (MIA) and noise filtering.

 The idea behind MIA is to identify ‘patterns’ in data, in particular in time 

series, without using a model (at least not initially).

– SVD is able to find main components in data series.

 Consider for example of a series of position measurements that are 

repeated at a certain time interval, not necessarily periodic. 

– For each measurement the beam position at N BPMs is recorded,

– The data is stored in a matrix that is decomposed by SVD.

Measurement no.

T
VWUA 

O-MIA-SLAC



Model Independent Analysis II
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 We are interested in matrices W

(eigenvalues) and V (special vectors):

– The columns of VT contain orthogonal 

patterns that are characteristic for the data 

set (VVT = VTV = 1).

– The eigenvalues define the relative 

‘importance’ of each pattern.

MIA eigenvalues for trajectories Largest MIA special eigenvector

 Example application to the SPS-LHC transfer line TI8.

BPM noise floor

A analysis of the spacial

pattern with a model 

points to the extraction 

septum magnet as 

source ( ripple)

O-MIA-TI8



Model Independent Analysis III
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FA0

 The example presented on the last slide highlights how a coherent pattern 

emerges from the data without need of applying a model.

 The components of matrix V are by construction orthogonal.

– When there are multiple sources of patterns, the eigenvectors do not 

necessarily correspond to physical elements, but rather to linear combinations 

that form an orthogonal set.

– A model is required to identify and disentangle the real physical sources.

 The same technique may also be used to apply noise reduction on a 

data set. For that purpose, after SVD, a filtered version AF of matrix A is 

‘reconstructed’ using only the dominant eigenvalues and vectors.

– This is a common technique to improve the quality of multi-turn data for optics 

measurements, keeping only the few dominant eigenvalues (~10) that contain 

the beam oscillation information.
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Threading
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 At synchrotrons of very large dimension (10’s km) and/or with a very 

strong focussing optics, the beam may not necessary circulate 

without any corrections when it is injected the first time.

– Can also be the case for a corrected machine when the tunes are poorly set.

 In such a case it is necessary to thread the beam around the ring 

segment by segment until a few turns are obtained.

– For superconducting machine one may have to operate at very low intensity / 

stop the beam at intermediate positions with collimators to avoid quenches.

 Once a few turns are obtained:

– It may be possible to estimate (and correct) the tunes,

– The average of the N first turns may be used as estimate for the closed orbit, 

opening the option to correct directly this estimated closed orbit.

– To note after a few turns, the exact number depending on the machine, the 

beam may be debunched and no longer measureable by the BPMs, requiring 

the RF to be setup for capture for further progress.

• For example at the LHC the beam debunches over ~30-40 turns.



Beam threading @ LHC

102

Very first LHC threading (arc) sector by sector (Sept 2008):

– One beam at the time & one hour per beam, correction with MICADO, 1-3 correctors.

– Collimators used to intercept the beam (1 bunch, 2109 p - 2% of nominal bunch).

– Beam through a sector (1/8 ring), correct trajectory, open collimator and move on.

Beam 2 threading Beam direction
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Impact of optics errors
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 In particular during the machine commissioning, significant optics errors 

may be present that could generate divergent orbit corrections.

– The orbit degrades with a correction instead of improving.

 Typically up to 30-50% beta-beating there are no severe problems, but 

corrections may require iterations to converge well.

– Beyond that point corrections can diverge strongly, in particular if low beta 

sections are present.

– Errors on the tunes, and in particular wrong integer tunes, can generate 

strongly diverging corrections !

LHC orbit correction sensitivity to beta-beating
OFB-LHC

No. eigenvalues



Off-momentum optics
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 For lattices with low-beta section and / or very strong focusing measuring 

and correcting the on-momentum optics is generally not sufficient.

 The optics / ORM must also be measured at different momentum offsets to 

ensure that the optics correction procedure does not degrade the off-

momentum properties of the optics.

Montague W function at LHC beam 2 O-MT-LHC1



Higher order chromaticity
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 So far we discussed the linear chromaticity which corresponds to the 

regime of small dp/p:

 Non-linear chromaticities Q’’, Q’’’ etc (higher order derivatives wrt dp/p) 

are however important for the machine dynamic aperture and for 

collective effects (‘Laudau damping’ through tune spread).

– Measurement of the tune versus dp/p.

– High order chromaticity gives insight into off-momentum behaviour of optics, 

feed-down from higher order fields (or field errors) etc.

pdp

Q
Q lim

pdp /
'

0/

D




NL chromaticity measurement at  LHC injection

Q’

Q’’ < 0



b* from K-modulation
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 The knowledge of the betatron function b* at the interaction points (IPs) is 

important for the collider performance.

 The IP is usually surrounded by (low-beta) quadrupoles that focus the beam at the 

IP, with a drift space between the IP and the first quadrupole.

– Due to errors, the betatron function waist bw (minimum) may not coincide with the 

betatron function b* at the IP.

– The b-function in the surrounding quadrupoles can be obtained from k-modulation and 

interpolated to the IP to obtain b*.

– For e+e- the experimental solenoid can have a large impact due to the lower beam energy 

 no longer a ‘drift’ between IP and low-beta quadrupole.

O-BSTAR-LHCExample of an IP layout, here the LHC

bw= b*

Ideally:

w= 0
and



Off-momentum optics ||
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 MT phase advance measurements 

can also be used to probe the 

distribution of the sextupoles and the 

chromaticity correction.

 As an alternative to the Montague 

functions, it is possible to determine 

the phase advance for different dp/p

settings from which the chromatic 

phase advance change wrt dp/p can 

be reconstructed between BPMs:

Chromatic phase advance at LEP

O-CHROM-LEP

pdp

d

/

m



Non-linear optics correction
0

5
/0

6
/2

0
1

8
B

e
a

m
 I
n

s
tr

u
m

e
n

ti
o

n
 C

A
S

 -
L

in
e

a
r 

Im
p

e
rf

e
c

ti
o

n
s

108

 Higher order field errors may need to be corrected with non-linear (NL) 

optics corrections.

– The impact of low-beta quadrupole field errors may be boosted by the very 

large b-functions at those locations.

 NL optics measurements usually rely on scanning local orbit bumps and 

recording the tune, or scanning the momentum offset.

 Correction elements include sextupoles, octupoles and local NL 

correctors (low beta sections).

O-NL-LHC

Local b3 correction for LHC low-beta section


