# BPM Systems - A BPM Primer -

Manfred Wendt CERN BI CAS 2018

# **A Beam Position Monitoring System**



# **Learning Objectives**

#### Introduction into BPM systems

- From an engineering perspective
  - How to design and build a BPM system!?
- Focus on the principle of operation
  - > Often in graphical format
- Practical formulas as necessary, but no lengthy derivations
- Stick to the fundamentals
  - > Expert and exotic stuff: please study the related papers
- Very personal selection of BPM topics
  - Focus on popular BPM components and subsystems
    - > BPM pickups, such as buttons, stripline, cavity BPM, etc.
    - > BPM electronics, e.g. RF signal conditioning, digital signal processing
  - Will not cover BPM applications and beam measurements
    - Covered at the CAS introduction and advanced courses
- Give the design basics for the key elements of a BPM system
  - So lets start...

# **BPM Systems**

- are based on Beam Position Monitors (BPM), which are beam detectors located along the accelerator
  - BPM: Beam Position Monitor
    - Beam pickup with signal processing (read-out) electronics
      - Often colleagues just refer to the beam pickup as BPM
  - BPMs are typically located near each quadrupole magnet
    - Use 4 or more BPMs per betatron oscillation period
- deliver beam orbit (trajectory) information
  - Non-invasive monitoring based on the EM-field of the passing beam
  - Synchronized BPMs deliver beam timing information
    - Beam orbit measurement
      - turn-by-turn, batch-by-batch, bunch-by-bunch, or averaged over many turns
    - Beam phase or time-of-flight (TOF) information in linacs
- are a powerful beam diagnostics tool
  - Machine commissioning, characterization of the beam optics, measurement of beam parameters, trouble-shooting,...

### **BPM Systems Part 1**

- Principle of operation
  - Wall currents and the electrostatic BPM pickup
- Bunch Beam Signals
- The image charge (current) model for BPMs
  - Position characteristic in a circular beam pipe
  - Numerical analysis and correction of non-linearities
- BPM pickups
  - Split-plane BPM
  - Button BPM
  - Stripline BPM
  - Cavity BPM
- Summary of part 1

# E-field of a moving point charge



> almost no longitudinal field components

### Wall current



- Single proton in a perfect conducting cylindrical beam pipe of radius *r* 
  - Travelling with:  $\beta = \frac{v}{c} \approx 1$
  - Image charges  $q_w$  along the azimuth of the beam pipe wall:

$$q = -q_w$$

Wall current density:

$$j_w(t) = -\frac{i_b(t)}{2\pi r}$$

• Beam current:  $i_b(t) = \frac{dq}{dt}$ 

$$q = Ne$$

### **Electrostatic Beam Monitor**



### **Beam response – High-pass**



### **Electrostatic BPM**



# **Beam Position Monitor Principle**

#### • The BPM principle is based on symmetry

The beam displacement *d* is detected by a pair of symmetrical arrange electrodes



- BUT: Hoops, wait a minute, not so fast...
   What happens if the beam / bunch intensity changes?!
  - > The Δ-signal still contains beam intensity information!
  - Need to "normalize" the Δ-signal

# **EM Pickup for Beam Position Measurements**

- The BPM pickup detects the beam positions by means of:
  - identifying asymmetries of the signal amplitudes from two symmetrically arranged electrodes A & B:

norm. beam pos.  $\propto \frac{A-B}{A+B}$ 

#### > broadband pickups, e.g. buttons, striplines

- Detecting dipole-like eigenmodes of a beam excited, passive resonator:
  - > narrowband pickups, e.g. cavity BPM
- BPM electrode transfer impedance:



- The beam displacement or sensitivity function s(x, y) is frequency independent for broadband pickups (@  $v \approx c$ )



# **Beam Current Signals**



# **Beam Signals: Harmonic Amplitude Factors**

| Bunch shape                  | Harmonic amplitude factor A <sub>m</sub>                                                                                                                      | Comments                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| δ-function<br>(point charge) | 1                                                                                                                                                             | For all harmonics                    |
| Gaussian                     | $\exp\left[\frac{(m\omega\sigma)^2}{2}\right]$                                                                                                                | $\sigma = \mathrm{RMS}$ bunch length |
| parabolic                    | $3\left(\frac{\sin\alpha}{\alpha^3}-\frac{\cos\alpha}{\alpha^2}\right)$                                                                                       | $\alpha = m\pi W/_T$                 |
| (cos) <sup>2</sup>           | $\frac{\sin(\alpha-2)\frac{\pi}{2}}{(\alpha-2)\pi} + \frac{\sin\frac{\alpha\pi}{2}}{\frac{\alpha\pi}{2}} + \frac{\cos(\alpha+2)\frac{\pi}{2}}{(\alpha+2)\pi}$ | $\alpha = \frac{2mW}{T}$             |
| triangular                   | $\frac{2(1-\cos\alpha)}{\alpha^2}$                                                                                                                            | $\alpha = \frac{m\pi W}{T}$          |
| square                       | $\frac{\sin \alpha}{\alpha}$                                                                                                                                  | $\alpha = m\pi W/_T$                 |

Normaization:  $A_m \rightarrow 1$  for  $\omega \rightarrow 0$  *T*: bunch period *W*: but

*W*: bunch lenght at base

# **Beam Signal Frequency Response**

- Use Fourier transformation
  - instead of *Fourier* series expansion with infinite sums
- Examples: Gaussian and raised cosine (cos<sup>2</sup>) pulse
  - Time domain

 $i_{Gauss}(t) = \frac{eN}{\sqrt{2\pi\sigma}}e^{-\frac{t^2}{2\sigma^2}}$ 

Frequency domain

$$I_{Gauss}(f) = eN e^{-2(\pi f\sigma)^2}$$

 $i_{RaisedCos}(t) = \begin{cases} \frac{eN}{2w} \left(1 + \cos\frac{\pi t}{w}\right), -w < t < w \\ 0, & \text{elsewhere} \end{cases} \quad I_{RaisedCos}(f) = \frac{eN\sin(2\pi fw)}{2\pi fw(1 - 4f^2w^2)} \\ & \text{Evaluation} \end{cases}$ 

**Frequency domain** 

Time domain ( $N=10^{11}$ )

#### **Frequency domain**



June 10<sup>th</sup>, 2018 – BI CAS 2018 – M. Wendt

# **More on Image Charges and Image Currents**

- Relativistic beams v ≈ c:
  - Electrostatic problem of a line charge in a conductive circular cylinder
- Solution based on the image charge method:
  - Image current density

$$J_{w}(R,\Phi_{w}) = -\frac{I_{beam}}{2\pi R} \left[ 1 + 2\sum_{n=1}^{\infty} \left(\frac{r}{R}\right)^{n} \cos n(\Phi_{w} - \varphi) \right] = -\frac{I_{beam}}{2\pi R} \frac{R^{2} - r^{2}}{R^{2} + r^{2} - 2r\cos(\Phi_{w} - \varphi)}$$

R

Image current integrated on BPM electrode A

$$I_A = R \int_{-\alpha/2}^{+\alpha/2} J_w(R, \Phi_w) d\Phi_w = -\frac{I_{beam}}{2\pi} s_A(r/R, \varphi, \alpha)$$
$$s_A(r/R, \varphi, \alpha) = \alpha + 4 \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{r}{R}\right)^n \cos(n\varphi) \sin\left(\frac{n\alpha}{2}\right)$$

 Similar solution for electrode B or for vertically arranged electrodes α

### **Normalized Beam Position Characteristic**

- Pair of symmetric horizontal electrodes:
  - $A = I_A$  (right electrode)  $B = I_B$  (left electrode)
  - Horizontal and vertical beam position:

 $x = r\cos\varphi \qquad \qquad y = r\sin\varphi$ 

- Normalized beam position characteristic  $\Delta/\Sigma$  (horizontal):
  - Approximation and closed form solution

hor. position 
$$= \frac{\Delta}{\Sigma} = \frac{A-B}{A+B} = \frac{4\sin\frac{\alpha}{2}x}{\alpha} + \text{higher-order terms}$$
$$= \frac{f(x, y, R, \alpha) - f(-x, y, R, \alpha)}{f(x, y, R, \alpha) + f(-x, y, R, \alpha)}$$
$$f(x, y, R, \alpha) = \pi \int_{-\alpha/2}^{+\alpha/2} J_w(R, \Phi_w) d\Phi_w = \tan^{-1} \frac{\left[(R+x)^2 + y^2\right] \tan\left(\frac{\alpha}{4}\right) - 2Ry}{x^2 + y^2 - R^2} + \tan^{-1} \frac{\left[(R+x)^2 + y^2\right] \tan\left(\frac{\alpha}{4}\right) + 2Ry}{x^2 + y^2 - R^2}$$

### Example

#### • Position characteristic for R = 12.5 mm, $\alpha = 30^{\circ}$ :



# **Logarithmic Ratio Normalization**

• Results in a more linear position characteristic

hor. position = 
$$20\log_{10}\left(\frac{A}{B}\right) = 20\log_{10}\left(\frac{\sin\frac{\alpha}{2}x}{\alpha} + \text{higher-order terms}\right)$$
  
=  $20\log_{10}\left[\frac{f(x, y, R, \alpha)}{f(-x, y, R, \alpha)}\right]$ 

- The example for R = 12.5 mm,  $\alpha = 30^{\circ}$  gives a sensitivity of 2.75 dB/mm near the origin



June 10<sup>th</sup>, 2018 – BI CAS 2018 – M. Wendt

### **BPM** with 45<sup>0</sup> Rotated Electrodes

- Popular in synchrotron light and damping rings, and in the LHC!
  - Prevents that sync light, or collision debris, hits the electrodes
    - More non-linear position behavior
    - Reduced position sensitivity (this example: 1.94 dB/mm)



# Numerical Analysis (1)

- For most button or stripline type BPMs: 2D E-static analysis
  - Relativistic beam  $1/\gamma^2 \ll (\sigma_\ell/R)^2$  long bunches  $\sigma_\ell \gg R$
  - Solve the 2D E-static potential problem
    - > BUT: without varying  $\rho$ for many positions  $\vec{r} \in (x, y)$

line charge density

$$\nabla^{2}_{\perp} \Phi_{elec}(r) = \frac{\rho}{\phi} \delta(\vec{r} - \vec{r}_{0})$$
potential

- Apply Green's reciprocity theorem and solve the Laplace equation in 2D:  $\nabla^2_{\perp} \Phi_{elec}(r) = 0 \rightarrow \Phi_{elec}(x, y)$ 



2D "slice", prepared with tetrahedral mesh for the numerical analysis

> Result of the quasi-2D numerical analysis: equipotentials of the right electrodes



## **Numerical Analysis (2)**

#### • For a horizontal BPM

- Mirror the potential field  $\Phi_{elec}(x, y) = \Phi_A(x, y) = \Phi_B(-x, y)$ 

- And then combine the fields  $\Phi_{hor}(x, y) = \frac{\Phi_A - \Phi_B}{\Phi_A + \Phi_B} = \frac{\Delta}{\Sigma}$ 

> Can be performed for any symmetric arrangement of the electrodes



# **1D Non-linear Correction**

#### The 2D electrostatic analysis enables

- optimization of the characteristic impendence of a stripline
- Coverage factor, centered beam sensitivity s(x = 0, y = 0)
- Correction of the non-linear position behavior in 1D or 2D
  - > By look-up tables or a polynomial fit function
- Find a 1D polynomial fit function for horizontal beam displacements  $x \neq 0, y = 0$ 
  - Relationship between raw (measured) and true beam position:  $x_{raw} = f(x)$
  - Fit the inverted function
     by a polynomial of power p
    - $\succ$  Larger p, better fit
      - A too high p may lead to an unstable fit
    - In most cases a x-y symmetry is given, and the same correction polynomial can be applied to the vertical axes
    - > In practice, the quadradic correction area has to be limited, e.g.  $\mathbb{R} = 40\%$

 $x = f^{-1} x_{raw}$ 



$$x_{bpm}^{1D} = \sum_{i=0}^{p} c_i x_{raw}^i = U_p(x_{raw}) \approx x$$

### **2D Non-linear Correction**



- Remaining errors for the LHC stripline BPM applying correction polynomials  $U_5(x), U_5(y)$ at an area  $\mathbb{R} = 68\%$ 



- Find a 2D polynomial fit function for  $x, y \neq 0$  (x =
  - Raw and true beam position are given by:
     with: f = g and y = f(y<sub>raw</sub>, x<sub>raw</sub>)
     ▶ Notice the swap!

$$\begin{cases} x = f(x_{raw}, y_{raw}) \\ y = g(x_{raw}, y_{raw}) \end{cases}$$

- Fit a 2D surface polynomial for f(x, y) of power p and q for x and y

$$\begin{cases} x_{bpm}^{2D} = \sum_{i,j=0}^{p,q} \left( c_{ij} x_{raw}^{i} y_{raw}^{j} \right) = Q_{p,q}(x_{raw}, y_{raw}) \approx x \\ y_{bpm}^{2D} = \sum_{i,j=0}^{p,q} \left( c_{ij} y_{raw}^{i} x_{raw}^{j} \right) = Q_{p,q}(y_{raw}, x_{raw}) \approx y \end{cases}$$

### **Examples for 2D corrections**

#### LHC stripline BPM

- Pin-cushion maps ( $\mathbb{R} = 40\%$ )

> For symmetry reasons some cross-terms are 0, or very small (negligible)



1%R

0.8

# **Higher Order Moments**

#### Particle<->BPM EM-fields are linear and time-invariant

- Superposition principles apply
- Many particles -> BPM detects (approximately) the center-of-charge
  - > Point charge q = eN
- But: Non-linear effects allow the detection of higher moments:
  - Electrode A signal to *N* particles:

$$I_A = -\frac{I_{beam}}{2\pi} \left[ \alpha + 4 \sum_{i=1}^N \sum_{n=1}^\infty \frac{1}{n} \left(\frac{r_i}{R}\right)^n \cos(n\varphi_i) \sin\left(\frac{n\alpha}{2}\right) \right]$$

– After some math gym follows:

monopole moment 
$$\propto$$
 intensity (common mode)  

$$I_A = -\frac{I_{beam}}{\pi} \left[ \frac{\alpha}{2} + \frac{2}{R} \sin\left(\frac{\alpha}{2}\right) x_{beam} + \frac{1}{R^2} \sin(\alpha) \left(\sigma_x^2 - \sigma_y^2 + x_{beam}^2 - y_{beam}^2\right) \right]$$

dipole moment  $\propto$  position/*R* quadrupolar moment  $\propto$  ( $\Delta$ size+ $\Delta$ pos)/ $R^2$ 

В

 $\sigma_{r}$ ,

heam

**y**<sub>beam</sub>

### **Effects of the Beam Size**

#### Ideal 2-dim model:

#### courtesy M. Bozzolan

Finite beam size:

Due to the non-linearity, the beam size enters in the position reading.



Remark: For most LINACs: Linearity is less important, because beam has to be centered → correction as feed-forward for next macro-pulse.

### **BPM with Linear Position Response**

#### • Split-plane tube electrode

- radius: R
- length:  $\ell(\Phi_w) = \ell(1 + \cos \Phi_w)$
- A beam of
  - charge:  $q_b$ , position:  $(r, \varphi)$

induces an image charge on the electrode:

$$Q_{elec} = -q_b \ell \int_{0}^{2\pi} \frac{(1 + \cos \Phi_w) (R^2 + r^2)}{R^2 + r^2 - 2Rr \cos(\Phi_w - \varphi)} dx$$

with a linear position response

$$Q_{elec} = -q_b \ell \left( 1 + \frac{r \cos \varphi}{R} \right) = -q_b \ell \left( 1 + \frac{x}{R} \right)$$
  
$$\implies \qquad \text{hor. position} = \frac{\Delta}{\Sigma} = \frac{A - B}{A + B} = \frac{x}{R}$$



### "Shoe-box" BPM



June 10<sup>th</sup>. 2018 – BI CAS 2018 – M. Wendt

U<sub>right</sub>

### **Spit-Plane BPM**

#### + Pros

- Linear position response
  - No correction for non-linearities required, simple analog read-out electronics without post-processing
- high transfer impedance at low frequencies
  - > Good match for long bunches, low- $\beta$  beam
  - High signal levels, allows operation at low frequencies with high load impedance
- Cons
  - Complicated mechanics, requires sufficient real-estate
  - High capacitive source impedance, reflective
  - Eigenmodes at low frequencies, high beam coupling impedance
    - > Limited to low frequency operation, typically <300 MHz

### "Shoe-box" BPM Example

Technical realization at the HIT synchrotron of 46 m length for 7 MeV/u $\rightarrow$  440 MeV/u BPM clearance: 180x70 mm<sup>2</sup>, standard beam pipe diameter: 200 mm.



# **Button BPM Equivalent Circuit**



### **Button BPM**

- + Pros
  - Robust simple construction, cost effective, minimum real-estate
    - RF UHV feedthrough and button is a single element
- Cons
  - High-pass characteristic with high cut-off frequency
    - > Typically >= 500 MHz,
    - bad match to operate with long bunches, or at low frequencies
  - Capacitive source impedance, reflective



### **Examples of Button BPMs**



#### LHC Button BPM (CERN)





#### NSLS-II Button BPM (BNL)



#### TTFII Button BPM (DESY) located inside an undulator magnet



EFERENCE PLANE

### **Stripline or Directional Coupler BPM**



# **Stripline BPM**

- Strip transmission-line of characteristic impedance  $Z_0 = 50 \Omega$
- No dielectric materials ( $\varepsilon_r = 1$ , vacuum)
  - TEM fields of the signal, except near the transition at the ports
- Coupling to the TEM field of the beam
  - Electric and magnetic field coupling
- Only the upstream port delivers a beam signal!
  - Directional coupler
- Both ports are terminated
  - Sometimes the downstream port is shorted to ground
     No directivity



# **Stripline BPM Principle (1)**



### **Stripline BPM Principle (2)**



# **Operational Principle: Beam from Left**



June 10<sup>th</sup>, 2018 – BI CAS 2018 – M. Wendt

# **Operational Principle: Beam from Right**



### **Transfer Impedance**

#### • Time domain impulse response: *δ*-doublet pulse

characteristic impedance typically 50  $\Omega$ 

$$z(t) = \phi \frac{Z_0}{2} \left[ \delta(t) - \delta\left(t - 2\frac{\ell}{c}\right) \right]$$
  
coverage

factor

amplitude  $\delta(0)$   $\leftarrow 2\frac{\ell}{c} \rightarrow time$  $-\delta(2\frac{\ell}{c})$ 

#### • Frequency domain transfer impedance

$$Z(\boldsymbol{\omega}) = \boldsymbol{j}\boldsymbol{\phi}\boldsymbol{Z}_{0}\boldsymbol{e}^{\boldsymbol{j}\frac{\pi}{2}}\boldsymbol{e}^{-\boldsymbol{j}\boldsymbol{\omega}\frac{\ell}{c}}\sin\left(\boldsymbol{\omega}\frac{\ell}{c}\right)$$
  
- Lobes at:  $f_{c} = (2n-1)\frac{c}{4\ell}$ 

- 3dB lobe bandwidth:

$$f_{lo} = \frac{f_c}{2} \qquad f_{BW} = f_{hi} - f_{lo} = f_c$$
  
$$f_{hi} = 3 f_{lo}$$

 $Z_0 = 50\Omega, \ell = 100 \text{ mm}, \phi = 0.1$ Z\_stripline [Ohm](f) 4 ideal 3 **RF effects** 2 1 0 0  $1 \times 10^{9}$  $4 \times 10^{9}$  $2 \times 10^{9}$  $3 \times 10^{9}$  $5 \times 10^{9}$ frequency [Hz]

# **Stripline BPM**

#### + Pros

- Well defined, and high transfer impedance function
  - For striplines with I >> w, TEM operation
  - > Can be "tuned" to match a dominant beam frequency
    - Optimizing the length of the stripline
- Matched characteristic impedance with 50  $\Omega$  source
  - Only for terminated ports
    - Shorted downstream port: 0 Ω source, no directivity
  - Reduced reflection effects between generator (stripline BPM) and read-out electronics!
- Directivity
  - Separate beam position measurement of counter-rotating beams
    - e.g. near the IP in a ring collider

#### - Cons

- Complicated, fragile mechanics, high costs, requires sufficient real-estate
  - More RF feedthroughts required, impedance control of the stripline, strip-electrode may require a support structure

# **Examples of Stripline BPMs**





Ceramic posts hold the electrode

Impedance Match at the post

Inner-shielding bar reduces electrode to electrode coupling



June 10<sup>th</sup>, 2018 – BI CAS 2018 – M. Wendt

## **Bunch Signals from broadband BPMs**



- Stripline BPM output signal to a Gaussian bunch
  - at the upstream port

v(t) [V]

$$v_{strip_{up}}(t) \approx \frac{\phi Z_0}{2} \frac{eN}{\sqrt{2\pi\sigma}} \left\{ \exp\left[-\frac{(t+\tau)^2}{2\sigma^2}\right] - \exp\left[-\frac{(t-\tau)^2}{2\sigma^2}\right] \right\}$$
  
with:  $\tau = \frac{\ell}{2c} \left(\frac{1}{\beta} + \frac{1}{\beta_{strip}}\right)$   
 $Z_0 = R_{load} = 50 \ \Omega$ 

# **Limits of the Analytical Analysis**

• Stripline BPM response in the frequency domain



- No closed form expression which includes important details
  - high frequency effects a the feedthrough transition
  - attenuation and dispersion of long coaxial cables
  - effects of low-β beams
- Numerical analysis of the EM problem
  - With a beam field as stimulus signal

# **Numerically generated BPM Signals**



June 10<sup>th</sup>, 2018 – BI CAS 2018 – M. Wendt

# **Resonant Cavity BPM**

#### • Based on a beam-excited, passive resonator

- Often a cylindrical "pillbox" cavity is used
- Operating on the TM110 dipole-eigenmode offers a higher resolution potential than comparable broadband BPMs (button, stripline).
  - $\succ$  No common-mode  $\Sigma$  signal, only a difference  $\Delta$  signal
  - $\succ$  High transfer impedance, typically in the k $\Omega$ /mm range



### **Towards a Cavity BPM...**

- Eigenmodes in a brick-style resonator
  - 1<sup>st</sup> step towards a cavity BPM
  - Unfortunately you need to go through the math of the modal expansion of the vector potential  $\Psi$ ...



# **Cylindrical "Pillbox" Cavity Resonator**



Product ansatz (cylindrical coordinates):  

$$\Psi = R(\rho)F(\varphi)Z(z)$$
General solution (field components):  

$$\Psi = \begin{cases} A J_m(k_r\rho) + B N_m(k_r\rho) \\ AH_m^{(2)}(k_r\rho) + BH_m^{(2)}(k_r\rho) \end{cases} \begin{cases} C \cos(m\varphi) + D \sin(m\varphi) \\ \hat{C}e^{-jm\varphi} + \hat{D}e^{-jm\varphi} \end{cases} \begin{cases} E \cos(k_z z) + F \sin(k_z z) \\ \hat{E}e^{-jk_z z} + \hat{F}e^{-jk_z z} \end{cases}$$

$$J_m, N_m, H_m^{(1,2)}: \text{ cylindical functions } (Bessel, Hankel, Neumann) \\ \text{separation condition:} \\ k_r^2 + k_z^2 = k_0^2 \varepsilon_r \mu_r \end{cases}$$

$$f_{TMmnp} = \frac{c_0}{2\pi \varepsilon_r \mu_r} \sqrt{\left(\frac{j_{mn}}{R}\right)^2 + \left(\frac{p\pi}{h}\right)^2} \\ f_{TEmnp} = \frac{c_0}{2\pi \varepsilon_r \mu_r} \sqrt{\left(\frac{j_{mn}}{R}\right)^2 + \left(\frac{p\pi}{h}\right)^2} \end{cases}$$

# **Cavity BPM**





Beam couples to:

 $E_z = C J_1\left(\frac{J_{11}r}{R}\right) e^{i\omega t} \cos\varphi$ 

dipole (TM<sub>110</sub>) and monopole (TM<sub>010</sub>) & other modes

- Common mode (TM<sub>010</sub>) frequency discrimination
- **Decaying RF signal** response
  - **Position signal: TM**<sub>110</sub>

> Requires normalization and a

- phase reference
- Intensity signal: TM<sub>010</sub>

# **Common-mode free Cavity BPMs**





# **Cavity BPM**

#### + Pros

- No or minimum common mode signal contribution in the  $\Delta$ -signal
  - > Frequency discrimination of dipole (TM110) and monopole (TM010) modes
- High resolution potential
  - > High shunt (transfer) impedance of the TM110 mode
    - Even for lower Q tuning of the TM110 mode
  - Sub-µm signal pass resolution potential
- Cons
  - High beam coupling impedance
    - > No free lunch: high impedance may cause beam break-up and/or instabilities
    - > No or very limited use in ring accelerators
  - Requires a reference monopole mode (TM010) resonator
    - Beam phase and intensity
  - Limited position range
    - ~half aperture
  - Requires advanced RF read-out electronics
  - High-Q resonator may not be suitable for single bunch position measurements

### **Examples of Cavity BPMs**









# **Other Types of BPM Pickups**

- Less popular, but sometimes better suited for a specific application
  - Stripline BPM with shorted downstream ports
  - Exponentially tapered stripline BPM
  - Re-entrant cavity BPM
  - Resonant stripline of button BPM
  - Inductive BPM, ...

#### In common: based on symmetry





# **Summary Part 1**

- What have we learned?!
  - It is hard to stay up on Sunday morning and to follow a BPM session...
- What else have we learned,... about BPMs?!
  - BPMs are based on symmetry
    - Detect the asymmetric beam position by a pair of symmetrically arranged electrodes or by a symmetric resonant, beam driven cavity
  - BPM pickups are non-invasive
    - > Detect the beam's center-of-charge by electromagnetic coupling
  - Broadband BPM electrode (stripline, button, etc.) signals
    - contain information of the beam position and the beam intensity
      - Need to "normalize" to extract a position signal
    - > May have a non-linear position characteristic
    - Have a broad spectral response
  - Resonant cavity BPMs
    - Have a frequency selective beam response
    - Have a high resolution potential
      - No or only little "common mode" signal contribution in the dipole mode