

Frank Tecker - CERN

- Introduction CLIC / CTF 3
- CTF3 diagnostics
 - Longitudinal
 - Transverse
 - Other

Path to higher energy

• History:

- Energy constantly increasing with time
- Hadron Colliders at the energy frontier
- Lepton Colliders for precision physics
- LHC has found the Higgs with $m_{\rm H} = 126 \text{ GeV/c}^2$
- A future Lepton Collider would complement LHC physics

LHC vs. Lepton Collisions

The LEP collider

- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+e- circular collider (27 km) with $E_{cm}=200 \text{ GeV}$
- Problem for any ring:
 Synchrotron radiation
- Emitted power: scales with E^4 !! and $1/m_0^3$ (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!

- NO bending magnets \Rightarrow NO synchrotron radiation
- but: A lot of accelerating structures !!!

Linear Collider projects

- ILC (International Linear Collider)
 - Superconducting technology
 - 1.3 GHz RF frequency
 - ~31 MV/m accelerating gradient
 - 500 GeV centre-of-mass energy
 - upgrade to 1 TeV possible

- CLIC
 (Compact Linear Collider)
 - normalconducting technology
 - •100 MeV/m
 - multi-TeV energy range (nom. 3 TeV)

~35 km total length

- Very high gradients (~100 MV/m) possible with NC accelerating structures at high RF frequencies (>12 GHz) for short RF pulses
- Extract RF power from an intense electron "drive beam"
- Generate efficiently long pulse + compress it (in power + frequency)
- => Need short bunches with the correct time structure (12 GHz)

- High charge electron Drive Beam (low energy)
- Low charge Main Beam (high collision energy)
- => Simple tunnel, no active elements
- => Modular, easy energy upgrade in stages
 380 GeV => ~1.5 TeV => 3 TeV

CLIC – overall layout – 3 TeV

CLIC Drive Beam generation

Frank Tecker

• double repetition frequency and current

parts of bunch train delayed in loop

• RF deflector combines the bunches

RF injection in combiner ring

Beam Diagostic:

Lemming counters -> Intensity Lemming speed -> Momentum, Energy Lemming path -> Position overlap Lemming distance -> Longitudinal Combination Lemming shape -> Transverse overlap

Disclaimer: No animals were hurt for this movie!!

Alexandra Andersson

CTF 3

- demonstrated crucial CLIC feasibility issues, in particular:
 - Drive Beam generation (fully loaded acceleration, bunch frequency multiplication)
 - CLIC accelerating structures
 - CLIC power production structures (PETS)

CLIC Test Facility (CTF3)

Electrons

18

 Longitudinal profile with RF deflecting cavity, streak camera and electro-optical monitors

- **CTF3 Instrumentation Overview**
- Screens (OTR, fluorescence) for beam imaging
- Several technologies of Beam loss monitors

- Large variety of Beam Position Monitors
 - High resolution cavity BPMs
 - Inductive pick-up
 - Strip-line BPM
- Fast Wall Current Monitors
- Segmented dump: time resolved beam profile
- mm wave detectors: bunch length/spacing measurements

CTF3 - PRELIMINARY PHASE

Successful low-charge demonstration of electron pulse combination and bunch frequency multiplication by up to factor 5

Streak camera image of beam time structure evolution

RF injection in combiner ring Combination factor 4

Streak camera images of the beam, showing the bunch combination process

A first ring combination test was performed in 2002, *at low current and short pulse*, in the CERN Electron-Positron Accumulator (EPA), properly modified

Streak Camera

Use Synchrotron light produced in the rings or OTR/Cherenkov screens in a linac

'Streak cameras uses a time dependent deflecting electric field to convert time information in spatial information on an intensified CCD'

200 fs time resolution at best using state of the art Cameras : FESCA 200 Limitations :

(i) Initial velocity distribution of photoelectrons : *narrow bandwidth optical filter*

- (ii) Spatial spread due to the size of the slit
- (iii) Dispersion in the optics

Streak Camera – Bunch Length

Bunch length can be manipulated at the end of the linac using a magnetic chicane

2 Optical lines to the streak camera Synchrotron Radiation in the Delay Loop OTR in the linac at the exit of the Delay Loop

CERN

RF Deflector – Bunch Length

Old (1960-70's) idea to use RF deflector as a bunch length monitor

- The RF Deflector can be seen as a relativistic streak tube.
- The time varying deflecting field of the cavity transforms the time information into a spatial information
- The bunch length is then deduced measuring the beam size at a downstream position using a screen (or Laser Wire Sanner)

Delay Loop RF Deflector

<u>- Bunch Length Measurement with the</u> <u>1.5GHz RF Deflector of the Delay Loop -</u>

- Maximum power of 20MW
- 5degrees @1.5GHz = 9.25ps (4mm)

With this setting, the resolution is better than 1ps

 $\sigma_{noRF} = 0.35mm$ $\sigma_{0Xing} = 2.9 \text{mm} (6.7 \text{ps})$

Delay Loop RF Deflector

- Calibration of RF Deflector -

Use a Beam Position Monitor close to the Profile monitor to calibrate the deflection angle R34 = transfer Matrix element from cavity to the BPM

Make a power scan at zero crossing and (zero crossing – 180°) to check if there is no perturbation from linac wakefields

$$\sigma_z = A^{\frac{1}{2}} \frac{E_0 \lambda_{rf}}{R_{34} 2\pi}.$$

for improved transmission at high

frequency

50

100

150

Frequency [GHz]

200

250

0.2

0

300

RF pick-up for bunch length monitoring

BPR

WR-28 Waveguide ~20m

Filters, Horns and mixers

- Reflecting low pass filter 4 frequency-band detection stages
- Series of 2 down mixing stages at each detection station.

Acqiris DC282 Compact PCI Digitizer

4 channels, 2 GHz bandwidth, 2-8 GS/s sampling rate

Frank Tecker

' Changing the phase of a klystron '

Bunch length along the train'

Phase switch of the Sub-harmonic bunching system

Frank Tecker

Delay Loop bunch train combination

Phase Monitor for CTF3 bunch train combination

'To measure phase error in the RF bunch combination'

Frank Tecker

Phase Monitor for CTF3 bunch train combination

Adjust the delay loop length with a magnetic wiggler

OTR light and sweep speed 100ps/mm

500

Time (ps)

Frank Tecker

Diagnostics Examples from CTF3

0

1000

Path length: Button Pick-up's (BPR)

– BPR – RF phase monitor

Pickup signal mixed with
 3 GHz reference signal

Reference phase adjustable

Observed signal

• Combiner ring path length for factor 4: $N * \lambda + \frac{\pi}{2}$

 Bunches have 90° phase advance (3 GHz) per turn

CERN

Phase Monitor – sensitivity to CR ring length errors

time

Single bunch:Bunch length

Multi-bunch:

Bunch distance

Drive beam generation achieved

- combined operation of Delay Loop and Combiner Ring (factor 8 combination)
- => Full drive beam generation, main goal of 2009, achieved

Profile monitors @ CTF3

Segmented Dump for time resolved energy measurement

Installed in spectrometer lines

Why measurement important?

Check the phase of the RF (as a function of time) in each accelerating cavity is set correctly @CTF3, fully loaded acceleration:

→ any current variation in the pulse, translates into an energy variation

→transient

32 Tungsten plates (2mm thick) spaced by ~1mm Current read directly with 50Ω impedance to ground \rightarrow fast < 1ns

Resolution determined by geometry (limited by multiple scattering)

Full calibration of each channel with beam

Tool including calibration

Allowed Injector and Linac optimization

• dp/p = 0.7%, emittance 60/40 mm mrad (H/V)

Frank Tecker

Transient compensation for full beam loading accelerating structure

Screens and Optical Systems

In the Linac (Ouad scan) for emittance measurements

Backward OTR screens :

Two screens mounted on pneumatic arms Screens tilted to 20° (observation at 40°) $10\mu m$ thick Aluminum foil (~90% reflectivity) 100µm thick Carbon foil (~26% reflectivity) Active Size : Ø3cm

Scan in X

In the spectrometer line for Energy and Energy spread measurements

Backward OTR screen :

Fixed screen tilted at 45° (observation at 90 $^{\circ}$) $10\mu m$ thick Aluminum foil (~90% reflectivity) Active Size: 10cmx4cm

Light on

Direct Screen Observation

Very useful for bunch shape diagnostics

• Here an example for DL 2x recombination

Frank Tecker

- Measure profile on screen
- Fit the profile width
- Change quadrupoles upstream
 => phase advance changing
 => phase space projection changes
- Calculate the transfer matrix with the known quadrupole strengths
- Fit initial beam parameters $(\alpha, \beta, \varepsilon)$

- Using quad scan full profile data
- Each quadrupole setting corresponds to a phase space rotation
- Applying Inverse Radon transform reconstructs the phase-space distribution

Improving the surface quality of the screens

High reflectivity screens for low charge beam

Using 200µm Si wafer with a very good surface quality Adding an Aluminum coating to provide an excellent reflectivity coefficient (90%)

Thermal resistant material for high charge beam

Screens and Optical Systems

OTR screen

- Problem due to the non-homogeneous illumination of the OTR screen
- Due to the finite acceptance of the optical system, the small angular aperture ($\sim 1/\gamma$) of the OTR light and the size of the screen
- Effect enhanced if the beam angle is stronger and for higher beam energy

Diffusive Screens in the Spectrometer Lines

Synchrotron radiation in the spectrometer line

Maximum probe beam acceleration measured: 31 MeV => Corresponding to a gradient of 145 MV/m

TD24

Other Diagnostic Experiments

50 ns

Single bunches

0.20

0.15

OTR interference Experimental results : Wartski (1975) for distances $>> L_{o}$ Califes: $L_c \cong 2.5$ cm @ 200 MeV, $\lambda = 500$ nm Ideal to study the coherent regime

- observed variations with $\sim 2 \min period$
- found 230V mains variation with this period caused by AD (Antiproton Decelerator) cycle
- => water station regulation corrected

- Problems with our thermionic gun (145kV)
 - HV breakdowns
 - affected gun electronics
- All available diagnostics was not conclusive
 - no apparent vacuum activity
- => desperate need of new diagnostics
- Bypassed BI
- We didn't have any CO driver for the new tool
- But was working!
- It was a GoPro Hero 4

Gun action cam

CTF3 has shown the CLIC feasibility

- stable Drive Beam generation
- high gradient RF performance
- Good, diverse diagnostics is absolutely essential to optimize the performance
- Your accelerator is only as good as your diagnostics!

• Thank you for your attention!!!

No immediate plan for dismantling
 A part (CALIFES) is used as CLEAR for
 Beam Instrumentation tests
 Plasma lens experiments
 Irradiation studies

Acknowledgements

- Many thanks to all my colleagues from CTF3
- In particular:
 - Thibaut Lefevre
 - Roberto Corsini
 - Piotr Skowronski
 - Davide Gamba
 - Lars Søby
 - Alexandra Andersson
 - Anne Dabrowski

Additional Slides

Overview: Position and intensity monitors

	BPE	BPM	BPI	BPS	PBPM	BPR
Transverse sensitivity, $\Delta = \Sigma$ [mm]	30	30	33 / 50		12	~10
Resolution pos.	0.1mm	0.1mm			200nm	0.1mm
Relative precision (3/4 half aperture)	0.2%	1%	1%	1%	1%	1-5%
Longitudinal transfer impedance [Ω]	0.17 / 1.7	0.1 / 1				0.1 / 1
Resolution current [mA]	12 / 1.2	10 / 3				12 / 1.2
Low frequency cut off Δ / Σ [kHz]	1 / 1	10 /0.15	~20 / 0.3			1kHz
High frequency cut off	200MHz	200MHz	200MHz		50MHz	200MHz (10MHz)
Calibration	Yes	Yes	Yes	Yes	Yes	No
ID / Length [mm]	46 / 130	40 / 168	90*39/240		6	40 / 196
Number of feedthroughs	4	0	0	0	0	5
Waveguide						WR28
Flange types	DN40CF / DN100CF	DN40CF	Racetrack		Helicoflex 10.9*7.7	DN40CF
Max. bake-out temperature	130 °C	130 °C	130 °C	130 °C	130 °C	130 °C

Lars Søby