Introduction to Optics: basics, components, diffraction

Beam Instrumentation
Tuusula, Finland
2-15 June 2018

Stephen Gibson

John Adams Institute for Accelerator Science
Royal Holloway, University of London, UK

Why study optics?

Light matters...

Optics: the study of the behaviour and properties of light, including the transmission and deflection of radiation
underpins

photonics: the science and technology of generating, controlling, and detecting photons

Photonics market is $€ 300$ billion: double that by 2020.

- Our modern world relies on light-based technologies:
- Smart phones, laptops, displays and data storage
- Fast internet, fibre-optic and satellite telecommunications
- Medical applications, advanced imaging, metrology
- Media production and broadcasting, 3D cinema
- Energy from solar power, lighting technology...

Bubble size indicates woridwide production volume in 2020

Why study optics?

Centrality to modern physics...

European Southern Observatory

Strontium ion traps for optical frequency standards

Laser cooling in atomic traps:

Optics is an essential for most research in physics:

- Astronomy and cosmology
- Microscopy and crystallography
- Spectroscopy and atomic theory
- Quantum theory
- Quantum optics, quantum computing
- Relativity theory
- Ultra-cold atoms
- Laser nuclear ignition
- Particle accelerators present and future
- Holographic imaging
 National Ignition Facility, US

Why study optics?

Beauty of optical phenomena

Optics on display near
Tuusula, Finland

Why study optics?

... giant lenses are awesome?!

Spotted on a visit to KEK

CAS optics course aims

These 3 lectures aim to equip you with enough knowledge of optics, lasers and practical setups to understand and start to develop your own versatile and precise beam diagnostics.

- Lecture 1 [Wed 12h]: Introduction to Optics: basics, components, diffraction
- Fundamental concepts, how light behaves in different circumstances.
- How to calculate, and create good optics design.
- Lecture 2 [Thurs 11h]: Lasers, technologies and setups
- How lasers work, different types, understanding their parameters and cost.
- Including optical fibres for data transmission and readout.
- Lecture 2 [Fri 12h]: Applications of lasers in beam instrumentation
- Examples of some optical and laser based beam diagnostics and what type of precision is achievable.

...and there was light

- Starting from James Clerk Maxwell's equations (1865) for electric E and magnetic B fields, in the absence of charge ($\rho=0$) and currents $(\mathrm{J}=0$):
Gauss's law for electricty:

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\epsilon_{0}}=0 \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t}
\end{aligned}
$$

Ampère's law:

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}=\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

- Take the curl and use vector identity $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$ to show:

$$
\nabla^{2} \mathbf{E}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \quad \nabla^{2} \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

...and there was light

- Starting from James Clerk Maxwell's equations (1865) for electric E and magnetic B fields, in the absence of charge ($\rho=0$) and currents ($\mathrm{J}=0$):
Gauss's law for electricty:

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\epsilon_{0}}=0 \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t}
\end{aligned}
$$

Ampère's law:

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}=\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

- Take the curl and use vector identity $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$ to show:

$$
\nabla^{2} \mathbf{E}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

$$
\nabla^{2} \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}} \quad \nabla^{2} \psi=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

- These are wave equations with velocity: $v=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ Light is an electromagnetic wave

Basis of Geometric Optics

- One solution of the 3-dimensional wave equation is plane waves

$$
U(x, y, z, t)=U_{0} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

- In optics, typically consider simplified solution to a 1D wave equation:
k is wave number, $2 \pi / \lambda$
\mathbf{Z} is the direction of travel

$$
U(z, t)=U_{0} \cos \left[\frac{2 \pi}{\lambda}(z-c t)\right]=U_{0} \cos [(k z-\omega t)]
$$

λ the wavelength
c, speed of light
$\omega=2 \pi c / \lambda$, the angular frequency
[Note, no phase offset in this solution]

- In an isotropic media, light travels in straight lines, known as rays.

- Geometric optics is a technique for determining the light path through
wave fronts multiple interfaces between media of different refractive indices.

Ray theory and refraction

Two basic assumptions:

1. light travels in straight lines, known as rays, in each uniform medium.
2. light reflects and/or refracts at an interface between different media

Valid for isotropic media and apertures much larger than the wavelength of light.

- Huygens' construction can be used to derive Snell's law of refraction at an interface:

$\mathrm{n}_{1}<\mathrm{n}_{2}$ in this example

Light has different speeds in each medium $v=c / n$.

Distances travelled are $\mathrm{v}_{1} \mathrm{t}$ and $v_{2} t$ in same time t.

$$
\begin{aligned}
& \sin \theta_{1}=v_{1} t / D \\
& \sin \theta_{2}=v_{2} t / D
\end{aligned}
$$

$$
\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}
$$

Snell's Law of refraction

Basic components: lenses

- A converging lens is basically a stack of prisms, such that paraxial rays converge in the focal plane
- The location and magnification of animage can be found by ray tracing:

Lens equation (note x_{1} is negative)

1. A ray passing through f_{1} before refraction, is parallel to the principal axis after refraction.
2. A ray parallel to the principal axis before refraction, travels through F_{2} after refraction.
3. A ray passing through P is undeviated.

$$
\begin{array}{r}
\frac{1}{x_{2}}-\frac{1}{x_{1}}=\frac{1}{f_{2}} \\
\text { Lateral magnification } \\
\mathrm{m}=\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}=\frac{\mathrm{x}_{2}}{\mathrm{x}_{1}}
\end{array}
$$

Basic components: Lens types and systems

Converging lenses

> Diverging lenses

Two thin lenses in contact:

$X^{\prime}{ }_{2}$ is image of X_{1} formed by the first lens A only. X_{2} is the image formed by lens B.

- Constructing an optical instrument typically requires multiple lenses.
- One can apply the lens equation multiple times, or use the effective focal length of the combination.
- However, there is a better way...

Matrix method of ray tracing

- A ray is described by the height h_{1} from the optical axis and angle $h_{1}{ }^{\prime}$
- Optical components described by their transfer matrix:

Free space drift $\quad M_{D}\left(x_{1}\right)=\left(\begin{array}{cc}1 & x_{1} \\ 0 & 1\end{array}\right)$
Example of drift-lens-drift:
Action at thin lens $\quad M_{L}(F)=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -F & 1\end{array}\right)$

$$
\begin{aligned}
& \binom{h_{2}}{h_{2}^{\prime}}=M_{D}\left(x_{2}\right) M_{L}(F) M_{D}\left(-x_{1}\right)=\binom{h_{1}}{h_{1}{ }^{\prime}} \\
& M_{D}\left(x_{2}\right) M_{L}(F) M_{D}\left(-x_{1}\right)=\left(\begin{array}{cc}
1 & x_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-F & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -x_{1} \\
0 & 1
\end{array}\right) \\
& M_{T R}=\left(\begin{array}{cc}
1 & x_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -x_{1} \\
-F & F x_{1}+1
\end{array}\right) \\
& M_{T R}=\left(\begin{array}{cc}
1-F x_{2} & -x_{1}+F x_{1} x_{2}+x_{2} \\
-F & F x_{1}+1
\end{array}\right)
\end{aligned}
$$

Reflection transformations

Leonardo da Vinci famously used mirror writing to obfuscate his notes (he was also left-handed)

Scoring pour ai prod Dots $M_{\text {mos it }}$ oval [rallojimad

Reflect across $\mathrm{x}=0$

$$
(x, y) \longrightarrow(-x, y)
$$

$\binom{x}{y} \rightarrow\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}$

Reflect across $x=y$

$$
\begin{gathered}
(x, y) \longrightarrow(y, x) \\
\binom{x}{y} \longrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
\end{gathered}
$$

Optical design with ray tracing software

- Ray tracing divides the real light field into discrete monochromatic rays that are propagated through the system. Can input real light distribution.
- Several professional software suites available, e.g.

OSLO: Optics Software for Layout and Optimization https://www.lambdares.com/oslo/

USP\# 6,590,715 Car 1 Zeiss	UNITS: MM
FOCAL LENGTH $=6179 \quad$ NA $=0.725$	DES: OSLO

ZEMAX
https://www.zemax.com/ LensMechanix

WinLens3D - lens design \& optimization software
http://www.opticalsoftware.net/index.php/how_to/lens_design_software/winlens3d/

Physical optics: Interference basics

- The wave properties of light gives rise to interference between multiple paths, where each path has a phase advance.

$$
\delta=\frac{2 \pi}{\lambda} d=\frac{2 \pi n}{\lambda_{0}} d
$$

- Consider two sinusoidal disturbances at a point at timet, having travelled different distances, x_{1} and x_{2} :

$$
\begin{array}{lr}
E_{1}=a_{1} e^{i\left(\omega t-k x_{1}\right)}=a_{1} e^{i\left(\omega t-\delta_{1}\right)} & E_{1}=a_{1} \mathrm{e}^{i \phi_{1}} \text { and } E_{2}=a_{2} \mathrm{e}^{i \phi_{2}} \\
E_{2}=a_{2} e^{i\left(\omega t-k x_{2}\right)}=a_{2} e^{i\left(\omega t-\delta_{2}\right)} & \text { instantaneous phase, } \phi=\omega \mathrm{t}-\mathrm{kx}
\end{array}
$$

- By the principle of superposition the resulting disturbance is the sum of the complex spatial amplitudes $E=E_{1}+E_{2}$. We measure the intensity, the square of the sum of E-fields:

$$
\begin{array}{ll}
I=\left|E_{1}+E_{2}\right|^{2} & \text { Note for identical amplitudes a } \mathrm{a}_{1}=\mathrm{a}_{2} \\
I=|E|^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \left(\delta_{2}-\delta_{1}\right) & I=4 a^{2} \cos ^{2}\left(\frac{\delta_{2}-\delta_{1}}{2}\right) \\
& \begin{array}{l}
\text { Constructive o.p.d. }=m \lambda \\
\text { Destructive o.p.d. }=(m+1 / 2) \lambda
\end{array}
\end{array}
$$

Physical optics: Phasors

- Reminder of phasors, visualisation of the superposition principle,

$$
\begin{aligned}
& E_{1}=a_{1} e^{i\left(\omega t-k x_{1}\right)}=a_{1} e^{i\left(\omega t-\delta_{1}\right)}=a_{1}\left[\cos \left(\phi_{1}\right)+i \sin \left(\phi_{1}\right)\right] \\
& E_{2}=a_{2} e^{i\left(\omega t-k x_{2}\right)}=a_{2} e^{i\left(\omega t-\delta_{2}\right)}=a_{2}\left[\cos \left(\phi_{2}\right)+i \sin \left(\phi_{2}\right)\right]
\end{aligned}
$$

$$
E=E_{1}+E_{2}
$$

Physical optics: double slit interference

- For infinitesimal slit size, see interference fringes in far field:

- Where should Hermann sit to maximize the volume?

C Constructive interference. Maxima.

D Destructive interference. Minima.

C Maxima

D Minima
?

Michelson Interferometer

- Interferometers are used widely for accurate distance measurements:
- If the length of each interferometer arm is fixed we observe some phase Φ at the detector, due to the optical path difference, $L=I_{1}-I_{2}$
- If one mirror is moved some distance x, we observe a phase change at the detector:

Essentially we count fringes as the path difference is changed.

Interference fringe counting:
change in phase proportional to change in optical path length

$$
\begin{aligned}
& \phi_{1}=\frac{2 \pi}{\lambda} l_{1} \\
& \phi_{2}=\frac{2 \pi}{\lambda} l_{2} \\
& \Phi=\frac{2 \pi}{\lambda}\left(l_{1}-l_{2}\right)=\frac{2 \pi}{\lambda} L
\end{aligned}
$$

$\boldsymbol{\Phi}$ is the detected phase
L is the optical path difference ($\mathrm{n}=1$)

Interferometer Types

Check surface quality of a lens or optical flat can be tested with interference fringes.

- The interferometer is an amazingly versatile instrument
- Various configurations to create interference by division of amplitude, e.g.:

Mach-Zehnder viewing

Fizeau

Direct detection of Gravitational Waves

- Exquisite sensitivity: gravitational wave typically lengthens and contracts each arm of the interferometer by length of 10^{-21} * arm length

First signal from a binary black-hole

Quadrupole oscillation of space-time

LIGO

Gravitational Wave Event GW150914

Barry Barish (LIGO) CERN seminar 11/2/16 www.ligo.caltech.edu/video/ligo20160211v10

Finnish Diffraction

- What happens when waves meet an aperture or obstacle in Finland?

The calm before the storm in Tuusula...

Finnish Diffraction

- What happens when waves meet an aperture or obstacle in Finland?

Finnish Diffraction

- What happens when waves meet an aperture or obstacle in Finland?

Wave Diffraction

- Diffraction occurs wherever there is an obstacle or aperture

From Teaching waves with Google Earth doi:10.1088/0031-9120/47/1/73

Light on the edge

Diffraction fringes at a razor's straight edge:

Light on the edge

Diffraction fringes at a razor's straight edge:

We see similar fringes
at the corner...

Diffraction effects may be helpful or problematic

Light on the edge

Diffraction fringes: circular, triangular and rectangular apertures:

Beugung an einer runden Öffnung in zwei Stellungen des Beobachtungsschirmes. Diffraction par une ouverture circulaire pour 2 positions de l'écran d'observation - Diffraction by a circular aperture for two positions of the
plane of observation

Fresnel diffraction at a straight edge

- Consider plane waves incident on a straight-edged obstacle:
- We aim to evaluate the intensity at P, by summing all contributions that pass the obstacle incident waves

$\phi(h)=\frac{2 \pi}{\lambda}\left[\left(s^{2}+h^{2}\right)^{1 / 2}-s\right] \approx \frac{\pi h^{2}}{\lambda s}$
Approximation valid for $h^{2} \ll s^{2}$
straight edged
obstacle

1) Compared to the phase of a wave from O , the extra
phase of the wave from W is
Consider the intensity at P due to contributions from infinitesimal strip, dh, at height, h.:
2) Construct a phasor, $d x+i d y=d h[\exp (i \phi(h)]$, due to infinitesimal strips of height dh at h :

$$
d x=d h \cos \frac{\pi h^{2}}{\lambda s} \quad \text { and } \quad d y=d h \sin \frac{\pi h^{2}}{\lambda s}
$$

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

- The phasor will trace out a spiral (with tangent at phase angle $\phi \sim h^{2}$)

Usually define a dimensionless variable which represents the distance along the spiral,

$$
v=h\left(\frac{2}{\lambda s}\right)^{1 / 2}
$$

- The spiral coordinates are given by the Fresnel integrals

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
\mathrm{I}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2
$$

Intensity

Straight edge
In geometric shadow Not in geometric shadow

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Start in geometric shadow...
length of arrow grows as we move within the shadow

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
\mathrm{I}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2
$$

Intensity

Straight edge
In geometric shadow Not in geometric shadow

Start in geometric shadow...
length of arrow grows as we move within the shadow

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
\mathrm{I}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2
$$

Intensity

Straight edge
In geometric shadow Not in geometric shadow

Predicts that the intensity at P, in line the straight edge is $1 / 2(A Z)^{2}=0.25$, or one quarter of that when no obstacle is present.

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
\mathrm{I}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2
$$

Intensity

Straight edge
In geometric shadow Not in geometric shadow
$\mathrm{I}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) / 2$

Reach first maximum:
Note it is larger than if the obstacle were not present!

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
I=\left(x^{2}+y^{2}\right) / 2
$$

Intensity

Straight edge

Just past the first maximum:

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
I=\left(x^{2}+y^{2}\right) / 2
$$

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Intensity

Straight edge

Not in geometric shadow

Reach first minimum

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
I=\left(x^{2}+y^{2}\right) / 2
$$

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Intensity

Straight edge

Not in geometric shadow

Reach second maximum

Fresnel diffraction at a straight edge

A thing of beauty: the Cornu spiral

The arrow length traces out the straight edge pattern, with resultant normalized intensity

$$
I=\left(x^{2}+y^{2}\right) / 2
$$

Intensity

Straight edge
In geometric shadow Not in geometric shadow

Tends to the centre of the spiral, where the intensity $=1$.

$$
\begin{aligned}
& x=\int_{0}^{v} \cos \frac{\pi v^{\prime 2}}{2} d v^{\prime} \\
& y=\int_{0}^{v} \sin \frac{\pi v^{\prime 2}}{2} d v^{\prime}
\end{aligned}
$$

Far field intensity for a widening slit:

General Fraunhofer Diffraction in 1D

- To calculate the far field diffraction pattern take the Fourier Transform of the transmission function of the diffracting aperture:

Common examples

$$
I\left(\theta_{x}\right)=\left|E_{r e s}\left(\theta_{x}\right)\right|^{2}=\left|\int_{S} A\left(x_{s}\right) \exp \left[-i k x_{s} \sin \theta_{x}\right] d x_{s}\right|^{2}
$$

Intensity integral, FT of aperture function	Solution	Definitions
Single slit: $\quad I\left(\theta_{x}\right)=\left\|E_{\text {res }}\left(\theta_{x}\right)\right\|^{2}=\left\|\int_{-a / 2}^{a / 2} A_{0} \exp \left[-i k x_{s} \sin \theta_{x}\right] d x_{s}\right\|^{2}$	$I=A_{0}^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}}$	$\alpha=\frac{\pi}{\lambda} a \sin \theta_{x}$
Double slit: $I\left(\theta_{x}\right)=\left\|\int_{-b / 2-a}^{-b / 2} A\left(x_{s}\right) \exp \left[-i k x_{s} \sin \theta_{x}\right] d x_{s}+\int_{b / 2}^{b / 2+a} A\left(x_{s}\right) \exp \left[-i k x_{s} \sin \theta_{x}\right] d x_{s}\right\|^{2}$	$I=A_{0}^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \cos ^{2} \frac{\delta}{2}$ combined patterns	$\alpha=\frac{\pi}{\lambda} a \sin \theta_{x}$ and $\delta=\frac{2 \pi}{\lambda}(a+b) \sin \theta_{x}$
N -slit grating $I\left(\theta_{x}\right)=\left\|\int_{-a / 2}^{a / 2} A e^{-i k x_{s} \sin \theta_{x}} d x_{s}+\int_{d-a / 2}^{d+a / 2} A e^{-i k_{x} \sin \theta_{x}} d x_{s}+\int_{2 d-a / 2}^{2 d+a / 2} A e^{-i x_{x} \sin \theta_{x}} d x_{s}+\ldots+\int_{(N-1) d-a / 2}^{(N-1) d+a / 2} A e^{-i k x_{s} \sin \theta_{x}} d x_{s}\right\|^{2}$	$I=A_{0}^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \frac{\sin ^{2} N \beta}{\sin ^{2} \beta}$	$\alpha=\frac{\pi}{\lambda} a \sin \theta \quad$ and $\quad \beta=\frac{\delta}{2}=\frac{\pi}{\lambda} d \sin \theta$

Diffraction in 2D

- Rectangular slit:

$$
\begin{array}{r}
I\left(\theta_{x}\right)=\left|\int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2} A\left(x_{s}\right) \exp \left[-i k x_{s} \sin \theta_{x}\right] \exp \left[-i k y_{s} \sin \theta_{y}\right] d x_{s} d y_{s}\right|^{2} \\
I=A_{0}^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \frac{\sin ^{2} \beta}{\beta^{2}}, \text { where } \alpha=\frac{\pi}{\lambda} a \sin \theta_{x} \text { and } \beta=\frac{\pi}{\lambda} b \sin \theta_{y}
\end{array}
$$

- Circular aperture:

$$
\begin{gathered}
E_{r e s}\left(\rho_{d}, \theta_{d}\right)=\int_{0}^{\bar{\rho}} \int_{0}^{2 \pi} A\left(x_{s}\right) \rho_{s} \exp \left[-\frac{i k}{L} \rho_{s} \cdot \rho_{d} \cdot \cos \left(\theta_{s}-\theta_{d}\right)\right] d \rho_{s} d \theta_{s} \\
E_{r e s}=A_{0}^{2} \frac{J_{1}^{2}(\alpha)}{\alpha^{2}}, \text { where } \alpha=\frac{k a \rho_{d}}{L} \quad \theta=\frac{1.22 \cdot \lambda}{\rho_{d}}
\end{gathered}
$$

Convolution visualized

- The convolution function:

$$
h(x)=f(x) \otimes g(x)=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) g\left(x^{\prime}-x\right) d x^{\prime}
$$

- The convolution theorem:
- $F(k)$ is the Fourier Transform of $f(x)$
- $G(k)$ is the Fourier Transform of $g(x)$
- $H(k)$ is the Fourier Transform of $h(x)$
- Then:

- The Fourier transform of a convolution of f and g is the product of the Fourier transforms of f and g

Convolution theorem

convolution

Spatial filtering

The 4F system (telescope with finite conjugates one focal distance to the left of the objective and one focal distance to the right of the collector, respectively) consists of a cascade of two Fourier transforms

$$
\mathcal{F}\{\mathcal{F}\{g(x, y)\}\}=g(-x,-y)
$$

plane wave illumination

Pin hole as a low pass filter

- A pinhole aperture placed at the focus of the lens acts in the Fourier plane:
- This eliminates structure with higher spatial frequencies, which produce light furthest from the central position.
- A microscope objective and pinhole is typically used to remove aberrations and improve the quality of a Gaussian laser beam.

Spatial filtering in image processing

Fourier plane

Image plane

Unfiltered

Low pass

Halo monitoring: core masking

The Sun's chromosphere is 4 orders of magnitude less dense than the photosphere (which itself is three to four orders less dense than air at sea level).

The chromosphere becomes directly visible during an eclipse.

Application: Coronagraph for LHC beam halo

A. Goldbatt et al. MOPG74m IBIC2016

- Observe synchrotron light form LHC:
- Opaque disk blocks the beam core.
- However, the limited diameter of the object lens creates unwanted diffraction, which overlays the halo.
- By adding the field lens to image the objective lens, the unwanted diffraction moves radially out.
- A Lyot stop is then used to block the diffraction, allowing only the LHC halo to be imaged.

G. Trad, T. Mitsuhashi, E. Bravin, A. Godblatt, F. Roncarolo First Observation of the LHC Beam Halo Using a Synchrotron Radiation Coronagraph
http://inspirehep.net/record/1626217/files/tuoab2.pdf

Summary of 'Introduction to Optics'

- The simple refractive nature of electromagnetic waves enables complex optical instruments to be designed from multiple elements:
- Light propagation is typically calculated by dedicated ray tracing software, based on matrix methods.
- Interference is a powerful tool for precise displacement measurements with sensitivities at a fraction of the wavelength of light
- we we explore some relevant examples in the following lectures.
- Diffraction effects must be considered when designing instruments, with numerical calculations based on the Fourier Transform of the transmission function of the aperture.
- Spurious effects can typically be spatially filtered in the Fourier plane, or by applying a mask on the Fourier Transform in software to reconstruct only the image of interest.
- Next time: lasers, fibre optics and applications.

