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departments and companies manufacturing accelerator equipment who wish to learn about beam instrumentation technologies, data 
treatment and accelerator performance diagnostics.
The course is split into morning lectures and afternoon “hands-on” courses.
The lectures will focus on the typical instruments used in high and low energy linear and circular accelerators, introducing examples of 
their application and some elementary background on particle dynamics. 
For the “hands-on” courses the participants will be split into groups to work with real equipment on beam position measurements, optical 
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Participants will leave the school having acquired a detailed understanding of how beam diagnostic measurements are performed and 
practical experience of how the instrumentation used is built and operated.
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Introduction	to	Optics:	overview

• Motivation:why	study	optics?
• Geometric	Optics
– Basics	of	refractive	systems
– Designing	components,	ray	tracing

• Interference
– Principles	of	Interferometry
– Michelson,	Mach	Zehnder &	FSI

• Diffraction:
– Fourier	optics,	convolution	theory.	
– Applications	in	diagnostics

Outline

2

Disclaimer:	focus	on	
optics	relevant	for		
Beam	Diagnostics
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Why	study	optics?

• Our	modern	world	relies	on	light-based	technologies:
– Smart	phones,	laptops,	displays	and	data	storage
– Fast	internet,	fibre-optic	and	satellite	telecommunications
– Medical	applications,	advanced	imaging,	metrology
– Media	production	and	broadcasting,	3D	cinema
– Energy	from	solar	power,	lighting	technology…

Optics: the	study	of	the	behaviour and	properties	of	light,	including	the	
transmission	and	deflection	of	radiation

underpins

photonics:	the	science	and	technology	of	generating,	
controlling,	and	detecting	photons

Light	matters…

Photonics market	is	€ 300	billion:	double	that	by	2020.
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Why	study	optics?

• Optics	is	an	essential	for	most	research	in	physics:
– Astronomy	and	cosmology
– Microscopy	and	crystallography
– Spectroscopy	and	atomic	theory
– Quantum	theory
– Quantum	optics,	quantum	computing
– Relativity	theory
– Ultra-cold	atoms
– Laser	nuclear	ignition
– Particle	accelerators	present	and	future
– Holographic	imaging

Centrality	to	modern	physics…

Laser	cooling	in	atomic	traps:
National	Ignition	Facility,	US

European	Southern	 Observatory

Strontium	 ion	traps	for
optical	frequency	standards
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Why	study	optics?
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Beauty	of	optical	phenomena
Optics	on	display	near	
Tuusula,	Finland
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Why	study	optics?
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…	giant	lenses	are	awesome?!

Spotted	on	a	visit	to	KEK
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CAS	optics	course	aims
These	3	lectures	aim	to	equip	you	with	enough	knowledge	of	optics,	lasers	and	practical	
setups	to	understand	and	start	to	develop	your	own	versatile	and	precise	beam	diagnostics.

• Lecture	1	[Wed	12h]:	Introduction	to	Optics:	basics,	components,	diffraction
– Fundamental	concepts,	how	light behaves	in	different	circumstances.
– How	to	calculate,	and	create	good	optics	design.	

• Lecture	2	[Thurs	11h]:	Lasers,	technologies	and	setups
– How	lasers	work,	different	types,	understanding	 their	parameters	and	cost.
– Including	optical	fibres for	data	transmission	and	readout.

• Lecture	2	[Fri	12h]:	Applications	of	lasers	in	beam	instrumentation
– Examples	of	some	optical	and	laser	based	beam	diagnostics	and	what	type	of	precision	
is	achievable.
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…and	there	was	light
• Starting	from	James	Clerk	Maxwell’s	equations	(1865)	for	electric	E and	magnetic	B fields,

in	the	absence	of	charge	(ρ=0)	and	currents	(J=0):
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PH2310 Optics: Tutorial 1 with Solutions

Questions to be covered in week 1 of Spring Term 2015
Lecturer: Stephen.Gibson@rhul.ac.uk (W255).

Please make arrangements with your Tutor for handing in your solutions

(normally by 10am, Wednesday of Week 1).

The aim of this first week tutorial is to revive your knowledge of light and prepare for
understanding the new material. If you need to, refer to your notes from PH1420 Fields
and Waves and PH2420 Electromagnetism.

Question 1: Let there be light ... from Maxwell’s equations

In vacuum with no charges (⌅ = 0) or currents (J = 0) Maxwell’s equations reduce to

Gauss’s law for electricty: ⌅·E =
⌅

�0
= 0

No magnetic monopoles: ⌅·B = 0

Faraday’s law of induction: ⌅⇤E = �⌥B

⌥t

Ampère’s law: ⌅⇤B = µ0J+ �0µ0
⌥E

⌥t
= �0µ0

⌥E

⌥t
.

a) Derive two wave equations of the form ⌅2⇧ = � 1
v2

⇥2�
⇥t2 for E and B, using the vector

identity: ⌅⇤(⌅⇤A) = ⌅(⌅·A) +⌅2A.

b) Calculate the speed of this wave, given that the vacuum permittivity �0 = 8.854188⇤
10�12F ·m�1 and vacuum permeability µ0 = 4⇤ ⇤ 10�7H ·m�1. Comment.

Solution to Question 1

a) This material should be familar from the electromagnetism course last term and the
tutorial in week 9:

Take the curl of Faraday’s law: ⌅⇤(⌅⇤E) = �⌥(⌅⇤B)

⌥t

Apply vector identity on the LHS: ⌅(⌅·E) +⌅2E = �⌥(⌅⇤B)

⌥t

Gauss’s law of electricity states ⌅·E = 0, so: ⌅2E = �⌥(⌅⇤B)

⌥t

Use Ampère’s law on RHS to give wave equation: ⌅2E = ��0µ0
⌥2E

⌥t2

1

• Take	the	curl	and	use	vector	identity	
to	show:
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(normally by 10am, Wednesday of Week 1).

The aim of this first week tutorial is to revive your knowledge of light and prepare for
understanding the new material. If you need to, refer to your notes from PH1420 Fields
and Waves and PH2420 Electromagnetism.

Question 1: Let there be light ... from Maxwell’s equations

In vacuum with no charges (⇧ = 0) or currents (J = 0) Maxwell’s equations reduce to

Gauss’s law for electricty: r·E =
⇧

�0
= 0

No magnetic monopoles: r·B = 0

Faraday’s law of induction: r⇥E = �⌦B

⌦t

Ampère’s law: r⇥B = µ0J+ �0µ0
⌦E

⌦t
= �0µ0

⌦E

⌦t
.

a) Derive two wave equations of the form r2⌃ = 1
v2

⇧2⌅
⇧t2 for E and B, using the vector

identity: r⇥(r⇥A) = r(r·A)�r2
A.

b) Calculate the speed of this wave, given that the vacuum permittivity �0 = 8.854188⇥
10�12F ·m�1 and vacuum permeability µ0 = 4⌅ ⇥ 10�7H ·m�1. Comment.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⌅⇤ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⇥
� (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di↵erence between two waves that have travelled distances of
D1 and D2?

Question 3: The principle of superposition, interference and phase in-
version

Solutions to the wave equation for two disturbances can be written as complex spatial
amplitudes: E1 = a1ei⇤1 and E2 = a2ei⇤2 .

1
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Apply vector identity on the LHS: ⌅(⌅·E)�⌅2E = �⌥(⌅⇤B)

⌥t

Gauss’s law of electricity states ⌅·E = 0, so: ⌅2E =
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Similar for B:

Take the curl of Ampère’s law: ⌅⇤(⌅⇤B) = ��0µ0
⌦(⌅⇤E)

⌦t

Apply vector identity on the LHS: ⌅(⌅·B)�⌅2B = ��0µ0
⌦(⌅⇤E)

⌦t

Gauss’s law of magnetism states ⌅·B = 0, so: ⌅2B = �0µ0
⌦(⌅⇤E)

⌦t

Use Faraday’s law on RHS to give wave equation: ⌅2B = �0µ0
⌦2B

⌦t2

b) For both wave equations the speed is v = 1⇥
�0µ0

= 3⇤ 108m s�1, which is the speed

of light. We have derived a wave equation for electromagnetic waves in a vacuum.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⇧⌅ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⌅
⇥ (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di�erence between two waves that have travelled distances of
D1 and D2?

Solution to Question 2

a) Light propagates in the direction of the wave vector k, with a phase advance of
⌥ = 2⇧c/⇥ every second. A ray of light follows the wave vector. Wave fronts are
planes of constant phase perpendicular to the wave vector: (k · r� ⌥t) = constant.]

b) The phase advance is defined by the time, T, required for a ray to propagate over
the distance, D; or by the number of cycles a wave of frequency, ⌥, does propagating
over the distance, D.

⌃ = ⌥T =
2⇧

⇥
D

c) Phase di⇥erence is defined by a di⇥erence in phase advances of two rays propagating
over the distances D1 and D2.

�⌃ = ⌃2 = ⌃1 = ⌥(t2 � t1) =
2⇧

⇥
(D2 �D1) =

2⇧

⇥
· (optical path di⇥erence)

Here, (D2�D1), is the optical path di⇥erence in vacuum. In a medium with refractive
index n, the opd is n(D2 �D1).

2
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…and	there	was	light
• Starting	from	James	Clerk	Maxwell’s	equations	(1865)	for	electric	E and	magnetic	B fields,

in	the	absence	of	charge	(ρ=0)	and	currents	(J=0):
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• Take	the	curl	and	use	vector	identity	
to	show:
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the distance, D; or by the number of cycles a wave of frequency, ⌥, does propagating
over the distance, D.

⌃ = ⌥T =
2⇧

⇥
D

c) Phase di⇥erence is defined by a di⇥erence in phase advances of two rays propagating
over the distances D1 and D2.

�⌃ = ⌃2 = ⌃1 = ⌥(t2 � t1) =
2⇧

⇥
(D2 �D1) =

2⇧

⇥
· (optical path di⇥erence)

Here, (D2�D1), is the optical path di⇥erence in vacuum. In a medium with refractive
index n, the opd is n(D2 �D1).
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PH2310 Optics: Tutorial 1

Questions to be covered in week 1 of Spring Term 2015
Lecturer: Stephen.Gibson@rhul.ac.uk (W255).

Please make arrangements with your Tutor for handing in your solutions

(normally by 10am, Wednesday of Week 1).

The aim of this first week tutorial is to revive your knowledge of light and prepare for
understanding the new material. If you need to, refer to your notes from PH1420 Fields
and Waves and PH2420 Electromagnetism.

Question 1: Let there be light ... from Maxwell’s equations

In vacuum with no charges (⇧ = 0) or currents (J = 0) Maxwell’s equations reduce to

Gauss’s law for electricty: r·E =
⇧

�0
= 0

No magnetic monopoles: r·B = 0

Faraday’s law of induction: r⇥E = �⌦B

⌦t

Ampère’s law: r⇥B = µ0J+ �0µ0
⌦E

⌦t
= �0µ0

⌦E

⌦t
.

a) Derive two wave equations of the form r2⌃ = 1
v2

⇧2⌅
⇧t2 for E and B, using the vector

identity: r⇥(r⇥A) = r(r·A)�r2
A.

b) Calculate the speed of this wave, given that the vacuum permittivity �0 = 8.854188⇥
10�12F ·m�1 and vacuum permeability µ0 = 4⌅ ⇥ 10�7H ·m�1. Comment.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⌅⇤ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⇥
� (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di↵erence between two waves that have travelled distances of
D1 and D2?

Question 3: The principle of superposition, interference and phase in-
version

Solutions to the wave equation for two disturbances can be written as complex spatial
amplitudes: E1 = a1ei⇤1 and E2 = a2ei⇤2 .
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Similar for B:

Take the curl of Ampère’s law: ⌅⇤(⌅⇤B) = ��0µ0
⌦(⌅⇤E)

⌦t

Apply vector identity on the LHS: ⌅(⌅·B) +⌅2B = ��0µ0
⌦(⌅⇤E)

⌦t

Gauss’s law of magnetism states ⌅·B = 0, so: ⌅2B = ��0µ0
⌦(⌅⇤E)

⌦t

Use Faraday’s law on RHS to give wave equation: ⌅2B = ��0µ0
⌦2B

⌦t2

b) For both wave equations the speed is v = 1⇥
�0µ0

= 3⇤ 108m s�1, which is the speed

of light. We have derived a wave equation for electromagnetic waves in a vacuum.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⇧⌅ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⌅
⇥ (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di�erence between two waves that have travelled distances of
D1 and D2?

Solution to Question 2

a) Light propagates in the direction of the wave vector k, with a phase advance of
⌥ = 2⇧c/⇥ every second. A ray of light follows the wave vector. Wave fronts are
planes of constant phase perpendicular to the wave vector: (k · r� ⌥t) = constant.]

b) The phase advance is defined by the time, T, required for a ray to propagate over
the distance, D; or by the number of cycles a wave of frequency, ⌥, does propagating
over the distance, D.

⌃ = ⌥T =
2⇧

⇥
D

c) Phase di⇥erence is defined by a di⇥erence in phase advances of two rays propagating
over the distances D1 and D2.

�⌃ = ⌃2 = ⌃1 = ⌥(t2 � t1) =
2⇧

⇥
(D2 �D1) =

2⇧

⇥
· (optical path di⇥erence)

Here, (D2�D1), is the optical path di⇥erence in vacuum. In a medium with refractive
index n, the opd is n(D2 �D1).

2

• These	are	wave	equations	with	velocity:
Light	is	an	electromagnetic	wave
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Basis	of	Geometric	Optics
• One	solution	of	the	3-dimensional	wave	equation	is	plane	waves
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• In	an	isotropic	media,	light	travels	in	straight	lines,	known	as	rays.
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b) For both wave equations the speed is v = 1⇥
�0µ0

= 3⇤ 108m s�1, which is the speed

of light. We have derived a wave equation for electromagnetic waves in a vacuum.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⇧⌅ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⌅
⇥ (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di�erence between two waves that have travelled distances of
D1 and D2?

Solution to Question 2

a) Light propagates in the direction of the wave vector k, with a phase advance of
⌥ = 2⇧c/⇥ every second. A ray of light follows the wave vector. Wave fronts are
planes of constant phase perpendicular to the wave vector: (k · r� ⌥t) = constant.]

b) The phase advance is defined by the time, T, required for a ray to propagate over
the distance, D; or by the number of cycles a wave of frequency, ⌥, does propagating
over the distance, D.

⌃ = ⌥T =
2⇧

⇥
D

c) Phase di⇥erence is defined by a di⇥erence in phase advances of two rays propagating
over the distances D1 and D2.

�⌃ = ⌃2 = ⌃1 = ⌥(t2 � t1) =
2⇧

⇥
(D2 �D1) =

2⇧

⇥
· (optical path di⇥erence)

Here, (D2�D1), is the optical path di⇥erence in vacuum. In a medium with refractive
index n, the opd is n(D2 �D1).
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Use Faraday’s law on RHS to give wave equation: ⌅2B = ��0µ0
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b) For both wave equations the speed is v = 1⇥
�0µ0

= 3⇤ 108m s�1, which is the speed

of light. We have derived a wave equation for electromagnetic waves in a vacuum.

Question 2: Plane wave solutions, phase advance and phase di�erence

The electromagnetic wave equations are satisfied by three-dimensional plane wave so-
lutions of the form: U(x, y, z, t) = U0 exp[i(k · r�⌥t)], where r is the position vector, k
is the wave vector and ⌥ = 2⇧⌅ is the angular frequency.

a) In which direction does the light propagate? What is the phase advance each
second? How are the plane wave fronts defined?

A wave of light travels along the z axis such that the 1D solution to the wave equation
is simply, U(z, t) = U0 cos[

2⌅
⇥ (z � ct)] = U0 cos[(kz � ⌥t)].

b) Write down the phase advance if the wave propagates through a distance, D in
time T.

c) What is the phase di�erence between two waves that have travelled distances of
D1 and D2?

Solution to Question 2

a) Light propagates in the direction of the wave vector k, with a phase advance of
⌥ = 2⇧c/⇥ every second. A ray of light follows the wave vector. Wave fronts are
planes of constant phase perpendicular to the wave vector: (k · r� ⌥t) = constant.]

b) The phase advance is defined by the time, T, required for a ray to propagate over
the distance, D; or by the number of cycles a wave of frequency, ⌥, does propagating
over the distance, D.

⌃ = ⌥T =
2⇧

⇥
D

c) Phase di⇥erence is defined by a di⇥erence in phase advances of two rays propagating
over the distances D1 and D2.

�⌃ = ⌃2 = ⌃1 = ⌥(t2 � t1) =
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⇥
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Here, (D2�D1), is the optical path di⇥erence in vacuum. In a medium with refractive
index n, the opd is n(D2 �D1).

2

k is	wave	number,	 2π/λ
Z		is	the	direction	of	travel
λ the	wavelength
c,	speed	of	 light
ω =	2πc/λ, the	angular	 frequency
[Note,	no	phase	offset	in	this	solution]
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Rays and wave fronts 
Spherical wave front Plane wave front 

Point Source
wave fronts

Rays

wave fronts

Rays

The rays radiate out from 
the centre of the spheres 

The rays are parallel to each 
other and perpendicular to 

the wave fronts 

• In	optics,	typically	consider	simplified	solution	to	a	1D	wave	equation:

• Geometric	optics	is	a	technique	for	determining	the	light	path	through	
multiple	interfaces	between	media	of	different	refractive	indices.
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Ray	theory	and	refraction
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• Huygens’	construction	can	be	used	to	derive	Snell’s	law	of	refraction	at	an	interface:

Valid	for	isotropic	media	and	
apertures	much	larger	than	the	
wavelength	of	 light.

Two	basic	assumptions:
1. light	travels	in	straight	lines,	known	as	rays,	in	each	uniform	medium.
2. light	reflects and/or	refracts at	an	interface	between	different	media

Incident	ray

Snell’s	 Law	of	refraction

Light	travels	slower	in	medium
of	higher	 refractive	index,	v	=	c/n

v1 t

v2 t

normal

θ1

θ2

n2

n1

Glass

Air

n1 <	n2	in	this	example	

θR

Reflected	ray
θ1 = θR

Refracted	ray

Incident	ray

sin	θ1 =	v1 t	/	D

sin	θ2 =		v2 t	/	D

n1 sin	θ1 =		n2 sin	θ2

Light	has	different	speeds	 in	
each	medium	v	=	c/n.

Distances	travelled	are	v1t	
and	v2t	in	same	time	t.

D
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Basic	components:	lenses
• A	converging	lens	is	basically	a	

stack	of	prisms,	such	that	paraxial
rays	converge	in	the	focal	plane
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Focal	plane

lens	focal	length,	 f
Fresnel	Lens1

x2
−
1
x1
=
1
f2

1. A ray passing through f1 before refraction, is parallel to the principal axis after refraction.
2. A ray parallel to the principal axis before refraction, travels through F2 after refraction.
3. A ray passing through P is undeviated.

x2x1

-f1

principal	axis

line	of	action

-2f 2ff2P

Object

Image

1
3

2

• The	location	and	magnification	of	an	
image	can	be	found	by	ray	tracing:

Lens equation	(note	x1	is	negative)
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Lateral magnification for a thin lens 

x1
x2

X1
X2

h1

h2

F2O

By constructing the image we see                            (geometrically) 

2

2

1

1

x
h

x
h
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Considering the signs of the distances involved we also see that 

1

2

1

2

x
x

h
h

m == which is also algebraically correct.  

Longitudinal magnification for a thin lens 
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Lateral magnification
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Basic	components:	Lens	types	and	systems
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Lens types

Converging lenses Diverging lenses

The mirror formula

α β γ

θ

θ

O C I

ALine CA is normal to mirror surface 
so angles of incidence and 
reflection are the same

Geometry: β=α+θ and γ=α+2θ so α+γ=2β

Small angles: α≈AP/OP etc.

1/u + 1/v = 2/r = 1/f

r

P

• A spherical mirror will form a point image of a 
point object under paraxial approximations

• The mirror formula can be generalised to 
arbitrary mirrors with a sign convention.

• Concave mirrors normally create real images in 
front of the mirror and have positive radii

• Convex mirrors create imaginary images behind
the mirror and have negative radii.

Mirrors and images (1)

• A ray through the centre of curvature is reflected 
in the same direction.  A ray through the focus is 
reflected  parallel to the axis and vice versa.

Mirrors and images (2)

C F

1/v = 1/f−1/u = 1/1−1/3 = 2/3 giving v=3/2

Image real and inverted and scaled by v/u=1/2

C
o

n
ca

ve

• Constructing	an	optical	instrument	
typically	requires	multiple	lenses.

• One	can	apply	the	lens	equation	multiple	
times,	or	use	the	effective	focal	length	of	
the	combination.
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5. Two thin lenses in contact 

x1 x ’2

X1 X ’2

A   B

X2

x2

X2' is image of X1 formed by 
the first lens A only. X2 is 
the image formed by lens B. 

1st lens only 
A21

'
2 f

1
x
1

x
1

=! and 2nd lens only 
B2

'
22 f

1
x
1

x
1

=!

The sum of those two equations will result in 
 
where fC is the focal length of the combination. 

C12B2A2 f
1

x
1

x
1

f
1

f
1

=!=+

Power of the lens (or lens combinations) is F, and 
f
1F =

If f is converging, power is positive. If f is in metres, the power F is dioptres.  

22 

6. Two thin lenses separated by a distance d in air 

X1 X ’2

A                      B

X2

Y y

d

P2

f

A ray striking the first lens A at a height Y from the axis is brought to a focus at 
X2 by lens B. The ray passes through the second principal plane at height Y (by 
definition) and the second lens B at height y. (X2' is the virtual object for the 
second lens). 

The equation for two lenses is 

B2A2B2A2 ff
d

f
1

f
1

f
1

!+=
• However,	there	is	a	better	way…

X1

d

line	of	action

X’2X2

fcombination

The	ray	would	be	brought	
to	a	focus	at	X’2 by	the	
first	lens	A	only.

A B

X’2	is	the	virtual	object	for	
the	second	lens ,which	
has	a	final	focus	at	X2

Two	thin	 lenses	separated	by	distance	d	:

Two	thin	 lenses	in	contact:

The	combined	power	is	the	sum	of	the	
individual	 	powers	for	thin	lenses	in	contact

The	power	of	the	combination	is	less	
than	the	sum	of	the	powers.

X1

x’2x1

line	of	action

X’2X2x2

Sum	of	both	 lenses	gives	the	
combined	 focal	length	 fc:

X’2 is	image	of	X1 formed	
by	the	first	lens	A	only.
X2 is	the	image	formed	by	
lens	B.

A B
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Matrix	method	of	ray	tracing
• A	ray	is	described	by	the	height	h1 from	the	optical	axis	and	angle	h1’
• Optical	components	described	by	their	transfer	matrix:
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• Similar	in	concept	to	accelerator	optics	lattice,	note	lenses	typically	
focus	in	both	planes	simultaneously	(unlike	quadrupoles)

Fx1

h1

h2’

h2

h1’

x2

Free	space	drift

Action	at	thin	lens
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b = −x1 +Fx1x2 + x2 = 0 ⇒
1
x2
−
1
x1
= F = 1

f

a =1−Fx2 = 0 ⇒ x2 = f

Example	of	drift-lens-drift:

The	lens	equation!
Angle	independent	 image	formation:
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Reflection	transformations
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Leonardo	da	Vinci	famously	used	mirror	writing	to	
obfuscate	his	notes	(he	was	also	left-handed)

Reflect	across	x=yReflect	across	x=0

BEAM INSTRUMENTATION

Find more about Finish mythology at  https://en.wikipedia.org/wiki/Aino_(mythology)

Hotel Gustavelund
Tuusula, Finland

www.gustavelund.fi

from 2 to 15 June, 2018

Ten years after the last course on accelerator beam diagnostics in Dourdan (France) the CERN accelerator school will again off er such 
a course in 2018 – close to Helsinki (Finland). This is intended be of interest to staff  and students in accelerator laboratories, university 
departments and companies manufacturing accelerator equipment who wish to learn about beam instrumentation technologies, data 
treatment and accelerator performance diagnostics.
The course is split into morning lectures and afternoon “hands-on” courses.
The lectures will focus on the typical instruments used in high and low energy linear and circular accelerators, introducing examples of 
their application and some elementary background on particle dynamics. 
For the “hands-on” courses the participants will be split into groups to work with real equipment on beam position measurements, optical 
diagnostics, radio frequency measurements and digital signal processing.
Participants will leave the school having acquired a detailed understanding of how beam diagnostic measurements are performed and 
practical experience of how the instrumentation used is built and operated.

Contact: CERN Accelerator School  
CH – 1211 Geneva 23 
cas.web.cern.ch
Accelerator.school@cern.ch
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Optical	design	with	ray	tracing	software
• Ray	tracing	divides	the	real	light	field	into	discrete	monochromatic	rays	that	are	propagated	

through	 the	system.	Can	input	real	light	distribution.
• Several	professional	 software	suites	available,	e.g.

16Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

OSLO:	Optics	Software	for	Layout	
and	Optimization

https://www.lambdares.com/oslo/

WinLens3D	- lens	design	&	optimization	software
http://www.opticalsoftware.net/index.php/how_to/lens_design_software/winlens3d/

ZEMAX
https://www.zemax.com/
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Physical	optics:	Interference	basics

• The	wave	properties	of	light	gives	rise	to	interference	between	multiple	paths,	where	each	
path	has	a	phase	advance.
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Question 3: The principle of superposition, interference and phase in-
version

Solutions to the wave equation for two disturbances can be written as complex spatial
amplitudes: E1 = a1ei�1 and E2 = a2ei�2 .

a) The condition for constructive interference is that the optical path di�erence is equal
to an integer number of wavelengths: o.p.d = p⇥. Write down the condition for
destructive interference.

b) Sketch the setup for Lloyd’s mirror, marking the position of the virtual source. Is
the fringe corresponding to zero path di�erence dark or bright?

Solution to Question 3

a) By the supersposition principle the intensity is the absolute square of the sum of the
complex amplitudes:

I = |E1 + E2|2 = |E1|2 + |E2|2 + E⇥
1E2 + E1E

⇥
2

= E2
1 + E2

2 + E1e
�i�1E2e

i�2 + E1e
i�1E2e

�i�2

= E2
1 + E2

2 + E1E2(e
i(�2��1) + e�i(�2��1))

= E2
1 + E2

2 + 2E1E2cos(⇤2 � ⇤1)

b) The fringe corresponding to zero path di�erence is dark because the beam reflected
from the mirror’s surface experiences a phase inversion due to reflection from a denser
medium.

Question 4: Snell’s law of refraction

Derive Snell’s law of refraction, n1 sin �1 = n2 sin �2, by considering the geometry of
wavefronts incident at an angle on an plane interface between two media with di�erent
refractive indices. [Recall that the speed of light is reduced in a medium of refractive
index > 1, v = c/n.]

A fishy tale

a) A wading heron observes a fish1, swimming at a real depth of 0.4m beneath the
surface of a smooth lake. What is the apparent depth of the fish as seen by the
heron? (Refractive index of water nw = 1.333).

b) The heron flies o�, leaving the fish to enjoy a beautiful sunset. At what angle to the
horizontal does the fish observe the setting Sun?

1A Red Herring?

3

• By	the	principle	of	superposition	 the	resulting	disturbance	is	the	sum	of	the	complex	spatial	
amplitudes	E	=	E1+E2.	We	measure	the	intensity,	the	square	of	the	sum	of	E-fields:

PH2310 Optics: Tutorial 1 with Solutions SG

Question 3: The principle of superposition, interference and phase in-
version

Solutions to the wave equation for two disturbances can be written as complex spatial
amplitudes: E1 = a1ei�1 and E2 = a2ei�2 .

a) The condition for constructive interference is that the optical path di�erence is equal
to an integer number of wavelengths: o.p.d = p⇥. Write down the condition for
destructive interference.

b) Sketch the setup for Lloyd’s mirror, marking the position of the virtual source. Is
the fringe corresponding to zero path di�erence dark or bright?

Solution to Question 3

a) By the supersposition principle the intensity is the absolute square of the sum of the
complex amplitudes:

I = |E1 + E2|2 = |E1|2 + |E2|2 + E⇥
1E2 + E1E

⇥
2

= a21 + a22 + a1e
�i�1a2e

i�2 + a1e
i�1a2e

�i�2

= a21 + a22 + a1a2(e
i(�2��1) + e�i(�2��1))

= a21 + a22 + 2a1a2cos(⇤2 � ⇤1)

b) The fringe corresponding to zero path di�erence is dark because the beam reflected
from the mirror’s surface experiences a phase inversion due to reflection from a denser
medium.

Question 4: Snell’s law of refraction

Derive Snell’s law of refraction, n1 sin �1 = n2 sin �2, by considering the geometry of
wavefronts incident at an angle on an plane interface between two media with di�erent
refractive indices. [Recall that the speed of light is reduced in a medium of refractive
index > 1, v = c/n.]

A fishy tale

a) A wading heron observes a fish1, swimming at a real depth of 0.4m beneath the
surface of a smooth lake. What is the apparent depth of the fish as seen by the
heron? (Refractive index of water nw = 1.333).

b) The heron flies o�, leaving the fish to enjoy a beautiful sunset. At what angle to the
horizontal does the fish observe the setting Sun?

1A Red Herring?

3

• Consider	two	sinusoidal	disturbances	at	a	point	at	time	t,	having	travelled	different	
distances,	x1 and	x2:

( )1221
2
2

2
1

2 cos2 δδ −++== aaaaEI ⎟
⎠

⎞
⎜
⎝

⎛ −
=

2
cos4 1222 δδaI

instantaneous	phase,	φ =	ωt – kx

Note	for	identical	amplitudes	a1 =	a2

Constructive o.p.d.	=	mλ
Destructive o.p.d.	=	(m+1/2) λ
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Physical	optics:	Phasors

• Reminder	of	phasors,	visualisation	of	the	superposition	principle,

18Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

Imaginary

Real

a1
φ1 =ωt – δ1

a2
φ2 =ωt – δ2

E1 = a1e
i ωt−kx1( ) = a1e

i ωt−δ1( ) = a1[cos(φ1)+ isin(φ1)]
E2 = a2e

i ωt−kx2( ) = a2e
i ωt−δ2( ) = a2[cos(φ2 )+ isin(φ2 )]

• E = E1+	E2
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Physical	optics:	double	slit	interference

19Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

slit	
separation

d
θ

d sin	θ =	extra	path	length	=	mλ = Δδ / k

θ

r1

r2

PL	=	slit	to	screen	distance

• For	infinitesimal	slit	size,	see	interference	 fringes	in	far	field:

IP = 4
U0

r
!

"
#

$

%
&
2

cos2 1
2
kd sinθ

!

"
#

$

%
&Δδ/2

U0 /	r
Δδ

U0 /	r
Up

Phasor	sum:

Intensity
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?

BEAM INSTRUMENTATION

Find more about Finish mythology at  https://en.wikipedia.org/wiki/Aino_(mythology)

Hotel Gustavelund
Tuusula, Finland

www.gustavelund.fi

from 2 to 15 June, 2018

Ten years after the last course on accelerator beam diagnostics in Dourdan (France) the CERN accelerator school will again off er such 
a course in 2018 – close to Helsinki (Finland). This is intended be of interest to staff  and students in accelerator laboratories, university 
departments and companies manufacturing accelerator equipment who wish to learn about beam instrumentation technologies, data 
treatment and accelerator performance diagnostics.
The course is split into morning lectures and afternoon “hands-on” courses.
The lectures will focus on the typical instruments used in high and low energy linear and circular accelerators, introducing examples of 
their application and some elementary background on particle dynamics. 
For the “hands-on” courses the participants will be split into groups to work with real equipment on beam position measurements, optical 
diagnostics, radio frequency measurements and digital signal processing.
Participants will leave the school having acquired a detailed understanding of how beam diagnostic measurements are performed and 
practical experience of how the instrumentation used is built and operated.

Contact: CERN Accelerator School  
CH – 1211 Geneva 23 
cas.web.cern.ch
Accelerator.school@cern.ch
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Physical	optics:	2	source	interference

• Where	should	Hermann	sit	to	maximize	the	volume?

20Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

Since January 2018 director of CAS

Since January 2018 director of CAS
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Michelson	Interferometer

• Interferometers	are	used	widely	for	accurate	distance	measurements:
– If	the	length	of	each	interferometer	arm	is	fixed	we	observe	some	phase	Φ at	the	detector,	due	to	the	

optical	path	difference,	L	=	l1 – l2
– If	one	mirror	is	moved	some	distance	x,	we	observe	a	phase	change	at	the	detector:

21Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

M2

l1
l2

Essentially	we	count	fringes	as	the	path	
difference	is	changed.

M1

DETECTOR

L

IMEASURED

L L’
ΔΦ = [2π/λ]ΔL

Φ is	the	detected	phase
L is	the	optical	path	difference	(n=1)

φ1 =
2π
λ
l1

φ2 =
2π
λ
l2

Φ =
2π
λ
(l1 − l2 ) =

2π
λ
L

Interference	fringe	counting:	
change	in	phase	proportional	 to	
change	in	optical	path	length
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Interferometer	Types
• The	interferometer	 is	an	amazingly	versatile	instrument
• Various	configurations	 to	create	interference	by	

division	of	amplitude,	e.g.:

22Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

Mach-Zehnder viewing	
a	candle	flame

Check	surface	quality	of	a	lens	or	optical	flat	
can	be	tested	with	interference	fringes.

CC	BY-SA	3.0
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Direct	detection	of	Gravitational	Waves
• Exquisite	sensitivity:	gravitational	wave	typically	lengthens	and	contracts	each	arm	of	the	

interferometer	by	length	of	10-21	*	arm	length

23Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

First	signal	from	a	binary	black-hole

Quadrupole oscillation	
of	space-time

www.ligo.caltech.edu/video/ligo20160211v10
Barry	Barish (LIGO)	CERN	seminar	11/2/16
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Finnish	Diffraction
• What	happens	when	waves	meet	an	aperture	or	obstacle	in	Finland?

24Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

The	calm	before	the	storm	in	Tuusula…
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Finnish	Diffraction
• What	happens	when	waves	meet	an	aperture	or	obstacle	in	Finland?

25Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	
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Finnish	Diffraction
• What	happens	when	waves	meet	an	aperture	or	obstacle	in	Finland?

26Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	
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Wave	Diffraction

• Diffraction	occurs	wherever	there	is	an	obstacle	or	aperture

27Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

From	Teaching	waves	with	Google	Earth
doi:10.1088/0031-9120/47/1/73
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Light	on	the	edge
• Diffraction	fringes	at	a	razor’s	straight	edge:

28Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	



Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	 29

Light	on	the	edge
• Diffraction	fringes	at	a	razor’s	straight	edge:

29Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

We	see	similar	fringes	
at	the	corner…

…and	at	the	curved	cut	out	in	
the	centre of	the	razor:

Diffraction	at	a	pinhead

• Diffraction	effects	may	be	helpful	or	problematic	
when	constructing	optical	instruments
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Light	on	the	edge
• Diffraction	fringes:	 circular,	triangular	and	rectangular	apertures:

30Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

"Atlas	of	optical	phenomena";	Michel	Cagnet,	Maurice	
Françon,	Shamlal Mallick;	Springer-Verlag,	1971.
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Fresnel	diffraction	at	a	straight	edge
• Consider	plane	waves	incident	on	a	straight-edged	 obstacle:
• We	aim	to	evaluate	the	intensity	at	P,	by	summing	all	contributions	that	pass	the	obstacle	

31Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	

h
0

s
P

incident	waves

straight	edged
obstacle

Consider	 the	intensity	at	P	due	 to	contributions	
from	infinitesimal	 strip,	dh,	at	height,	h.:W

1)	Compared	to	the	phase	of	
a	wave	from	O,	the	extra	
phase	of	the	wave	from	W	is φ(h) = 2π

λ
s2 + h2( )

1/2
− s"

#$
%
&' ≈

πh2

λs
Approximation	valid	for	h2 <<	s2

δ
dh

2)	Construct	a	phasor,	dx+idy =	dh[exp(iφ(h)],	due	to	infinitesimal	
strips	of	height	dh	at	h:

dx = dhcosπh
2

λs
and dy = dhsin πh

2

λs



Stephen	Gibson	– Introduction	to	Optics	– CAS	Beam	Instrumentation,	6	June	2018	 32

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.5

0.5

1

Fresnel	diffraction	at	a	straight	edge
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φ(h)

Usually	define	a	dimensionless	 variable	which	
represents	the	distance	along	the	spiral,

v = h 2
λs
!

"
#

$

%
&
1/2

• The	phasor	will	trace	out	a	spiral	(with	tangent	at	phase	angle	φ ∼ h2)

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

A	thing	of	beauty:	the	Cornu	spiral

• The	spiral	coordinates	are	given	
by	the	Fresnel	integrals

Note	if	phase	were	
linear	in	h	we	
would	have	a	circle
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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0.5
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1

1.25

1.5
Intensity

Straight	edge
In	geometric	shadow Not	in	geometric	shadow

Start	in	geometric	shadow…	
length	of	arrow	grows	as	we	move	
within	the	shadow

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.5

0.5

1

Z

A

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5
Intensity

Straight	edge
In	geometric	shadow Not	in	geometric	shadow

Start	in	geometric	shadow…	
length	of	arrow	grows	as	we	move	
within	the	shadow

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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Straight	edge
In	geometric	shadow Not	in	geometric	shadow

Predicts	that	the	intensity	at	P,	in	line	
the	straight	edge	is	½(AZ)2=0.25,	 or	
one	quarter	of	that	when	no	obstacle	
is	present.

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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Reach	first	maximum:
Note	it	is	larger	than	if	the	
obstacle	were	not	present!

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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Just	past	the	first	maximum:

x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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y = sin πv '
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∫

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2 x = cosπv '
2

2
dv '

0

v
∫

y = sin πv '
2

2
dv '

0

v
∫
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Fresnel	diffraction	at	a	straight	edge
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A	thing	of	beauty:	the	Cornu	spiral
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Tends	to	the	centre of	 the	spiral,	
where	the	intensity	=	1.

The	arrow	length	traces	out	 the	straight	edge	
pattern,	with	resultant	normalized	 intensity

I	=	(x2+y2)/2 x = cosπv '
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Far	field	intensity	for	a	widening	slit:
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Effectively	two	knife	edges

Transition	to	Fresnel	diffraction
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Simple classification of diffraction patterns 
Fraunhofer Diffraction Pattern: This is the pattern observed in the plane conjugate 
to the source and we associate the pattern with an image forming system. 
However, for a special case of no lenses, if the source and a screen are an infinite 
distance apart we have a Fraunhofer diffraction. 

I !x( ) = Eres !x( )
2
= A xs( )exp !ikxs sin!x[ ]dxs

S
"

2

A(xs) – is the amplitude of radiation emitted by each 
 individual elementary source; 

k = 2!/" is the wave number; 
" is the light wavelength; 
#x = xd/L is the angle of photon emission; 
xd is the detector coordinate; 
L is the distance from the source to detector. 

Intensity	integral,	FT of aperture	function Solution Definitions

General	Fraunhofer Diffraction	in	1D
• To	calculate	the	far	field	diffraction	pattern	take	the	Fourier	Transform	of	the	

transmission	function	of	the	diffracting	aperture:
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Single	 slit:

Double	slit:

N-slit	grating

Multiple slit source – Grating spectrometer 
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The effect of the finite slit diffraction 
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1.5 Diffraction from a finite slit: phasor treatment 
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Blazed grating reflects light at same angle as diffracted order 
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Intensity

y

x

Diffraction pattern from circular aperture 

Point Spread Function 

Diffraction	in	2D

• Rectangular	slit:
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Rectangular Slit 
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• Circular	aperture:
Diffraction from a circular aperture 

Diffraction from a rectangular aperture 
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Convolution	visualized

• The	convolution	function:
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h(x) = f (x)⊗ g(x) = f (x ')g(x '− x)
−∞

∞

∫ dx '

The	convolution	theorem:
– F(k) is the Fourier Transform of f(x)

– G(k) is the Fourier Transform of g(x)

– H(k) is the Fourier Transform of h(x)

– Then:

– The Fourier transform of a convolution of f and g is the 
product of the Fourier transforms of f and g

H (k) = F(k) ⋅G(k)

F(x) G(x)

H (k) = F(k) ⋅G(k)
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Convolution	theorem
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domain

Fourier	
transform
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domain)
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Spatial	filtering
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Pin	hole	as	a	low	pass	filter

• A	pinhole	aperture	placed	at	the	focus	of	the	lens	acts	in	the	Fourier	plane:
– This	eliminates	structure	with	higher	spatial	frequencies,	which	produce	light	furthest	
from	the	central	position.

– A	microscope	objective	and	pinhole	is	typically	used	to	remove	aberrations	and	improve	
the	quality	of	a	Gaussian	laser	beam.
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Spatial	filtering	in	image	processing
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Halo	monitoring:	core	masking	
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Prof Carsten P Welsch

Halo Monitoring: Core Masking

(1) Aquire profile (2) Define core

(3) Generate mask(4) Re-Measure
J. Egberts, et al.,  
JINST 5 P04010 (2010)
H. Zhang, R. Fiorito, et al., 
Phys. Rev. STAB 15 (2012)

The	Sun’s	chromosphere	 is	4	
orders	of	magnitude	 less	dense	
than	the	photosphere	 (which	
itself	is	three	to	four	orders	less	
dense	than	air	at	sea	level).

The	chromosphere	 becomes	
directly	visible	during	an	eclipse.	
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Application:	Coronagraph	for	LHC	beam	halo
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G. Trad, T. Mitsuhashi, E. Bravin, A. Godblatt, F. Roncarolo
First Observation of the LHC Beam Halo Using a Synchrotron 
Radiation Coronagraph
http://inspirehep.net/record/1626217/files/tuoab2.pdf

DESIGN AND PERFORMANCE OF CORONAGRAPH FOR BEAM HALO

MEASUREMENTS IN THE LHC

A. Goldblatt∗, E. Bravin, F. Roncarolo, G. Trad, CERN, Geneva, Switzerland
T. Mitsuhashi, KEK, Ibaraki, Japan

Abstract

The CERN Large Hadron Collider is equipped with two
Beam Synchrotron Radiation systems (BSR), one per beam.
These systems are used to monitor the transverse distribution
of the beam, its longitudinal distribution and the abort gap
population. During the 2015-2016 winter shut-down period,
one of the two BSR systems was equipped with a prototype
beam halo monitor, based on the Lyot coronagraph, classi-
cally used in astrophysics telescopes to observe the sun’s
corona. The system design, as well as part of the optics,
was taken from the coronagraph used in the KEK Photon
Factory, adapted in order to satisfy the LHC BSR source
constraints. This project is in the framework of the HL-LHC
project, for which there is the requirement to monitor the
beam halo at the level of 10-6 of the core intensity. This
first prototype has been designed as a demonstrator system
aimed at resolving a halo-core contrast in the 10-3 to 10-4

range. After illustrating the design of the LHC coronagraph
and its technical implementation, this contribution presents
the result of the first tests with beam and the planned system
upgrades for 2017.

PRINCIPLE OF THE CORONAGRAPH

The coronagraph is an instrument developed in the
first half of 20th century by Bernard Lyot, a French
astrophysicist, in order to observe the halo of the sun. A
sketch of the Lyot coronagraph can be seen in Fig. 1.

Figure 1: Sketch of the Lyot coronagraph optical layout.

A real image of the object is created by an objective
lens. An opaque disk located at the image plane of this lens
masks the bright core of the object in order to make the halo
visible.
Such a system is however limited by the light diffracted
from the limited aperture of the objective lens, which
creates a diffraction pattern at the image plane, perturbing
the observation of the halo.
Lyot’s solution consisted of adding a field lens, which
images the objective lens and thus shifts the diffraction

∗ Aurelie.Goldblatt@cern.ch

fringes out of the center, as shown in Fig. 2.
By placing a well dimensioned aperture stop, the "Lyot
stop", at the location where the diffraction fringes are
re-imaged, the fringes are blocked and can’t propagate to
the final image plane, where the halo is observed. [1–4]
A relay lens creates the final image of the beam with a
magnification suitable for the camera sensor.

Figure 2: Sketch of diffraction pattern at the objective lens
(left) and field lens (right) image planes.

The performance of the coronagraph is defined by its
contrast, that is to say the ratio of the halo intensity with
respect to the core intensity at image plane. It is limited
by the background noise, which has mainly two sources:
the first is the diffraction "leakage" to the image plane
(i.e. diffraction fringes which are not blocked by the Lyot
stop), which depends of the objective lens aperture, the
mask size and the Lyot stop aperture. The second is Mie
scattering, which is generated mainly by small particles on
the optical elements located before the objective lens, and
leads to a uniform increase of the background level. The
Mie scattering depends on the size of the scattering particles
and their distance to the objective lens. Mie scattering after
the mask doesn’t have a strong impact, since the light is by
then strongly attenuated.
These limitations and the expected performance of the LHC
coronagraph are quantified in the next section.

LHC HALO MONITOR DESIGN

Layout

The prototype beam halo monitor installed in the LHC
during the winter shut down 2015-2016 is based on the same
design and re-uses the optics of the Photon Factory corona-
graph tested at KEK. Some modifications were introduced
in order to fulfill the specific conditions of the LHC syn-
chrotron light source and mechanical constraints. [5–7]
The coronagraph is designed to be used both at injection and
top energy (450GeV and 7TeV respectively).
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first half of 20th century by Bernard Lyot, a French
astrophysicist, in order to observe the halo of the sun. A
sketch of the Lyot coronagraph can be seen in Fig. 1.

Figure 1: Sketch of the Lyot coronagraph optical layout.

A real image of the object is created by an objective
lens. An opaque disk located at the image plane of this lens
masks the bright core of the object in order to make the halo
visible.
Such a system is however limited by the light diffracted
from the limited aperture of the objective lens, which
creates a diffraction pattern at the image plane, perturbing
the observation of the halo.
Lyot’s solution consisted of adding a field lens, which
images the objective lens and thus shifts the diffraction
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fringes out of the center, as shown in Fig. 2.
By placing a well dimensioned aperture stop, the "Lyot
stop", at the location where the diffraction fringes are
re-imaged, the fringes are blocked and can’t propagate to
the final image plane, where the halo is observed. [1–4]
A relay lens creates the final image of the beam with a
magnification suitable for the camera sensor.
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(left) and field lens (right) image planes.

The performance of the coronagraph is defined by its
contrast, that is to say the ratio of the halo intensity with
respect to the core intensity at image plane. It is limited
by the background noise, which has mainly two sources:
the first is the diffraction "leakage" to the image plane
(i.e. diffraction fringes which are not blocked by the Lyot
stop), which depends of the objective lens aperture, the
mask size and the Lyot stop aperture. The second is Mie
scattering, which is generated mainly by small particles on
the optical elements located before the objective lens, and
leads to a uniform increase of the background level. The
Mie scattering depends on the size of the scattering particles
and their distance to the objective lens. Mie scattering after
the mask doesn’t have a strong impact, since the light is by
then strongly attenuated.
These limitations and the expected performance of the LHC
coronagraph are quantified in the next section.

LHC HALO MONITOR DESIGN

Layout

The prototype beam halo monitor installed in the LHC
during the winter shut down 2015-2016 is based on the same
design and re-uses the optics of the Photon Factory corona-
graph tested at KEK. Some modifications were introduced
in order to fulfill the specific conditions of the LHC syn-
chrotron light source and mechanical constraints. [5–7]
The coronagraph is designed to be used both at injection and
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• Observe	synchrotron	light	form	LHC:
– Opaque	disk	blocks	the	beam	core.
– However,	the	limited	diameter	of	the	object	lens	

creates	unwanted	diffraction,	which	overlays	the	halo.
– By	adding	the	field	lens	to	image	the	objective	lens,	

the	unwanted	diffraction	moves	radially	out.
– A	Lyot stop	is	then	used	to	block	the	diffraction,	

allowing	only	the	LHC	halo	to	be	imaged.

A. Goldbatt et al. MOPG74m IBIC2016

Figure 4: 3D drawing of the LHC halo monitor.

The first step of the test consisted of precisely locating the
objective lens image plane in order to place the mask.
The second step was then to adjust the objective lens
aperture and the Lyot stop. The diffraction pattern at the
Lyot stop location depends on the objective lens aperture
and the mask size, but it has to be considered that a small
objective lens and Lyot stop aperture deteriorates the image
resolution by increasing the point spread function. An
objective lens aperture of 20x20mm was finally selected
with the Lyot stop adjusted by optimizing the final image.
The contrast was measured with the following procedure.
Images of the object without the mask were acquired,
adjusting the camera exposure time in order to reach a
maximum intensity value at the light core near (but below)
saturation. The mask was then inserted and the exposure
time increased until a maximum halo intensity of the same
value as that of the core without mask was achieved. The
ratio between the halo exposure time and the core exposure
time gives the contrast.
Fig. 5 shows images obtained with a 800um mask. It was
possible to observe light with a contrast of 107. The results
on the test bench were promising: the surface quality of the
in-vacuum mirror appears to be sufficient to allow the halo
observation.

Figure 5: Images acquired with different camera exposure
time.

LHC HALO MONITOR COMMISSIONING

The beam-halo monitor was installed in the LHC during
the winter shutdown 2015-2016, and commissioned in April
2016, at the 2016 LHC top energy of 6.5TeV.
The same procedure as the one described in the test bench
section of this paper was carried out for finding the objective
lens image plane and setting the aperture.
A test to quantify the diffraction leakage was then performed.
At top energy, the aperture available for beam imposed by
the collimation system is 3.5x4.5mm. This implies that at
the objective lens image plane, where the magnification is
0.08, the light produced by the beam should be confined
in a 280x360um area. Thus, with the biggest size of mask
(650um) placed in front of the core, all observable light on
the image can be considered as diffraction leakage and Mie
scattering. The Fig. 6 shows an image obtained during this
test. A light spot of intensity 10-4 with respect to the beam
core is clearly visible on the right side of the mask only,
whose origin appears to be independent of the objective
lens and Lyot stop size apertures. Its intensity makes the
observation of the beam halo impossible in the present state.

Figure 6: Image acquired with the LHC beam halo monitor
in the frame of quantifying the diffraction leakage.

This parasitic light spot, which was never observed
during the lab tests, might therefore be explained by the
source of the LHC synchrotron light. Indeed, the in-vacuum
mirror will reflect the light produced by the dipole magnet
from its edge up to 3.3m inside [7].
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Deliberately contribute to beam halo to stimulate a halo on the order expected in
HL-LHC.
Done at 450 GeV (injection energy).
View beam halo with coronograph.
Beam halo seen to decrease with beam scraping.
Intensities correlated with beam intensity loss.
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Summary	of	‘Introduction	to	Optics’

• The	simple	refractive	nature	of	electromagnetic	waves	enables	complex	optical	instruments	
to	be	designed	from	multiple	elements:
– Light	propagation	is	typically	calculated	by	dedicated	ray	tracing	software,	based	on	matrix	methods.

• Interference is	a	powerful	tool	for	precise	displacement	measurements	with	sensitivities	at	
a	fraction	of	the	wavelength	of	light
– we	we	explore	some	relevant	examples	in	the	following	lectures.

• Diffraction effects	must	be	considered	when	designing	instruments,	with	numerical	
calculations	based	on	the	Fourier	Transform	of	the	transmission	 function	of	the	aperture.
– Spurious	effects	can	typically	be	spatially	filtered	in	the	Fourier	plane,	or	by	applying	a	mask	on	the	Fourier	

Transform	in	software	to	reconstruct	only	the	image	of	interest.

• Next	time:	lasers,	fibre	optics	and	applications.
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